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We consider steady, fully-developed flows of deformable, inelastic grains driven by gravity
between identical bumpy walls. Using constitutive relations from extended kinetic theory
(EKT) for the erodible bed near the centreline and the collisional flow between the surfaces
of the bed and the walls, we calculate the fields of mean velocity, fluctuation velocity and
solid volume fraction across the chute. We consider both situations in which the solid
volume fraction at and near the centreline is high enough to form a bed and when it is not.
We compare results predicted by EKT with recent discrete element simulations results,
and obtain very good agreement.
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1. Introduction

Flows of granular materials such as sand, snow and coal are a common occurrence in
nature and in industry. In nature, they occur as avalanches of granular snow, as rock
debris slides, and in planetary rings. In industry, they occur in pharmaceutical, mining
and polymer processing. Also, in energy production, there are important flows of granular
materials in fluidized beds.

Continuum modelling of granular media is motivated by the pioneering experimental
work of Bagnold (1954, 1966), which suggested that the transfer of momentum in
flows is due to collisions between grains. Later, Jenkins & Savage (1983) extended the
kinetic theory of dense gases (Chapman & Cowling 1964) to describe the rapid flow
of identical, smooth, nearly elastic, spherical particles. At the same time, Haff (1983)
presented a continuum description of granular flow using a heuristic theoretical approach.
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These relatively crude theories have been improved upon by several researchers (Lun
et al. 1984; Jenkins & Richman 1985; Goldshtein & Shapiro 1995; Sela, Goldhirsch &
Noskowicz 1996; Sela & Goldhirsch 1998).

The first kinetic theory for granular gases by Jenkins & Savage (1983) focused on
dense shearing flows of identical, frictionless, nearly elastic, rigid spheres. The collisions
were assumed to be instantaneous, binary and uncorrelated. However, discrete element
simulations of steady, homogeneous, shearing flows of rigid, frictionless spheres show that
velocity correlations do develop at solid volume fractions greater than the freezing point
0.49 (Mitarai & Nakanishi 2005, 2007), and these correlations influence the relationship
between the components of stress and shear rate (Mitarai & Nakanishi 2007). The freezing
point is the lowest value of the volume fraction at which the three-dimensional assembly
of rigid spheres can experience a first-order transition to an ordered collisional state,
(Torquato 1995). At volume fractions above the freezing point, the granular temperature –
a measure of intensity of the particle velocity fluctuations – differs from the strength
of the relative velocities between colliding grains (Mitarai & Nakanishi 2007), and the
assumption of molecular chaos breaks down.

The rate of collisional dissipation in the kinetic theory is most sensitive to the difference
between the strengths of the velocity fluctuations and the relative velocities (Mitarai &
Nakanishi 2005, 2007). Because of this, it must be modified in the theory. Jenkins (2006,
2007) did this by introducing a length scale larger than a particle diameter, and used it in
the denominator of the collisional rate of dissipation. The length is obtained in a local
balance between the orienting influence of the flow and the randomizing influence of
collisions (Jenkins 2007; Jenkins & Berzi 2010).

This extension of the kinetic theory applies until the mean separation distance between
the edges of the spheres becomes zero. At this volume fraction, the stress relations for
hard spheres become singular (Berzi & Vescovi 2015). Numerical simulations show that
this critical volume fraction, νc, at which the singularity occurs depends on the coefficient
of sliding friction. For frictionless spheres, it occurs at random close packing (Torquato
1995); for frictional spheres, it occurs at at a volume fraction less than this (Chialvo, Sun &
Sundaresan 2012). With compliant, rather than rigid, spheres, the instantaneous contact is
replaced by one of finite duration. Incorporating the duration of contact into the frequency
of collision eliminates the singularity at the critical volume fraction. The stresses above
this singularity then include two contributions: one that is independent of shear rate, which
is associated with the elasticity of the contacts; and one that depends upon shear rate,
which is associated with the breaking of force chains (Chialvo et al. 2012).

Granular flows through vertical channels have been of interest for decades. Goodman
& Cowin (1971) studied vertical channel flow and observed a plug region existing in the
central part of the channel. They also observed that the solid volume concentration in the
shearing region outside the plug is affected by the boundary conditions and may either
increase or decrease from the plug to the channel wall. The shearing zones occurred in
many other studies (Nedderman & Laohakul 1980; Mohan, Nott & Rao 1997; Pouliquen,
Forterre & Le Dizes 2001). Savage (1979) proposed a constitutive equation, an extension
to the continuum theory of Goodman & Cowin (1972), for the flow of cohesionless
granular materials at high deformation rates and low stress levels. In experiments on
two-dimensional shear flows that corresponded to their analyses, fibre optic probes were
used to measure the velocity profiles to compare with the predictions. Ananda, Moka &
Nott (2008) studied the dense, slow flow of granular materials through vertical channels
using video imaging and particle tracking to determine the profiles of mean velocity
across a range of different channel widths. Mohan, Nott & Rao (1999) used a rigid-plastic
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Cosserat model to study dense, fully developed flows of granular materials through a
vertical channel. The Cosserat model predicted the variation of the velocity profiles and
the variation of the thickness of the shear layer with the width of the channel.

