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Abstract

We prove that the category of boolean inverse monoids is dually equivalent to the category of boolean
groupoids. This generalizes the classical Stone duality between boolean algebras and boolean spaces.
As an instance of this duality, we show that the boolean inverse monoid Cn associated with the Cuntz
groupoid Gn is the strong orthogonal completion of the polycyclic (or Cuntz) monoid Pn . The group of
units of Cn is the Thompson group Vn,1.
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1. Statement of the theorem

The importance of partial, as opposed to global, symmetries in mathematics is well
established. The question is how to describe them mathematically. One approach,
advocated in [16], is to use inverse semigroups; these are direct generalizations
of groups and are ultimately descended from the pseudogroups of transformations
used in differential geometry. Another approach is to use topological groupoids
as in the recent work of Hughes [8, 9]. Although the surface structure of these
two approaches looks very different, they are in fact closely related. Classically,
pseudogroups of transformations give rise to topological groupoids of germs. More
generally, Paterson [24] used ideas from functional analysis to construct topological
groupoids from inverse semigroups and Renault [25] constructed inverse semigroups
from topological groupoids using bisections. This work has been developed in a
number of directions (see, for example, [4–6, 13, 14, 22, 24, 26–28]). The aim of
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our paper is to set up an exact correspondence between a class of inverse monoids,
which we call boolean monoids, and a class of topological groupoids, which we call
boolean groupoids. As the terminology suggests, our correspondence can be seen as
a natural generalization of the Stone duality between boolean algebras and boolean
spaces. For background on inverse semigroups see [16], for groupoids [7] and for
topological groupoids [4, 24–26].

Although our theorem appears to link semigroups and groupoids, in reality it is
linking two different kinds of groupoid. Boolean inverse monoids are semigroups
but they are also special kinds of ordered groupoids by virtue of the Ehresmann–
Schein–Nambooripad theorem [16]. It follows that our theorem could also be viewed
as providing a duality between a class of ordered groupoids on the one hand and a
class of topological groupoids on the other. The advantages of being able to re-encode
algebraic structures as topological ones cannot be overstated. In the remainder of this
section, we define the two categories we shall work with and put the results of this
paper in context.

Let S be an inverse monoid with zero. If s ∈ S we write d(s)= s−1s and
r(s)= ss−1. We say that s, t ∈ S are compatible if s−1t and st−1 are both idempotents
and orthogonal if s−1t and st−1 are both zero. Inverse semigroups come equipped with
a partial order, called the natural partial order, defined by s ≤ t if and only if s = te
for some idempotent e. The natural partial order is the only order used in this paper.
If s and t are bounded above they are compatible. It follows that when discussing
the existence of joins (join is denoted by ∨) in an inverse semigroup we are only
interested in elements which are a priori pairwise compatible. With respect to the
natural partial order, the set of idempotents, E(S), becomes a meet semilattice (meet
is denoted by ∧). Our perspective is that inverse monoids may therefore be regarded as
generalizations of meet semilattices. The particular inverse monoids considered in this
paper have an even stronger order-theoretic character. We say that an inverse monoid
is a boolean inverse monoid if it satisfies the following three conditions.
(BM1) (E(S),≤) is a boolean algebra.
(BM2) (S,≤) is a meet semilattice.
(BM3) The join of pairs of orthogonal elements always exists.
An inverse semigroup with zero is said to be (finitely) orthogonally complete if it
has joins of all finite orthogonal subsets and multiplication distributes over finite
orthogonal joins [17]. The semilattice of idempotents in a boolean inverse monoid is
distributive, and so using the same argument as [16, Proposition 1.4.20] it follows that
boolean inverse monoids are orthogonally complete. We shall see later, in Lemma 2.3,
that in fact such monoids have the joins of all finite nonempty subsets of pairwise
compatible elements.

In order to define the morphisms between boolean inverse monoids we need some
definitions. For A ⊆ S, define A↑ = {s ∈ S : ∃a ∈ A, a ≤ s}. If A = A↑ we say that A
is upwardly closed. A filter base in S is a subset X ⊆ S with the property that x, y ∈ X
implies that there exists z ∈ X such that z ≤ x ∧ y. A filter in S is a subset F which
is upwardly closed and a filter base. If X is a filter base then X↑ is a filter. In a
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boolean inverse monoid a filter is an upwardly closed subset closed under finite meets.
A proper filter is a filter that does not contain zero. An ultrafilter in S is a proper filter
F which is maximal amongst proper filters. If s ∈ S, s 6= 0 then s↑ is the principal
filter generated by s.

