Bull. Austral. Math. Soc. **77** (2008), 433–439 doi:10.1017/S000497270800035X

MEASURES ON EFFECT ALGEBRAS

LUO LAIZHEN[™] and LI RONGLU

(Received 15 August 2007)

Abstract

In this paper, by introducing the bounded variation measure defined on effect algebras, we present the equivalent conditions about uniformly strongly additive measures.

2000 *Mathematics subject classification*: 81P03. *Keywords and phrases*: effect algebras, strongly additive, vector-valued measures.

1. Preliminaries

Foulis and Bennett in 1994 introduced the algebraic system $(L, \oplus, 0, 1)$ to model unsharp quantum logics, and $(L, \oplus, 0, 1)$ is said to be an *effect algebra* [1].

Let *L* be a set with two special elements 0, 1, and let \perp be a subset of $L \times L$. If $(a, b) \in \perp$, write $a \perp b$. Let $\oplus : \perp \rightarrow L$ be a binary operation. Suppose that the following axioms hold.

- (E1) If $a, b \in L$ and $a \perp b$, then $b \perp a$ and $a \oplus b = b \oplus a$ (commutative law).
- (E2) If $a, b, c \in L$, $a \perp b$ and $(a \oplus b) \perp c$, then we have $b \perp c$, $a \perp (b \oplus c)$ and $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ (associative law).
- (E3) For every $a \in L$ there exists a unique $b \in L$ such that $a \perp b$ and $a \oplus b = 1$ (orthosupplementation law).
- (E4) If $a \in L$ and $1 \perp a$, then a = 0 (zero-one law).

Then $(L, \oplus, 0, 1)$ is called an effect algebra.

If $a, b \in L$ and $a \perp b$, we say that a and b are othogonal. If $a \oplus b = 1$ we say that b is the orthosupplementation of a, and we write b = a'. Clearly 1' = 0, (a')' = a, $a \perp 0$ and $a \oplus 0 = a$ for all $a \in L$. We say that $a \leq b$ if there exists $c \in L$ such that $a \perp c$ and $a \oplus c = b$. We know that \leq is a partial order on L and satisfies the conditions that $0 \leq a \leq 1, a \leq b \Leftrightarrow b' \leq a'$ and $a \leq b' \Leftrightarrow a \perp b$ for $a, b \in L$.

If $a \le b$, the element $c \in L$ such that $c \perp a$ and $c \oplus a = b$ is unique, and satisfies the condition $c = (a \oplus b')'$. It will be denoted $c = b \ominus a$.

^{© 2008} Australian Mathematical Society 0004-9727/08 \$A2.00 + 0.00

Let $F = \{a_i : 1 \le i \le n\}$ be a finite subset of *L*. If $a_1 \perp a_2$, $(a_1 \oplus a_2) \perp a_3$, ... and $(a_1 \oplus a_2 \oplus \cdots \oplus a_{n-1}) \perp a_n$, we say that *F* is orthogonal and we define

$$\bigoplus F = a_1 \oplus a_2 \oplus \cdots \oplus a_{n-1} \oplus a_n = (a_1 \oplus a_2 \oplus \cdots \oplus a_{n-1}) \oplus a_n$$

Now, if *A* is an arbitrary subset of *L* and $\mathcal{F}(A)$ is the family of all finite subsets of *A*, we say that *A* is orthogonal if *F* is orthogonal for every $F \in \mathcal{F}(A)$. If *A* is orthogonal, we define

$$\bigoplus A = \bigvee \left\{ \bigoplus F : F \in \mathcal{F}(A) \right\}.$$

Moreover, let $(a_i)_{i \in I}$ be an orthogonal subset of *L*. Then we know that [3]:

(1) if *I* is finite and $J \subseteq I$, then

$$\left(\bigoplus_{i\in J}a_i\right)\bot\left(\bigoplus_{i\in I\setminus J}a_i\right)$$

and

$$\bigoplus_{i\in I} a_i = \left(\bigoplus_{i\in J} a_i\right) \oplus \left(\bigoplus_{i\in I\setminus J} a_i\right);$$

