
ON A QUASI-LINEAR EQUATION 

RICHARD BELLMAN 

1. Introduction. The purpose of this note is to establish some limit 
theorems for the non-linear recurrence relations 

N 

1.1 Xi(n + 1) = M a x X aiM) XJW> i = 1, 2, . . . , JV; » > 0, 

under certain assumptions concerning the initial values ct = #*(()), and the 
coefficient matrices A (q) = (dij(q)). 

Equations of this type occur in various parts of the theory of dynamic 
programming, as we shall indicate below, and are, in addition, of interest in 
furnishing a link between the theory of linear and non-linear operations, as 
we have discussed elsewhere (1). 

Generally speaking, these equations arise in the consideration of processes 
of Markoff type, see (2), in which decisions are made at various stages of the 
process. 

Results corresponding to those obtained below hold for the more general 
equations of the form 

( N 

Max 2 ûijfe) Xj(n), i = 1, 2, . . . ,K < N, 
1.2 xt(n + 1) = \ q i=l 

I ^ 
X atj(q*) Xj(n), i = K + 1, . . . , N, 

where q* in the lower equations is determined by the upper equations. 

2. T h e homogeneous equa t ion . Let us consider the equation 
N 

2.1 Vyi = M a x 2 > « ( f f ) 30 (i = 1,2, . . . ,N), 
q .7=1 

where we impose the following conditions: 

2.2 (a) q = (<?i, <?2, . • . , qn) runs over some set of values, 5, with the property 
that the maximum is attained in (1), 

(b) °o > m > atj(q) > 0 (i,j = 1, 2, . . . , N) for q Ç5, 

(c) for any g, let <j>{q) denote the characteristic root of A(q) = (a^(g)) 
of largest absolute value, the Perron root, known to be positive. We assume 
that there exists at least one value of q for which <f>(q) assumes its maximum 
for q G 5. 
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We shall now prove 

THEOREM 1. Under these conditions, there exists a unique positive X with the 
property that 2.1 has a positive solution, yt > 0 (i — 1, 2, . . . , N). This solution 
is unique up to a multiplicative constant, and 

2.3 X = Max <f>(q). 
qtS 

Proof. We begin by showing the existence of a positive X and a positive set 
of solutions {yt\. Consider the region defined by 

N 

yt > o, 53 ?« = i-

The normalized transformation 
r N 1 / r N N 

2.4 y\ = Max 52 atJ(q) yA/\ E Max 52 ati(q) y, 

is a continuous mapping of this region into itself. Hence there exists a fixed 
point, {yt}. This fixed point is a solution of 2.1, with X the denominator in 
2.4. Each component yt is positive because of the positivity of a^(g). 

To show that this solution is unique up to a multiplicative constant, let 
[M, Z] be another solution of 2.1 with JJL > .0 and z a positive vector. Let [q] 
be the set of values for which the maximum is attained in 2.1 and {q} the similar 
set associated with z. Observe that we may have different sets for each i. We 
have then 

2.5 \yt = 2 aiAq) yj> 1L aiM) y h *' « i, 2 , . . . , iv, 
i 

j 

Let us now assume, without loss of generality that X < y.. Let e be a positive 
constant chosen so that one, at least, of the components yt — eZi is zero, one 
at least is positive, and the others are non-negative. This can always be 
accomplished if y and z are not proportional. If i is an index for which yt — ez{ 

is zero, we have 
N 

2.6 0 = n(y{ - eZi) > \yt - efjLZt > X) a^(5)(y> — *ZJ) > 0, 
. 7 = 1 

since atjiq) > 0, a contradiction. Hence X = n, and y and z are proportional. 
To show that X = Max^(g), we proceed as follows. It is clear that X, as 

the characteristic root of some A(q), satisfies the inequality X < JJL, where 
n = Max <t>(q). Assume that actually X < /z. Let z = (si, z2, . . . , zn) be a 
positive characteristic vector associated with /x and q a set of g-values which 
yield ju = (j>(q). Then we have 

N N 

2.7 /jiZi = E aiM) Zj < Max 52 aiM) zv 
.7-1 q i - 1 

• 
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Since y* is positive, we can find a positive constant m such that zt < my* for 
i = 1, 2, . . . , N. Hence 2.1 yields 

2.8 /is;* < m M a x 2 ai;(<z) y; = m^i-
q ; = 1 

Thus s* < myi X//-C. Iterating this, we obtain Zi ^ my i (X//z)*, for arbitrary &. 
Since X//i < 1, by assumption, this yields zt — 0, a contradiction. Hence 
X = /x. 