A morphism θ : S→ T between two boolean monoids is a semigroup homo-
morphism such that:
(M1) θ |E(S) : E(S)→ E(T ) is a homomorphism of boolean algebras;
(M2) θ : (S,≤)→ (T,≤) is a homomorphism of semilattices;
(M3) The inverse image under θ of every ultrafilter in T is an ultrafilter in S.

We now turn to groupoids. Let G be a groupoid; that is, a small category in which
every arrow is invertible. The set of identities is denoted by G0 and the domain and
range maps by d and r, respectively. We denote by G ∗ G the set of composable
pairs (g, h) where d(g)= r(h). Let P(G) denote the powerset of G. If A, B ⊆ G
define AB = {ab : a ∈ A, b ∈ B, ∃ab} and A−1

= {a−1
: a ∈ A}. With respect to these

operations P(G) is a semigroup with involution. An element A of P(G) is called a
bisection if a, b ∈ A and d(a)= d(b) (r(a)= r(b)) implies that a = b. Equivalently,
A is a bisection if and only if A−1 A, AA−1

⊆ Go. We say that a groupoid G is a
boolean groupoid if it satisfies the following conditions.

(BG1) G is a Hausdorff étale topological groupoid, where a topological groupoid is
étale if its domain map is a local homeomorphism.

(BG2) Go is compact.
(BG3) G has a basis of compact open bisections.

A morphism between boolean groupoids is a continuous covering functor.
The main theorem proved in this paper can now be stated.

THEOREM. The category of boolean inverse monoids is dually equivalent to the
category of boolean groupoids.

The motivation for our definition of boolean inverse monoids came from a number
of sources. The pioneering paper on topological groupoids and their connection with
inverse semigroups is Renault’s [25]. Renault [25, p. 142] remarks that the inverse
monoids constructed from ample topological groupoids have a boolean algebra of
idempotents and finite orthogonal joins. The importance of the existence of finite
orthogonal joins was reiterated in Paterson’s book (see [24, Proposition 4.4.3]),
where boolean algebras—in fact generalized boolean algebras—play an important
role. The significance of boolean algebras in the theory of C∗-algebras of topological
groupoids has been taken up recently by [4–6]. It was in [28, Proposition 2.9] that an
explicit equivalence was proved between an ample groupoid’s being Hausdorff and the
existence in the associated inverse semigroup of finite meets; such semigroups were
first studied in detail by Leech [21].

The construction of a topological groupoid from an inverse semigroup was first car-
ried out by Renault [25]. It was Paterson [24]who developed Renault’s work into a the-
ory of the universal groupoid associated with an inverse semigroup. Whereas Paterson
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constructed his groupoid from a functional-analytic perspective, Lenz [22], combining
ideas from both Paterson and Kellendonk [13, 14], showed that one could construct
the universal groupoid of an inverse semigroup directly from the inverse semigroup
by using equivalence classes of down-directed subsets of the inverse semigroup. His
motivation seems to have had two sources: first, Kellendonk’s technique for building a
groupoid using equivalence classes of descending chains of elements, described in [16,
Section 9.2]; and second, the role played by ultrafilters in the theory of convergence in
topological spaces. Stuart Margolis and the author realized, during a visit of the latter
to Bar-Ilan University in January 2009, that the equivalence classes Lenz worked with
could be replaced by filters; this work, together with earlier joint work of Margolis
and Ben Steinberg, is being written up as [20]. Thus with each inverse semigroup
S one can associate the inverse semigroup of filters L(S). By taking the underlying
groupoid of this inverse semigroup and introducing a topology derived from the way
S is embedded in L(S) one gets Paterson’s universal groupoid.

Both Paterson and Lenz also constructed a reduction of this groupoid which can,
in the language of filters, be seen as the groupoid of ultrafilters on S. In fact this was
what Kellendonk was interested in [13, 14]. The importance of the ultrafilters has been
taken up in the recent work of Exel [4–6] which has been influential in our thinking.
Lenz also investigated conditions on the inverse semigroup S which guarantee that this
reduced groupoid had pleasant properties.

The idea of trying to prove a duality type theorem linking inverse semigroups
and topological groupoids arose from conversations with Pedro Resende during the
author’s visit to Lisbon over Easter 2008.

The catalyst which led to the formulation of the theorem of this paper was [28]
which made us realize that everything in Lenz’s paper [22] would work much more
easily if only the inverse semigroup had sufficiently rich order-theoretic properties.