- (2) if $J \subseteq I$ and there exist $a = \bigoplus_{i \in I} a_i$, $b = \bigoplus_{i \in J} a_i$ and $c = \bigoplus_{i \in I \setminus J} a_i$, then $b \perp c$ and $a = b \oplus c$;
- (3) if there exists $\bigoplus_{i \in M} a_i$ for all $M \subseteq I$ and $\{H_j : j \in J\}$ is a partition of I, then $A = \{\bigoplus_{i \in H_j} a_i : j \in J\}$ is an orthogonal subset of L, there exists $\oplus A$ and $\oplus A = \bigoplus_{i \in I} a_i$;
- (4) if $(F_j)_{j \in J}$ is a family of finite and pairwise disjoint subsets of *I*, then the set $\{\bigoplus_{i \in F_i} a_i : j \in J\}$ is an orthogonal subset of *L*;
- (5) if $b_i \in L$ and $b_i \le a_i$ for $i \in I$, then $(b_i)_{i \in I}$ is an orthogonal subset of L.

In what follows, let *L* be an effect algebra, *X* be a Banach space and $\mu : L \to X$ be a vector measure. The variation of μ is the nonnegative function $|\mu|$ whose value on an element $a \in L$ is given by

$$|\mu|(a) = \sup_{\Delta} \sum_{a_j \in \Delta} \|\mu(a_j)\|,$$

where $\Delta = \{a_1, a_2, \dots, a_n\}$ such that $a_1 \oplus a_2 \oplus \dots \oplus a_n = a, a_j \in L$ for all $j = 1, 2, \dots, n$.

If $|\mu|(1) < \infty$, we call μ a measure of bounded variation.

The semivariation of μ is the nonnegative function $\|\mu\|$ whose value on an element $a \in L$ is defined by

$$\|\mu\|(a) = \sup\{|x^*\mu|(a) : x^* \in X^*, \|x^*\| \le 1\},\$$

where $|x^*\mu|$ is the variation of the real-valued measure $x^*\mu$.

If $\|\mu\|(1) < \infty$, we call μ a measure of bounded semivariation.

 $\mu: L \to X$ is said to be strongly additive if, for any orthogonal sequence (a_n) of L, the series $\sum_{n=1}^{\infty} \mu(a_n)$ converges in X.

A family of strongly additive vector measures $\{\mu_{\tau} : \tau \in T\}$ is said to be uniformly strongly additive if, for any orthogonal sequence (a_n) of *L*, the series

$$\lim_{m} \left\| \sum_{n=m}^{\infty} \mu_{\tau}(a_n) \right\| = 0,$$

uniformly in $\tau \in T$.

 $\mu: L \to X$ is said to be bounded if, for any orthogonal sequence (a_n) of L, $\{\mu(a_n)\}_{n=1}^{\infty}$ is bounded.

 $\mu: L \to X$ is said to be strongly bounded if, for any orthogonal sequence (a_n) of L, $\lim_{n\to\infty} \mu(a_n) = 0$.

 $\mu: L \to X$ is said to be countably additive if, for any orthogonal sequence (a_n) of L,

$$\mu\left(\bigoplus_{n=1}^{\infty}a_n\right) = \sum_{n=1}^{\infty}\mu(a_n).$$

Clearly, a strongly additive vector measure on effect algebras is strongly bounded and a strongly bounded vector measure on effect algebras is bounded.

2. Main results

PROPOSITION 1. Let $\mu : L \to X$ be a vector measure. Then, for $a \in L$,

$$\|\mu\|(a) = \sup_{\Delta} \left\{ \left\| \sum_{j} \varepsilon_{j} \mu(a_{j}) \right\| \right\},\$$

where $\Delta = \{a_1, a_2, \dots, a_n\}$ such that $a_1 \oplus a_2 \oplus \dots \oplus a_n = a, a_j \in L$ for all $j = 1, 2, \dots, n$ and $|\varepsilon_j| \le 1$.