Despite these and other studies of granular flow through vertical channels and hoppers
(Gudhe, Yalamanchili & Massoudi 1994; Natarajan, Hunt & Taylor 1995; Wang, Jackson
& Sundaresan 1997) and recent discrete element method (DEM) studies (Zhao et al. 2018;
González-Montellano, Ayuga & Ooi 2011; Barker, Zhu & Sun 2022; Debnath, Kumaran
& Rao 2022a), the flow through a vertical channel still lacks a clear understanding,
especially in the rapid flow regime where grains interact through collisions and experience
free flight between consecutive encounters. The extended kinetic theory (EKT) permits
an understanding of steady, inhomogeneous, collisional, granular shearing flows that
range from dilute to dense concentrations, and allows the predictions of profiles of solid
volume fraction and particle mean and fluctuation velocity in terms of a small number of
measurable parameters.

In this work, we consider steady, fully-developed, gravity-driven, inhomogeneous
shearing flows of soft, frictional spheres in a vertical chute that is bounded by two bumpy
walls. We use the EKT, outlined by Berzi, Jenkins & Richard (2020) for the granular flow
outside and within a vertical erodible bed, to study the flow in the chute. When the solid
volume fraction at the centreline exceeds a critical value, we employ the model for the bed,
which combines the rate-independent elastic transfer of force through continuous chains of
particles, and the rate-dependent mechanism of collisional momentum transfer that results
from their breaking. We employ only the rate-dependent components of stresses in the
regions of the flow below the critical volume fraction. We adopt boundary conditions
derived by Richman (1988) for parallel bumpy boundaries with hemispheres attached to
them. When a sufficient amount of spherical particles are fed to the chute, a dense region,
analogous to an erodible bed, develops around the centreline of the chute. In this case,
continuity conditions are also applied at the surface of the bed.

2. Flow configuration, regimes and constitutive relations

A schematic diagram of the chute is shown in figure 1. We consider the flow of identical
spheres of mass density ρs and diameter d, driven between two rigid, bumpy boundaries,
separated by distance 2R, by the gravitational acceleration g. The directions x, y and z are
along the chute, across the chute, and out of the plane, respectively. In the steady fully
developed flow, the flow is independent of x and time. Also, it is assumed that the flow
is of infinite extent in z direction. Consequently, there is no variation of the flow along
the z direction, and all quantities vary with y alone. The only non-zero component of the
mean velocity is u, in the x direction. Boundary conditions on the shear stress and energy
flux are applied at the rigid, bumpy boundary and at the centreline of the flow. We define
the partial volume flow rate across the half-width of the chute as I( y) = ∫ y

0 νu dy, which
permits us to use the total volume flow rate Q as one of the boundary conditions. The
erodible bed extends along the x axis, contains the centreline of the chute, and has width
h2, where −h2 ≤ y ≤ 0; the collisional flow extends along the x axis and has width h1,
where 0 ≤ y ≤ h1. As in Berzi, Jenkins & Richard (2019), we assume that for ν > νc, an
erodible bed forms that consists of spheres in chains of ephemeral contact along the axis
of greatest compression that when breaking, create collisions. In the flow between the bed
and the bumpy wall, the solid volume fraction is less than νc; the flow particles interact
through collisions, and experience free flight between the successive encounters.
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Flow spheres of diameter dp Boundary hemispheres of diameter d 
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Figure 1. Schematic of the chute. Here, g is the gravitational acceleration, and p and s are the pressure and
shear stress, respectively, exerted by the boundary on the flow. In the erodible bed, −h2 ≤ y ≤ 0, and ν > νc;
the collisional flow is outside the bed.

For compliant contacts between the particles, the duration of particle contact is not
zero and, with increasing compliance, the frequency of collisions must decrease. Berzi
& Jenkins (2015) capture this quantitatively by taking the frequency of collisions to be
inversely proportional to the sum of time of free flight between collisions and the duration
of contact. The ratio of free flight to the sum of time of free flight tf and contact duration
tc is given as (Berzi & Jenkins 2015)

tf
tf + tc

= π1/2

24
d

GT1/2

(
π1/2

24
d

GT1/2 + d
5co

)−1

, (2.1)

where

tf = π1/2

24
d

GT1/2 . (2.2)

The duration of a collision contact is proportional to the ratio of the particle diameter to
the elastic wave speed in the particle, co = (E/ρs), where E is the Young’s modulus of
the material of the spheres (Hwang & Hutter 1995). Here and elsewhere, the granular
temperature T is a measure of the strength of velocity fluctuations, and G = νg0 is
the product of solid volume fraction ν and radial distribution function g0. The radial
distribution function contains information about the probability of having two particles
at close contact and hence incorporates the influence of the volume occupied by the
flow particles on the collision frequency. The collisional stress, the collisional rate of
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dissipation of fluctuation energy, and the flux of fluctuation energy are all proportional
to the frequency of collisions. So for the soft particles, the relations given by the kinetic
theory for rigid spheres must be multiplied by the ratio of (2.1) (Berzi & Jenkins 2015;
Berzi et al. 2020).

2.1. Constitutive relations and flow regimes
In the following, we introduce the constitutive relations for the flow regions. More details
can be found in (Garzó & Dufty 1999; Berzi & Jenkins 2015; Berzi et al. 2020). All
quantities are made dimensionless using the mass density and diameter of the spheres, and
the gravitational acceleration. For the sake of simplicity, the notation for the dimensionless
variables remains the same.