2. The proof

Our proof is a direct generalization of the familiar proof of the classical Stone
duality; see [2, 29], for example. We begin with the algebraic ingredients of our proof.
First, we establish some consequences of the axioms for boolean inverse monoids. The
natural partial order plays a key role and certain properties proved in [16, Section 1.4]
are summarized here.

LEMMA 2.1. Let S be an inverse semigroup.

(1) s and t are compatible if and only if s ∧ t exists and d(s ∧ t)= d(s) ∧ d(t) and
r(s ∧ t)= r(s) ∧ r(t).

(2) If s ∨ t exists then d(s ∨ t)= d(s) ∨ d(t) and r(s ∨ t)= r(s) ∨ r(t).
(3) If s ∧ t exists then for any u ∈ S we have that us ∧ ut (su ∧ tu) exists and

u(s ∧ t)= us ∧ ut ((s ∧ t)u = su ∧ tu).

Contrast (1) and (2) above: if s and t are not compatible we will not have both
d(s ∧ t)= d(s) ∧ d(t) and r(s ∧ t)= r(s) ∧ r(t).
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In an inverse semigroup S we use the notation s↓ to mean the set of all elements
in S beneath s.

Property (3) in the following lemma is crucial in the development of our duality.

LEMMA 2.2. Let S be a boolean inverse monoid.

(1) For each s ∈ S the poset (s↓,≤) is a boolean algebra.
(2) Let s ≤ t . Then there is a unique element t \ s satisfying the following

conditions: t \ s ≤ t , the pair s and t \ s are orthogonal and t = s ∨ (t \ s).
(3) Let s 6= 0 and s � t . Then there exists a nonzero element s′ such that s′ ≤ s and

s′ ∧ t = 0.

PROOF. (1) Define the function β : s↓→ d(s)↓ by x 7→ d(x). This is an order
isomorphism. Clearly (d(s)↓,≤) is a boolean algebra since (E(S),≤) is. Thus
(s↓,≤) is a boolean algebra.

(2) Put e = d(t) ∧ d(s)′, working in the boolean algebra E(S). Define t \ s = te.
In formulae, ∧ and ∨ have priority over \. By construction t \ s ≤ t and d(t \ s)= e.
It follows that s and t \ s are orthogonal. Thus their join s ∨ (t \ s) exists. Observe
that d(s ∨ (t \ s))= d(t) and clearly s ∨ (t \ s)≤ t . It follows that t = s ∨ (t \ s).

Let x be any element orthogonal to s such that x ≤ t and t = s ∨ x . To show that
it is equal to t \ s it is enough to show that d(x)= d(t \ s). But this follows by the
uniqueness of relative complements in boolean algebras.

(3) Let s, t ∈ S be nonzero elements of a boolean inverse monoid. Then s ∧ t ≤ s
and so we may form the element s′ = s \ s ∧ t . It follows from (2) above that s′ = 0 if
and only if s ≤ t . We deduce that if s � t then there exists a nonzero element s′ such
that s′ ≤ s and s′ ∧ t = 0. 2

As a result of the above lemma, we say that boolean inverse monoids are locally
boolean. We can now prove that boolean inverse monoids have all finite compatible
joins.

LEMMA 2.3. Let S be a boolean inverse monoid. If s and t are compatible then s ∨ t
exists.

PROOF. Both elements s \ s ∧ t and t \ s ∧ t exist and so s = (s ∧ t) ∨ (s \ s ∧ t) and
t = (s ∧ t) ∨ (t \ s ∧ t) by Lemma 2.2. The elements s ∧ t and s \ s ∧ t , as well as
s ∧ t and t \ s ∧ t , are pairwise orthogonal. We prove that that s \ s ∧ t and t \ s ∧ t
are orthogonal. We use the fact that since s and t are compatible, we may apply
Lemma 2.1(1). Thus d(s \ s ∧ t)= d(s) ∧ d(t)′ and d(t \ s ∧ t)= d(t) ∧ d(s)′; and
r(s \ s ∧ t)= sd(t)′s−1 and r(t \ s ∧ t)= td(s)′t−1. It is now clear that the elements
are orthogonal. Put

x = (s ∧ t) ∨ (s \ s ∧ t) ∨ (t \ s ∧ t).