PROOF. If $a = a_1 \oplus a_2 \oplus \cdots \oplus a_n$, $\{a_1, a_2, \ldots, a_n\}$ is a partition of a into orthogonal members of L and ε_i are scalars such that $|\varepsilon_i| \le 1$, then

$$\begin{split} \left\|\sum_{j=1}^{m} \varepsilon_{j} \mu(a_{j})\right\| &= \sup \left\{ \left|x^{*} \left(\sum_{j=1}^{m} \varepsilon_{j} \mu(a_{j})\right)\right| : x^{*} \in X^{*}, \, \|x^{*}\| \leq 1 \right\} \\ &\leq \sup \left\{\sum_{j=1}^{m} |\varepsilon_{j} x^{*} \mu(a_{j})| : x^{*} \in X^{*}, \, \|x^{*}\| \leq 1 \right\} \\ &\leq \sup \left\{\sum_{j=1}^{m} |x^{*} \mu(a_{j})| : x^{*} \in X^{*}, \, \|x^{*}\| \leq 1 \right\} \\ &\leq \sup \{|x^{*} \mu|(a) : x^{*} \in X^{*}, \, \|x^{*}\| \leq 1 \} \\ &= \|\mu\|(a). \end{split}$$

On the other hand, let $x^* \in X^*$ with $||x^*|| \le 1$ and $a = a_1 \oplus a_2 \oplus \cdots \oplus a_n$, $\{a_1, a_2, \ldots, a_n\}$ be a partition of *a* into orthogonal members of *L*. Then

$$\sum_{j=1}^{m} |x^*\mu(a_j)| = \sum_{j=1}^{m} (\operatorname{sgn} x^*\mu(a_j))x^*\mu(a_j)$$
$$= x^* \left(\sum_{j=1}^{m} (\operatorname{sgn} x^*\mu(a_j))\mu(a_j) \right)$$
$$\leq \left\| \sum_{j=1}^{m} \varepsilon_j\mu(a_j) \right\|$$
$$\leq \sup_{\Delta} \left\| \sum_j \varepsilon_j\mu(a_j) \right\|.$$

This proves the result.

PROPOSITION 2. Let $\mu : L \to X$ be a vector measure. Then

$$\sup\{\|\mu(h)\| : h \le e, h \in L\} \le \|\mu\|(e) \le 4 \sup\{\|\mu(h)\| : h \le e, h \in L\}.$$

PROOF. For any $e \in L$,

n

$$\sup\{\|\mu(h)\| : h \le e, h \in L\} = \sup\{\sup\{|x^*\mu(h)| : x^* \in X^*, \|x^*\| \le 1\} : h \le e, h \in L\}$$
$$\le \|\mu\|(e).$$

On the other hand, let $x^* \in X^*$ with $||x^*|| \le 1$ and $e = e_1 \oplus e_2 \oplus \cdots \oplus e_n$, $\{e_1, e_2, \ldots, e_n\}$ be a partition of e into orthogonal members of L. Then

$$\sum_{i=1}^{n} |x^*\mu(e_i)| = \sum_{i \in M^+} x^*\mu(e_i) - \sum_{i \in M^-} x^*\mu(e_i)$$
$$= x^* \left(\sum_{i \in M^+} \mu(e_i)\right) - x^* \left(\sum_{i \in M^-} \mu(e_i)\right)$$
$$\leq 2 \sup\{\|\mu(h)\| : h \leq e, h \in L\},$$

where

 $M^+ = \{i : x^*\mu(e_i) \ge 0, 1 \le i \le n\}$ and $M^- = \{i : x^*\mu(e_i) < 0, 1 \le i \le n\}.$

If X is a complex Banach space, it is easy to see that a similar estimate holds if the number 2 is replaced by the number 4.

Consequently, a vector measure is of bounded semivariation on L if and only if its range is bounded in X.