2.1.1. Collisional flow
In the collisional flow regime, 0 ≤ y ≤ h1, ν < νc, the mean inter-particle distance is
greater than zero and the stresses develop due to momentum exchange between and during
collisions. The resulting expressions for the pressure and shear stress are

p = f1T

(
1 + 12

5
G

T1/2

k1/2
n

)−1

(2.3)

and

s = f2T1/2

(
1 + 12

5
G

T1/2

k1/2
n

)−1

u′, (2.4)

where the prime indicates a derivative with respect to y, the correction term due to
the non-zero contact duration includes the dimensionless spring stiffness kn in the
spring–dashpot simulation model for the contact (Ji & Shen 2008; Chialvo et al. 2012;
Chialvo & Sundaresan 2013), and the auxiliary coefficients f1 and f2 are given in table 1.
The dimensional form of kn is the product of E and d. The coefficient f1 contains the
coefficient of normal restitution en.

For the radial distribution function g0, we use the expression suggested by Vescovi et al.
(2014): for ν < 0.4,

g0 = 2 − ν

2(1 − ν)3 , (2.5)

and for 0.4 ≤ ν < νc,

g0 =
[

1 −
(

ν − 0.4
νc − 0.4

)2
]

2 − ν

2(1 − ν)3 +
(

ν − 0.4
νc − 0.4

)2 2
νc − ν

. (2.6)

The coefficients f1 and f2 are proportional to G, so when ν approaches νc, G tends to
infinity. If the particles are rigid, then shearing ceases at the critical volume fraction
and the system is said to be jammed. However, if the contacts are compliant, then
the dimensionless stresses remain finite at ν = νc, because of the modification of the
collisional frequency that includes G.
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f1 = ν[1 + 2G(1 + en)]

f2 = 8J
5π1/2 νG

f3 = 12
π1/2 (1 − ε2)νG

f4 = 4MνG
π1/2

f5 = 25π1/2N
128ν

J = 1 + en

2
+ π

32
[5 + 2(1 + en)(3en − 1)G][5 + 4(1 + en)G]

[24 − 6(1 − en)2 − 5(1 − en2)]G2

J∞ = 1 + en

2
+ π

4
(1 + en)

2(3en − 1)

24 − 6(1 − en)2 − 5(1 − en2)

M = 1 + en

2
+ 9π

144(1 + en)G2
[5 + 3G(2en − 1)(1 + en)

2][5 + 6G(1 + en)]
16 − 7(1 − en)

M∞ = 1 + en

2
+ 9π

8(1 + en)

(2en − 1)(1 + en)
3

16 − 7(1 − en)

N = 96ν(1 − en)

25G(1 + en)

5 + 6G(1 + en)

16 + 3(1 − en)

{
20[5 + 3G(2en − 1)(1 + en)

2]
48 − 21(1 − en)

ν

G
∂G
∂ν

− (en + e2
n)

(
G + ν

∂G
∂ν

)}

Table 1. Coefficients used in constitutive relations of EKT.

For the rate of collisional dissipation γ , and the flux of fluctuation energy q, we use the
expressions suggested by Berzi et al. (2019):

γ = f3
L

T3/2

(
1 + 12

5
G

T1/2

k1/2
n

)−1

(2.7)

and

q = −f4T1/2

(
1 + 12

5
G

T1/2

k1/2
n

)−1

T ′ − f5T3/2

(
1 + 12

5
G

T1/2

k1/2
n

)−1

ν′, (2.8)

where

L = max
(

1, f0
|u′|
T1/2

)
(2.9)

is the correlation length suggested by Jenkins (2007). It introduces a decrease in the
collisional dissipation rate associated with the velocity correlations that develop at volume
fractions greater than freezing (Jenkins 2007; Mitarai & Nakanishi 2007). The coefficients
f3, f4 and f5 are given in table 1. An effective coefficient of restitution ε, which incorporates
both the normal restitution en and the coefficient of sliding friction μ, is introduced to
account for energy loss and exchange created by surface friction. The effective coefficient
includes frictional dissipation and the exchange of translational and rotational fluctuation
energy in the collisional rate of dissipation of translational fluctuation energy, and is
employed in the function f3 (Jenkins & Zhang 2002; Berzi & Vescovi 2015; Gollin, Berzi
& Bowman 2017). A simple expression for its dependence on μ results from the numerical
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simulations by Chialvo & Sundaresan (2013):

ε = en − 3
2

μ exp −3μ. (2.10)

Finally, the coefficient f0 in the expression (2.9) for the correlation length is given by Berzi
& Vescovi (2015) as

f0 =
[

2J
15(1 − ε2)

]1/2 [
1 + 26(1 − ε)(ν − 0.49)

15(0.64 − ν)

]3/2

. (2.11)

2.1.2. Erodible bed
When the volume fraction is larger than the critical volume fraction, the stress components
develop a rate-independent contribution associated with the transmission of force through
the compliant contacts of an evolving network. A rate-dependent contribution is associated
with the breaking of these force chains. In this case, the pressure in the bed is given by
Berzi et al. (2020) as

p = 5
6

(1 + en)νk1/2
n w + 0.0006(ν − νc)kn, (2.12)

and the shear stress is (Berzi & Jenkins 2015; Berzi et al. 2020)

s = 4J∞
5π1/2(1 + en)

u′

w
p, (2.13)

where J∞ is given in table 1, and w = √
T is called the fluctuation velocity.