We prove that x = s ∨ t . Clearly s, t ≤ x and d(x)= d(s) ∨ d(t). It is easy to check
that x = s ∨ t . 2
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We now turn to the properties of filters and ultrafilters on boolean inverse monoids.
If F is a filter in S and s ∈ F we write s ∧ F 6= 0 to mean that s ∧ a 6= 0 for all

a ∈ F . The following is a special case of [4, Lemma 12.3].

LEMMA 2.4. Let F be a filter in the boolean inverse monoid S. Then F is an ultrafilter
if and only if s ∧ F 6= 0 implies that s ∈ F.

LEMMA 2.5. Let S be a boolean inverse monoid.

(1) Each nonzero element of S belongs to an ultrafilter.
(2) If a ∈ S is nonzero then the intersection of all ultrafilters containing a is the

principal filter a↑.

PROOF. (1) This is a standard argument using Zorn’s lemma.
(2) Let A be the intersection of all ultrafilters containing a. Clearly a↑ ⊆ A. Let

b ∈ A. We prove that a ≤ b. Suppose not. Then by Lemma 2.2(3) there exists an
element a′ 6= 0 such that a′ ≤ a and a′ ∧ b = 0. By (1) above, let C be any ultrafilter
containing a′. Then a ∈ C and so A ⊆ C . But a, a′, b ∈ A imply that a′, b ∈ C , giving
0= a′ ∧ b ∈ C , which is a contradiction. Thus a ≤ b, as required. 2

If S is an inverse semigroup then P(S) is a semigroup with involution when we
define AB = {ab : a ∈ A, b ∈ B} and A−1

= {a−1
: a ∈ A}. The structure of filters on

boolean inverse monoids is closely bound up with the following definition. A coset in
S is a subset A such that A = AA−1 A. The theory of upwardly closed cosets in inverse
semigroups is discussed in detail in [15].

LEMMA 2.6. Every filter is a coset.

PROOF. Let F be a filter and ab−1c ∈ F F−1 F where a, b, c ∈ F . Put d = a ∧ b ∧ c.
Then d = dd−1d ≤ ab−1c and so ab−1c ∈ F . The reverse inclusion is immediate. 2

LEMMA 2.7. If A and B are filters then (AB)↑ is the smallest filter containing AB.

PROOF. Clearly AB ⊆ (AB)↑ and (AB)↑ is upwardly closed. We show that (AB)↑

is a filter base. Let a1, a2 ∈ A and b1, b2 ∈ B. Then we have a = a1 ∧ a2 ∈ A
and b = b1 ∧ b2 ∈ B. Now ab ≤ a1b1 and ab ≤ a2b2. Thus ab ≤ a1b1 ∧ a2b2 and
ab ∈ AB. It follows that a1b1 ∧ a2b2 ∈ (AB)↑. 2

In the light of the above lemma, we may define the filter A · B = (AB)↑ when A
and B are filters. The following is [15, Proposition 1.4].

LEMMA 2.8. Let F be a filter. Then H = F−1
· F is a filter and an inverse submonoid

and F = (aH)↑ for any a ∈ F.

An idempotent filter is a filter containing an idempotent. The following result is
[15, Proposition 1.5].

LEMMA 2.9. A filter F is idempotent if and only if it is an inverse subsemigroup.
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REMARK 2.10. Our results on filters are special cases of some well-known results
on actions of inverse semigroups and their associated closed inverse subsemigroups
ultimately due to Boris Schein. If H is an idempotent filter then the left cosets of H
are the sets of the form (aH)↑ where d(a) ∈ H ; it is important to take note of the extra
condition which is, of course, automatic in the case of groups since they only have one
idempotent. Observe that (aH)↑ = (bH)↑ if and only if a−1b ∈ H .

The following result is a corollary to Lemma 2.8.

LEMMA 2.11. Let A and B be filters such that A ∩ B 6= ∅ and A−1
· A = B−1

· B.
Then A = B.

Denote by L(S) the set of all filters on S equipped with the product · defined above.
Either directly or via [22] we have the following proposition.

PROPOSITION 2.12. Let S be a boolean inverse monoid. Then L(S) is an inverse
semigroup in which the idempotents are the idempotent filters and the natural partial
order is reverse inclusion.

Denote by G(S) the subset of L(S) consisting of all the ultrafilters of S. An
element s ∈ S in an inverse monoid S is said to be primitive if t ≤ s and t 6= s implies
that t = 0. The primitive elements of an inverse monoid form a groupoid by [16,
Proposition 9.2.1]. Because the natural partial order in L(S) is reverse inclusion, it
follows that the primitive elements in L(S) are precisely the ultrafilters in S. It follows
G(S) is a groupoid when we define A · B only when A−1

· A = B · B−1.