THEOREM 3. Let $\mu_{\tau} : L \to X$, $\tau \in T$, be a family of vector measures. The following statements are equivalent.

436

- (I) $\{\mu_{\tau} : \tau \in T\}$ is uniformly strongly additive.
- (II) $\{x^*\mu_\tau : \tau \in T, x^* \in X^*, \|x^*\| \le 1\}$ is uniformly strongly additive.
- (III) If (a_n) is a sequence of orthogonal members of L, then $\lim_{n\to\infty} \|\mu_{\tau}(a_n)\| = 0$ uniformly in $\tau \in T$.
- (IV) If (a_n) is a sequence of orthogonal members of L, then $\lim_{n\to\infty} \|\mu_{\tau}\|(a_n) = 0$ uniformly in $\tau \in T$.
- (V) $\{|x^*\mu_{\tau}| : \tau \in T, x^* \in X^*, \|x^*\| \le 1\}$ is uniformly strongly additive.

PROOF. (I) \Rightarrow (II), (II) \Rightarrow (III), and (V) \Rightarrow (I) are obvious.

(III) \Rightarrow (IV) If not, there exist a $\delta > 0$ and an orthogonal sequence (a_n) of L such that $\sup_{\tau \in T} \|\mu_{\tau}\|(a_n) \ge 4\delta > 0$ holds for all $n \in N$. By Proposition 1, for every n there is an $h_n \in L$ such that $h_n \le a_n$ and $\sup_{\tau \in T} \|\mu_{\tau}\|(a_n) \le 4 \sup_{\tau \in T} \|\mu_{\tau}(h_n)\|$. The sequence (h_n) is orthogonal such that

$$\sup_{\tau\in T}\|\mu_{\tau}(h_n)\|\geq\delta>0,$$

for every $n \in N$. This shows that (III) implies (IV).

(IV) \Rightarrow (V). Suppose that $\{|x^*\mu_{\tau}| : \tau \in T, x^* \in X^*, ||x^*|| \le 1\}$ is not uniformly strongly additive. Then there exist an orthogonal sequence (a_n) of L and a $\delta > 0$ such that, for all $m \in N$,

$$\sup\left\{\sum_{n=m}^{\infty} |x^*\mu_{\tau}|(a_n): \tau \in T, \, x^* \in X^*, \, \|x^*\| \le 1\right\} \ge 2\delta > 0.$$

Thus there is an increasing sequence (m_i) of positive integers such that, for all j,

$$\sup\left\{\sum_{n=m_{j}+1}^{m_{j+1}} |x^{*}\mu_{\tau}|(a_{n}): \tau \in T, x^{*} \in X^{*}, \|x^{*}\| \le 1\right\}$$
$$= \sup\left\{|x^{*}\mu_{\tau}|\left(\bigoplus_{n=m_{j}+1}^{m_{j+1}} a_{n}\right): \tau \in T, x^{*} \in X^{*}, \|x^{*}\| \le 1\right\} \ge \delta > 0.$$

Therefore, putting

$$h_j = \bigoplus_{n=m_j+1}^{m_{j+1}} a_n,$$

 (h_n) is an orthogonal sequence of L such that

$$\sup\{\|\mu_{\tau}\|(h_{j}): \tau \in T\} = \sup\{|x^{*}\mu_{\tau}|(h_{j}): \tau \in T, x^{*} \in X^{*}, \|x^{*}\| \le 1\} \ge \delta > 0.$$

This leads to a contradiction. So (V) holds.

COROLLARY 4. Let $\mu: L \to X$ be a vector measure. The following statements are equivalent.