Because collisions persist in the weak, dense, shearing flows in the bed, energy is
dissipated and transferred. The collisional dissipation rate γ , and the energy flux q, in
the bed are given by Berzi & Jenkins (2015) and Berzi et al. (2020) as

γ = 5(1 − ε2)ν

π1/2Lc
k1/2

n T (2.14)

and

q = −5M∞ν

3π1/2 k1/2
n T ′, (2.15)

where M∞ is given in table 1, and Lc is the chain length in the bed:

Lc = 1 + 26(1 − ε)

15
νc − 0.49
0.64 − νc

. (2.16)

3. Governing differential equations for the flow through the chute

The balance equations of mass, momentum and fluctuation energy are used to determine
the fields of the average density ρ, the mean velocity u, and the granular temperature T .
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These balance laws have the familiar forms

ρ̇ + ρui,i = 0, (3.1)

ρu̇i = σik,k + nFi, (3.2)

where σ is a symmetric stress tensor, n is the average particle number density, and F is
the external force per particle, and

3
2 ρṪ = −qi,i + σikDik − γ, (3.3)

where q is the flux of fluctuation energy, D is the symmetric part of the velocity gradient
tensor, and γ is the collisional rate of fluctuation energy per unit volume. Here, an overdot
denotes the material time derivative, D(·)/Dt = ∂(·)/∂t + u·∇(·).

We employ these balance equations together with the constitutive relations introduced
in § 2 for a steady fully developed flow through a vertical chute. As mentioned earlier,
there is no variation of the flow along x and z, or with time. Therefore, all the quantities
vary only with y:

uy = uz = 0, ux ≡ u( y), Fz = Fy = 0, Fx = ν, (3.4a–d)

σxx = σyy = σzz = −p, (3.5)

σzx = σyz = 0, σxy ≡ s( y), (3.6a,b)

qz = qx = 0, qy ≡ q( y). (3.7a,b)

3.1. Collisional flow
In the collisional flow, the mass balance (3.1) is satisfied identically, and the momentum
balance (3.2) and the energy balance (3.3) become

p′ = 0, (3.8)

s′ = −ν (3.9)

and

q′ = su′ − γ. (3.10)

Differentiating (2.3) with respect to y, and using it in (3.8) and (2.8), results in the
differential equation for the volume fraction:

ν′ =
[

∂p
∂T

(
1 + 12

5
G

T1/2

k1/2
n

)
q

](
∂p
∂ν

f4w − ∂p
∂T

f5w3
)−1

, (3.11)

where

∂p
∂T

= f1

(
1 + 12

5
G

T1/2

k1/2
n

)−1

− 1
2

f1
12
5

G
w

k1/2
n

(
1 + 12

5
G

T1/2

k1/2
n

)−2

(3.12)

and

∂p
∂ν

= ∂f1
∂ν

w2

(
1 + 12

5
G

T1/2

k1/2
n

)−1

− f1w2 12
5

∂G
∂ν

w

k1/2
n

(
1 + 12

5
G

T1/2

k1/2
n

)−2

. (3.13)
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The differential equation for the shear stress is given in (3.9). Inverting (2.4) provides the
differential equation for the mean velocity:

u′ = 1
f2

s
w

(
1 + 12

5
G

T1/2

k1/2
n

)
. (3.14)

The differential equation for energy flux is obtained from the balance of fluctuation energy
(3.10):

q′ = 1
f2

s2

w

(
1 + 12

5
G

T1/2

k1/2
n

)
− f3

L
w3

(
1 + 12

5
G

T1/2

k1/2
n

)−1

. (3.15)

The differential equation for the fluctuation velocity is obtained by inverting (2.8) and
using (3.11):

w′ = − q
2f4w2

(
1 + 12

5
G

T1/2

k1/2
n

)
− f5

2f4
w

[
∂p
∂T

(
1 + 12

5
G

T1/2

k1/2
n

)
q

]

×
(

∂p
∂ν

f4w − ∂p
∂T

f5w3
)−1

. (3.16)

Finally, the differential equation for the volume flow rate is

I′ = νu. (3.17)

3.2. Erodible bed
In the bed, the momentum balances (3.8) and (3.9) are the same as in the collisional flow.
However, because the energy produced by the working of the shear stress is assumed to be
small compared to its diffusion and dissipation, the energy balance is

−q′ = γ. (3.18)

The differential equation governing the flow in the bed for the solid volume fraction is
obtained by differentiating (2.12) and using (3.8) and (2.15):

ν′ =
[
π1/2(1 + en)q

4M∞w

] [
5
6

(1 + en)k1/2
n w + 0.0006kn

]−1

. (3.19)

The rate of shear in the bed is obtained from (2.13) and (2.12) as

u′ =
[

5π1/2(1 + en)

4J∞
sw
] [

5
6

(1 + en)νk1/2
n w + 0.0006(ν − νc)kn

]−1

. (3.20)

The differential equation for the energy flux is obtained using (3.18) and (2.14):

q′ = −5(1 − ε2)ν

π1/2Lc
k1/2

n T. (3.21)

The differential equation for the fluctuation velocity in the bed is obtained from (2.15):

w′ = − 3π1/2q

10νM∞k1/2
n w

. (3.22)

Finally, the volume flow rate is again governed by (3.17).
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4. Boundary conditions