3. The recurrence relation. Let us now return to the recurrence relation 
of 1.1 and prove 

THEOREM 2. If, in addition to the conditions of '2.2, we assume that there is a 
unique q for which the maximum value of <j>(q) is attained and that ct > 0, 
then 
3.1 Xi(n) ~ ayt Xw, 

as n —> oo, where a is a constant dependent upon the initial values ct. 

Proof. Let us take ct > 0 without loss of generality. There are then two 
positive constants k and K such that kyt < ct < Kyt {i = 1, 2, . . . , N). Let 
us show inductively that 

3.2 kyt \n < xt(n) < Kyt Xw. 

Assume that we have the result for n, then 
N 

3.3 xt(n + 1) < K\n MaxX) atj(q) y, = K\n+1y{ 

N 

> k\n MaxX) ais(q) y, = £Xn+1;y<-
? 3=1 

To establish the asymptotic behavior we show that for n sufficiently large 
the set of g's which furnish the maximum in 1.1 is precisely the set which 
yields X = Max 0(g). 

Assume the contrary. This means that infiitely often we employ a set {q\ 
which is not identical with the q which furnishes the maximum in <t>(q). 

We then have, for i = 1, 2, . . . , N, 

3.4 Xi(n + 1) = E atj(q) *,(») < ( £ atJ(q) y) K\n. 

For some index i we must have 
N 

3.5 £ a ^ (? ) 3^ < *y<» 

with strict inequality. For if 

AT 

3=1 
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for all i, the characteristic root of A(q) = (a^(g)) of largest absolute value, 
0(g), would at least equal X = Max <A(g), which would contradict the assump
tion concerning the uniqueness of the maximum of 4>(q). 

Hence, for some component, say the first, we have 

3.6 xx{n + 1) < 6K\n+1
yil 0 < 0 < 1. 

Since aij(q*) > 0 for i, j , where q* is the value of q for which X = <£(<Z*), we 
see that, for i = 1, 2, . . . , N, 

3.7 xt(n + 2 ) < KXn+iy f ) atj(q*) yt + Oa^q*) yij < dlK\n+2yi} 

where 6 < 1. 
If therefore a set of g's distinct from q* are used i£ times, we obtain 

3.8 Xi(n) < 6x
RK\nyu 

for n sufficiently large. Since 0 < 0i < 1, if R is too large we eventually 
contradict the lower bound for x*(w). 

Hence for n > n0 — w0(cf), we have 

3.9 x(n+ 1) = A(q*)x{n), 

whence the asymptotic statement of 3.1 follows. 

4. A dynamic programming problem. Suppose that we are engaged 
in a multi-stage decision process of the following type. At each stage we have 
our choice of various operations, which we number i = 1, 2, . . . , K. The ith 
operation has a probability distribution attached with the following properties: 

4.11 There is a probability pik that we receive k units and the process continues, 
* = 1,2, . . . ,R; 

4.12 There is a probability pi0 that we receive nothing and the process 
terminates. 

How do we proceed so as to maximize the probability that we receive at 
least n units before the process terminates? 

Let us define the sequence 

4.2 u(ri) = the probability of attaining at least n units before the termination 
of the process using an optimal procedure. 

Then using the intuitive "principle of optimality" (1), we see that u(n) 
satisfies the recurrence relation 

4.3 u{n) = Max 2 Piku(n — * ) , » > 0, 
1 i L *=i J 
1, n < 0. 
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Using methods similar to those above, we see that for large w, 

4.4 u(n)~cpn, 

where p is the root of largest absolute value, necessarily positive, of 
R 

4.5 1 = E Pi*P~k, 

for the value of i which maximizes p. 

5. An analogue of a result of Markoff. Markoff showed that if 
N 

5.1 Xi(n + 1) = ]C <iijxj(n) (» = 0, 1, . . .) 

and Xi(0) > 0, with the conditions 
5.2 atj > 0, X otJ = 1, (i = 1, 2 iV), 

then 

5.3 lim xt(n) = c, (i = 1, 2, . . . , JV), 
n->co 

where c depends on the initial values. 
The same proof shows that the same result holds for the sequence defined 

by 
AT 

5.4 Xi(n + 1) = Max52 aij(ç) xj(n)f 
q j=l 

provided that the conditions in 5.2 hold uniformly in q. The constant will, 
of course, in general, be different from that above. 
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