[5]

- (I) μ is strongly additive.
- (II) $\{x^*\mu : x^* \in X^*, \|x^*\| \le 1\}$ is uniformly strongly additive.
- (III) μ is strongly bounded, that is, if (a_n) is an orthogonal sequence of members of L, then $\lim_{n\to\infty} \mu(a_n) = 0$.
- (IV) $\|\mu\|$ is strongly bounded, that is, if (a_n) is an orthogonal sequence of members of *L*, then $\lim_{n\to\infty} \|\mu\|(a_n) = 0$.
- (V) $\{|x^*\mu| : x^* \in X^*, \|x^*\| \le 1\}$ is uniformly strongly additive.
- (VI) $\lim_{n \to \infty} \mu(a_n)$ exists for every nondecreasing monotone sequence (a_n) of L.
- (VII) $\lim_{n \to \infty} \mu(a_n)$ exists for every nonincreasing monotone sequence (a_n) of L.

PROOF. The equivalence of (I)–(V) is clear from Theorem 3. And it is also clear that (VI) is equivalent to (VII).

(I) \Rightarrow (VI). Let (a_n) be an orthogonal sequence of *L* satisfying $a_1 \le a_2 \le \cdots \le a_n$, and let $c_n = a_n \ominus a_{n-1}$. Then

$$\lim_{n} \mu(a_n) = \mu(a_1) + \lim_{n} \sum_{n=2}^{\infty} \mu(a_n \ominus a_{n-1})$$

exists since the sequence $(c_n)_{n=2}^{\infty}$ is an orthogonal sequence of L.

On the other hand, let $(a_n) \subseteq L$ be an orthogonal sequence, $b_k = \bigoplus_{n=1}^k a_n$ for $k \in N$. Then (b_k) is a nondecreasing sequence of L. Then

$$\lim_{n} \mu(a_n) = \lim_{n} \left[\mu\left(\bigoplus_{n=1}^{k} a_n\right) - \mu\left(\bigoplus_{n=1}^{k-1} a_n\right) \right] = 0.$$

This completes the proof.

THEOREM 5. Let $\mu : L \to X$ be a bounded vector measure. If L satisfies the finite chain condition, that is, no infinite subcollection of L can be orthogonal, then μ is countably additive.

PROOF. Suppose that *L* satisfies the finite chain condition, and (a_n) is an orthogonal sequence of *L*; then $a_n = 0$ for all large $n \ge n_0$, $n_0 \in N$. Hence by finite additivity of μ ,

$$\mu\left(\bigoplus_{n=1}^{\infty}a_n\right) = \mu\left(\bigoplus_{n=1}^{n_0}a_n\right) = \sum_{n=1}^{n_0}\mu(a_n) = \sum_{n=1}^{\infty}\mu(a_n),$$

and μ is countably additive.

THEOREM 6. If X is a Banach space containing no copy of c_0 , $\mu: L \to X$ is a bounded vector measure, then μ is strongly additive.

PROOF. Since μ is bounded, for every orthogonal sequence (a_n) of L the series $\{\sum_{n=1}^{m} \mu(a_n)\}_{m=1}^{\infty}$ is weakly unconditional Cauchy [2], that is, $\sum_{n=1}^{\infty} |x^*\mu(a_n)| < \infty$, for any $x^* \in X^*$. Therefore, $(\mu(a_j))_j$ is c_0 -multiplier convergent. Since X contains no copy of c_0 , then $\sum_{n=1}^{\infty} \mu(a_n)$ convergent. Thus μ is strongly additive. \Box

Measures on effect algebras

References

- D. J. Foulis and M. K. Bennett, 'Effect algebras and unsharp quantum logics', *Found. Phys.* 24 (1994), 1331–1352.
- [2] H. T. Hwang, L. L. Li and H. Kim, 'Bounded vector measures on effect algebras', Bull. Austral. Math. Soc. (2) 72 (2005), 291–298.
- [3] F. G. Mazario, 'Convergence theorems for topological group valued measures on effect algebras', *Bull. Austral. Math. Soc.* 64 (2001), 213–231.

LUO LAIZHEN, Department of Mathematics, Harbin Institute of Technology, Harbin 150006, People's Republic of China e-mail: luolaizhen@126.com

LI RONGLU, Department of Mathematics, Harbin Institute of Technology, Harbin 150006, People's Republic of China