We use boundary conditions for slip velocity and energy flux at a wall made bumpy
with frictionless hemispheres, derived by Richman (1988), in their simplest form. More
complicated expressions for the influence of geometric features on slip and energy flux are
available in Richman (1988) and Jenkins (1998, 2001). The boundary condition for the slip
velocity results from the balance of momentum in the flow direction:

ub

wb
=
(π

2

)1/2
f

sb

pb
, (4.1)

where the subscript b refers to the boundary, and

f =
[

3
25/2Jb

23/2Jb − 5Fb(1 + B) sin2 θ

2(1 − cos θ)/ sin2 φ − cos θ
+ 5Fb

21/2Jb

]
, (4.2)

in which the bumpiness θ measures the average maximum penetration of a flow sphere
between boundary spheres. When the diameter of the boundary spheres is the same as
that of the flow spheres, the bumpiness is given by sin θ = (d + l)/2d, where l is the
separation between the edges of the boundary spheres, B = π[1 + 5/(8Gb)]/(12

√
2), and

Fb = (1 + en)/2 + 1/(4Gb). The boundary condition for the energy flux is

qb = sbub − D, (4.3)

where D is the collisional rate of dissipation of fluctuation energy at the bumpy wall:

D =
(

2
π

)1/2 pbwb

Lb
(1 − ε)

2(1 − cos θ)

sin2 θ
, (4.4)

in which, for consistency with the EKT, the correlation length and the effective coefficient
of restitution are included in the expression for collisional rate of dissipation. The chain
length Lb incorporates the correlations at the boundary.

Other boundary conditions are the vanishing of the shear stress and the energy flux at
the centreline of the chute, the specification of ν = νc, and the continuity of s, u, q, w and
I at the interface between the bed and collisional flow region, and the specification of the
total flux Q.

5. Results and discussion

We solve the system of 12 differential equations (3.11), (3.14), (3.19), (3.20) and (3.9) for
the 12 unknown variables ν, s, u, q, w and I in the collisional flow region and in the
erodible bed. We use the Matlab solver ‘bvp4c’ for the two-point boundary-value problem
with 12 differential equations and 14 boundary conditions, assuming continuity in all
six variables at the interface between collisional flow and the bed. The two additional
boundary conditions enable us to determine the thicknesses h1 of the collisional flow
and the pressure for a given total flow rate. Alternatively, when pressure is given as
an input, the total flow rate Q is obtained as part of a solution. The solver iterates the
solutions from an initial guess and carries out mesh refinement, if necessary, to satisfy
the boundary conditions. The relative tolerance and absolute tolerance employed are
10−6 and 10−8, respectively. We take kn = 3 × 106, μ = 0.15, en = 0.85 and θ = π/5,
unless specified otherwise. Also, to be consistent with the dependence of νc with μ
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Figure 2. Profiles of (a) ν, (b) s, (c) u, and (d) w, at different chute widths R, and total flow rate Q = 250.
Here, r/R is the scaled distance from the centre of the chute. The thicker solid lines indicate the erodible bed,
the width of which, h2, increases with chute width.

(Chialvo et al. 2012), we have used the expression for the critical solid volume fraction
as νc = 0.587 + (0.636 − 0.58) exp −4.5μ.

In figure 2, we show the profiles of ν, s, u and w from the centre of the chute to the
bumpy wall, for the total flow rate Q = 250 and two half chute widths, R = 14 and 16.
For a given total flow rate, the width h2 of the erodible bed and the volume fraction in
the collisional flow increase as the chute width increases. Consequently, the mean velocity
and the granular temperature in the chute decrease with its increasing width. The shear
stress does not show a significant change with R. The volume fraction, mean velocity and
fluctuation velocity remain nearly constant in and near the erodible bed; but away from the
bed, they vary significantly. Moreover, the granular temperature, which is measured by the
fluctuation velocity, remains close to zero in the erodible bed and in the collisional region
close to the bed. The granular temperature increases towards the bumpy boundary. This
variation results from the enhanced collisions away from the erodible bed due the presence
of the bumpy wall.

To further illustrate the properties of the collisional flow, in figure 3 we present
the variation with the total flow rate Q of the pressure p (figure 3a), average solid
volume fraction ν̄coll = ∫ h1

0 ν dy/h1 (figure 3b), average mean velocity ūcoll = ∫ h1
0 u dy/h1

(figure 3c), average fluctuation velocity w̄coll = ∫ h1
0 w dy/h1 (figure 3e) and thickness

h1 (figure 3d) of the collisional flow, and average mean velocity ūbed = ∫ h2
0 u dy/h2

(figure 3f ) in the erodible bed, for four different chute widths, R = 10, 12, 14 and 16.
In the erodible bed, the solid volume fraction is close to its critical value νc, and the
average fluctuation velocity is almost zero (not shown). For a given chute width, the
average volume fraction, and consequently the pressure in the collisional flow, decreases
with the total flow rate, whereas the average mean velocities ūcoll and ūbed in both regions
and the width of the collisional flow h1 all increase. Further, the average mean velocity
in the bed is slightly higher than that in the collisional flow. For a given chute width,
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Figure 3. Variation with the total flow rate Q of (a) pressure p, (b) average solid volume fraction ν̄coll,
(c) average mean velocity ūcoll, and (d) collisional flow width h1. (e) Average fluctuation velocity w̄coll in
the collisional flow. ( f ) Average mean velocity ūbed in the erodible bed.

a smaller total flow rate involves fewer particles in collisions with the bumpy boundary.
This is manifested by a wider bed and a narrower collisional region (figure 3d), and low
fluctuation velocity (figure 3e) in the collisional region.

Flow through the chute resembles a plug flow. As the total flow rate increases, more
particles collide in the bumpy wall, resulting in momentum influx, which in turn promotes
further collisions in the chute, leading to higher average fluctuation velocity, lower average
volume fraction in the collisional flow, and a larger difference between the average
mean velocities of the bed and the collisional flow (not shown, but can be inferred
from figures 3c, f ). Further, the enhanced collisions erode the bed and the width of the
collisional flow increases. Eventually, as indicated in figure 3(d), there is a total flow rate
at which the width of the collisional flow, h1, is almost equal to the chute width. Above
this total flow rate, the entire chute experiences collisional flow and the bed vanishes.

Because, for any particular chute width, the bed vanishes beyond a total flow rate,
we reformulate the problem without the bed and solve the governing equations for the
collisional flow only. The system consists of the six differential equations for the collisional
flow and the associated boundary conditions. In figure 4, we show the variation with total
flow rate of the average volume fraction and average mean velocity in the collisional region
across the chute with and without an erodible bed. In figure 5, we plot the variation with
total flow rate of the pressure in the two types of flow. In the collisional flows with a bed,
there is a decrease of ν̄coll and p, and an increase of ūcoll with increasing total flow rate,
as mentioned earlier. The same trend continues in the fully collisional flow after the bed
vanishes, up to a certain total flow rate that depends on the chute width. Beyond this flow
rate, no steady solutions exist. However, below this critical value of the total flow rate,
another purely collisional solution branch exists for any chute width. On this branch, ν̄coll,
ūcoll and p increase with an increase in total flow rate, up to a critical total flow rate, as
observed in figures 4 and5. The two solution branches meet at the critical total flow rate.
We note that there are values of Q and R for which there are two purely collisional flows.
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Figure 4. Variation with the total flow rate Q of (a) average solid volume fraction ν̄coll, and (b) average mean
velocity ūcoll. The thick lines indicate collisional flows with a bed; the thin lines indicate the collisional flows
without a bed. The curves for both types of flow meet.
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Figure 5. Variation of pressure p with the total flow rate Q for different chute widths R. The thick lines indicate
collisional flows with a bed; the thin lines indicate the collisional flows without a bed. The curves for both types
of flow meet.

In figures 6 and 7, we show representative profiles of ν, s, u and w over the half chute
width of two solutions, with and without bed, respectively, at Q = 150, and R = 12 and 14.
The solution with the higher pressure exhibits relatively denser flow with lesser velocity,
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Figure 6. Profiles of (a) ν, (b) s, (c) u, and (d) w, for Q = 150, and R = 12 and 14, for solutions on the
high-pressure branch. These include both an erodible bed and a collisional flow. The solid lines indicate the
erodible bed, the width of which increases with the width of the chute.

while the solution branch with lower pressure exhibits comparatively lesser concentration
along with higher mean velocity. Also, in figure 8, we provide profiles of ν, s, u and w at
Q = 150 and R = 14 for solutions on the branches with higher and lower pressures.

In the results presented thus far, the coefficient of normal restitution en has been taken
as 0.85. In figure 9, we show the effect of the coefficient of normal restitution en on the
variation of pressure with total mass flow rate. Lower coefficients of restitution lead to
increased dissipation of kinetic energy and consequently granular temperature. Therefore,
for a fixed mass flow rate, the pressure in the chute decreases when the coefficient of
restitution is reduced. In Appendices A and B we present the effect of the dimensionless
stiffness and critical solid volume fraction on the flow behaviour.

Vescovi et al. (2014) have shown that for coefficients of restitution within the range
0.7–0.95, the EKT predictions of granular temperature and stresses, for plane shear flows
of frictionless spheres, are well within the numerical simulation results in the entire range
of volume fractions. Berzi & Jenkins (2018) compared the predictions of theories that
are linear and nonlinear in the spatial gradients with the results of numerical simulations
of steady, homogeneous shearing at a normal coefficient of restitution 0.70. The results
indicate that the theory linear in the spatial gradients is performing rather well in this
simple flow. In the next subsection, we compare our predictions using EKT with the DEM
simulation results of Debnath et al. (2022a).

5.1. Comparison with DEM results
In this subsection, we compare our results with the DEM simulation results of Debnath
et al. (2022a) for R = 20. In order to do this, we calculate the volume flow rate via
numerical integration from the profiles of solid volume fraction ν and mean velocity u
across the half chute width obtained from DEM simulations for a specified average solid
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Figure 7. Profiles of (a) ν, (b) s, (c) u, and (d) w, for Q = 150, and R = 12 and 14, for solutions on the
low-pressure branch. Flows on this branch are fully collisional and are characterized by a smaller concentration
and a higher mean velocity than those on the high-pressure branch (cf. figure 6).
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Figure 9. Variation of pressure p with the total flow rate Q, for chute width R = 20 and three values of en.
The thick lines indicate collisional flows with a bed; the thin lines indicate the collisional flows without a bed.
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Figure 10. Profiles of (a–c) u/
√

R, and (d–f ) ν. The DEM results of Debnath et al. (2022a) correspond to
symbols, and the blue curves correspond to the results predicted by EKT. The erodible bed is indicated by
the solid lines. All the profiles are for the half chute width R = 20: (a,d) φ̄ = 0.59, Q = 147, ν̄total = 0.608;
(b,e) φ̄ = 0.60, Q = 105, ν̄total = 0.612; (c, f ) φ̄ = 0.614, Q = 65, ν̄total = 0.616; where φ̄ and Q are from
Debnath et al. (2022a), corresponding to the ν̄total predictions of EKT.

volume fraction (φ̄). For the parameter values μ = 0.5, en = 0.7, kn = 1.2 × 106 and
R = 20, and the flow rate Q, and compare the profiles ν and u with those of Debnath et al.
(2022a). As shown in figure 10, the results are in good agreement. This is quite remarkable,
considering that the normal coefficient of restitution is 0.7. The flow rates at φ̄ = 0.61, 0.60
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Figure 11. Profiles of −s/R for (a) R = 15 and (b) R = 20. The DEM results of Debnath et al. (2022a)
correspond to symbols, and the blue curves correspond to the results predicted by EKT. The erodible bed is
indicated by the solid lines. Profiles are at φ̄ = 0.60, Q = 105 from Debnath et al. (2022a), which correspond
to the predictions of EKT at ν̄total = 0.6119, Q = 105. (c) Variation of scaled pressure p/R with average solid
volume fraction ν̄total. (d) Variation of collisional flow width h1, corresponding to the thickness of shear layer
variation from Debnath et al. (2022a) with ν̄total. In (c) and (d). R = 15 and R = 20 are given by triangles and
diamonds, respectively. The insets in (a) and (b) show variation of the dynamic friction coefficient −s/p across
the half chute width at the same parameter values of (a) and (b), respectively.

and 0.59, and chute width R = 20, calculated from Debnath et al. (2022a), are 65, 105 and
147, respectively. For the same flow rates, the average solid volume fractions ν̄total across
the same half chute width predicted by EKT are 0.616, 0.612 and 0.608, respectively. In
the limit ν → νc, the slope of ν in the collisional regime approaches zero. This was also
shown by Debnath et al. (2022a). It can also be shown that the slope of ν in the bed at
the interface is small, negative and independent of νc. Therefore, there is a discontinuity
in the slope of ν at the interface, which leads to the kink at the interface in the profile of ν

obtained from EKT, as shown in figures 10(d–f ).
In figure 11, we present the comparison of shear stress profile across the half chute

width for R = 15 (figure 11a) and R = 20 (figure 11b) with φ̄ = 0.60 from Debnath et al.
(2022a), which corresponds to ν̄total = 0.612 in the EKT predictions. We find that the
variations of shear stress across the chute are in good agreement with the measurements of
Debnath et al. (2022a). In the insets of figures 11(a) and 11(b), we also present the variation
of dynamic friction coefficient −s/p across the half chute width for R = 15 and 20 .
However, the pressure is constant across the chute and s/p is just a scaled representation
of the shear stress for the vertical chute. (The solid volume fraction ν is continuous at the
interface (i.e. ν = νc); however, the radial distribution function g0 is singular at ν = νc.
To avoid this singularity, we take the interface condition to be ν = νc − ε, where ε is
small. This numerical artefact leads to a jump in pressure from the erodible bed to the
collisional flow; this jump decreases with ε.) In contrast, in the inclined flow, the pressure
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Figure 12. Variation with the total flow rate Q of (a) average solid fraction, (b) average velocity, (c) wall
pressure and (d) collisional flow width, for chute width R = 20 for different values of dimensionless stiffness
kn. The thick lines indicate collisional flows with a bed; the thin lines indicate the collisional flows without a
bed.

and shear stress both vary with the depth of the bed, and the dynamic friction coefficient
is an important parameter there.

Further, in figure 11(c), we report the variation of scaled pressure with average solid
volume fraction for R = 15 and 20, compared with that reported by Debnath et al. (2022a).
The EKT results are closer to the DEM simulation predictions than the predictions of
other theories considered by Debnath et al. (2022a) (not shown). As reported in Debnath
et al. (2022a), we also observe that for a specified R, pressure p decreases as average
solid volume fraction ν̄total decreases. In figure 11(d), the variation of the thickness of
the shear layer with average solid volume fraction in Debnath et al. (2022a) is compared
with the variation of the collisional flow width (h1) with ν̄total. Again, the variation of
the collisional flow width with the average solid volume fraction matches quite well with
the corresponding shear layer thickness variation in Debnath et al. (2022a), compared to
the prediction of the other theories considered there (not shown).

6. Conclusions

We have employed extended kinetic theory to study steady, fully developed flows of
deformable, inelastic, spherical grains driven by gravity between identical bumpy walls.
For a given chute width and total flow rate, there exist two solutions characterized by
high and low pressures. The solution with the higher pressure is denser and has a smaller
mean velocity than the solution with the lower pressure. Also, for a range of the total
flow rate, the solution branch at the higher pressure has a solid volume fraction near the
centreline that is large enough to form an erodible bed. We also compared the profiles of
the mean velocity, solid volume fraction and shear stress for the scenario with erodible bed
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Figure 13. Profiles of (a) ν, (b) s, (c) u, and (d) w, for Q = 600 and R = 20, on the low-pressure and
high-pressure branches. The higher-pressure solutions include an erodible bed that is indicated in different
colours. The black dotted line corresponds to kn = 3 × 1012, the red dashed line corresponds to kn = 3 × 108,
and the green line corresponds to kn = 3 × 106. The thinner lines correspond to the lower-pressure solutions
and do not change much while changing the stiffness values. The inset in (d) is the variation of temperature
across the chute for R = 20, where the blue line, green line, red line and black line correspond to the kn values
3 × 106, 3 × 107, 3 × 108 and 3 × 1012, respectively.

obtained from the EKT and the DEM simulation of Debnath et al. (2022a) for a few sets
of parameters, and obtained excellent agreement. We will address the stability of the two
solution branches in subsequent work.
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Appendix A. Effect of dimensionless stiffness (kn)

In this appendix, we study the effect of dimensionless stiffness on the flow behaviour.
We vary the dimensionless stiffness kn from 3 × 106 to 3 × 1014. The other parameters
are μ = 0.15, en = 0.85 and R = 20. Figures 12(a,b) show the variation of average
solid volume fraction and average velocity, respectively with the volume flow rate.
Considerable variation is observed above the dimensionless stiffness value 3 × 108.
The effect of stiffness on the variation of pressure with the volume flow rate is less
(figure 12c), whereas the collisional flow width changes significantly with the stiffness
(figure 12d).
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Figure 14. Profiles of (a–c) u/
√

R, and (d–f ) ν. The DEM results of Debnath et al. (2022a) correspond to
symbols, and the blue curves correspond to the results predicted by EKT. The erodible bed is indicated by
thicker blue lines. All the profiles are for the half chute width R = 20: (a,d) φ̄ = 0.59, Q = 147; (b,e) φ̄ = 0.60,
Q = 105; (c, f ) φ̄ = 0.61, Q = 65; from Debnath et al. (2022a), corresponding to the predictions of EKT.
Dashed lines are at μ = 0.5 and νc = 0.5929; solid lines are at μ = 0.32 and νc = 0.6001; and dotted lines are
at μ = 0.1105 and νc = 0.6211. The other parameters used are kn = 3 × 106 and en = 0.7.

We also present the profiles of ν, s, u and w on the low-pressure and high-pressure
branches for the different values of dimensionless stiffness as shown in figure 13. Recently,
Debnath, Rao & Kumaran (2022b) have shown that the effect on the temperature of the
stiffness variation is less in the collisional flow and higher in the bed. With an increase in
stiffness, the temperature decreases in the bed. They also report that the profiles of solid
volume fraction and velocity above kn ≥ 105 are independent of kn. We also found that
variations in stiffness above 3 × 106 have little effect on the variation of solid volume
fraction, shear stress and velocity in the collisional region, but do effect the bed.

We found that there is an increase in the width of the erodible bed with the stiffness
kn between 3 × 108 and 3 × 1012. The EKT prediction of temperature profiles across
the chute at different stiffness values is shown in the inset of figure 13(d); it agrees
qualitatively with the observation of Debnath et al. (2022b) (not shown) that it decreases
with increasing stiffness. Also, Debnath et al. (2022b) claim that the decrease in granular
temperature due to increase in stiffness suggests that T will decrease to zero in the hard
particle limit; the same is reflected by EKT predictions as the temperature is close to zero
at stiffness value 3 × 1012.

Appendix B. Effect of the critical solid volume fraction (νc)

The critical solid volume fraction and its dependence on the particle friction coefficient
has been discussed in detail by Chialvo et al. (2012). In order to change the value of νc, we
must change the value of friction coefficient μ. The other parameters used are en = 0.7
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Figure 15. Profiles of −s/R for (a) R = 15, and (b) R = 20. The DEM results of Debnath et al. (2022a)
correspond to symbols, and the coloured lines correspond to the results predicted by EKT at different particle
friction coefficients. The erodible bed is indicated by the solid lines. Profiles are at φ̄ = 0.60, Q = 105 from
Debnath et al. (2022a), which correspond to the predictions of EKT at Q = 105. Green lines are for μ = 0.32,
νc = 0.6003 and kn = 3 × 106; magenta lines are for μ = 0.1105, νc = 0.6211 and kn = 3 × 106; and blue
lines are for μ = 0.5, νc = 0.5929 and kn = 1.2 × 106. (c) Variation of scaled pressure p/R with average
solid volume fraction ν̄total. (d) Variation of collisional flow width h1, corresponding to the thickness of shear
layer variation from Debnath et al. (2022a) with ν̄total. In (c) and (d), R = 15 and R = 20 are represented by
triangles and diamonds, respectively, for μ = 0.5, νc = 0.592 and kn = 1.2 × 106. The green dashed lines and
solid lines correspond to μ = 0.32, νc = 0.6001 and kn = 3 × 106 for R = 15 and R = 20, respectively. The
magenta dashed lines and solid lines correspond to μ = 0.1105, νc = 0.6211 and kn = 3 × 106 for R = 15 and
R = 20, respectively. The value of en is taken as 0.7 for all the profiles.

and kn = 3 × 106, unless specified otherwise. For the μ values 0.1105, 0.32 and 0.5, the
corresponding profiles of velocity and solid volume fraction for R = 20 at different flow
rates, and that from Debnath et al. (2022a), are shown in figure 14. As we increase μ,
νc and the average solid volume fraction increase, and at the same volume flow rates, the
corresponding profiles show small quantitative changes. Decrease of the particle friction
coefficient decreases the thickness of the erodible bed and increases that of the collisional
flow. Also with decrease of the particle friction coefficient, the velocity profiles decrease
in the erodible bed region, and the solid volume fraction increases. These profiles do not
vary much with μ (or νc) near the bumpy boundary.

Figures 15(a,b) show the profiles of scaled shear stress across the half chute width for
different critical solid volume fractions. There is little variation in erodible bed thickness
and almost negligible change in the shear stress profiles. In figures 15(c,d), the profiles of
scaled pressure and collisional flow width at different critical solid volume fractions are
compared with the scaled pressure and shear layer thickness of Debnath et al. (2022a).
The results follow a similar trend with the average solid volume fraction as observed in
Debnath et al. (2022a).
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