PROPOSITION 2.13. Let S be a boolean inverse monoid. With the above multi-
plication, G(S) is a groupoid. In addition, the following are equivalent.

(1) F is an ultrafilter in S.
(2) H = F−1

· F is an idempotent ultrafilter in S.
(3) E(H) is an ultrafilter in E(S).

PROOF. The equivalence of (1) and (2) follows from the above, but we prove it directly
anyway.

We suppose (1) and prove (2). Put H = F−1
· F . Let H ⊆ K where K is a filter.

Since H is an idempotent filter so too is K by Lemma 2.9. Let a ∈ F . Then d(a) ∈ H
and so d(a) ∈ K . Thus F = (aH)↑ ⊆ (aK )↑. But by assumption F is an ultrafilter
and so F = (aH)↑ = (aK )↑. It follows that H = K and so H is also an ultrafilter.

Now we suppose (2) and prove (3). Put E ′ = E(F−1
· F). Let E ′ ⊆ F ′ where F ′ is

a filter in E(S). Then H ⊆ F ′↑. But H is an ultrafilter and so H = F ′↑. Thus E ′ = F ′,
and so E ′ is an ultrafilter in the semilattice of idempotents.

Finally, we show that (3) implies (1). We have that F = (aH)↑ where E(H) is an
ultrafilter in E(S). Suppose that F ⊆ G where G is a filter. Then H ⊆ G−1

· G and
so E(H)⊆ E(G−1

· G). By assumption E(H)= E(G−1
· G) and so H = G−1

· G
from which it follows that F = G and so F is an ultrafilter. 2
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We can easily write down an explicit form of the groupoid multiplication in G(S).
Let A and B be two ultrafilters such that A−1

· A = B · B−1 Then A = (a A−1
· A)↑

where a ∈ A, and B = (B · B−1b)↑ where b ∈ B. Thus A · B = (abB−1
· B)↑ since

ab ∈ A · B and (A · B)−1
· (A · B)= B−1

· B.

LEMMA 2.14. Let A be an ultrafilter in a boolean inverse monoid S. Then s ∨ t ∈ A
implies that s ∈ A or t ∈ A.

PROOF. Put H = A−1
· A. Then A = (aH)↑ for any a ∈ A. Now s ∨ t ∈ A implies

that d(s ∨ t) ∈ H . Thus d(s) ∨ d(t) ∈ E(H). However, E(H) is an ultrafilter in
the boolean algebra E(S). Thus d(s) ∈ H or d(t) ∈ H . Suppose the former. Put
B = (s H)↑, a well-defined ultrafilter. Observe that s ∈ B implies that s ∨ t ∈ B. Then
B−1
· B = A−1

· A and s ∨ t ∈ A ∩ B 6= ∅. By Lemma 2.11 it follows that A = B and
so s ∈ A, as required. 2

PROPOSITION 2.15. There is a contravariant functor G from the category of boolean
inverse monoids to the category of groupoids and their covering functors.

PROOF. Let θ : S→ T be a morphism between boolean inverse monoids. By (M3),
the function θ−1

:G(T )→G(S) is well defined. Clearly, θ−1(A)−1
= θ(A−1).

We prove first that this function is a functor. Let x ∈ (θ−1(A−1)θ−1(A))↑. Then
uv ≤ x where u ∈ θ−1(A−1) and v ∈ θ−1(A))↑. Thus θ(u) ∈ A−1 and θ(v) ∈ A and so
θ(uv) ∈ A−1 A. But θ(uv)≤ θ(x). Thus θ(x) ∈ (A−1 A)↑. We have therefore proved
that

(θ−1(A−1)θ−1(A))↑ ⊆ θ−1((A−1 A)↑).

But both sets are ultrafilters and so this inclusion must be equality. We have therefore
proved that

θ−1(A−1
· A)= θ−1(A)−1

· θ−1(A).

The dual result holds by symmetry. It follows that θ−1 preserves domains and ranges.
To conclude the proof that θ−1 is a functor we prove two results and then combine
them.

First, we prove that θ−1(A)θ−1(B)⊆ θ−1(AB). Let x ∈ θ−1(A)θ−1(B). Then
x = a′b′ where a′ ∈ θ−1(A), b′ ∈ θ−1(B). Thus θ(a′) ∈ A and θ(b′) ∈ B, giving
θ(x)= θ(a′b′). Hence θ(x) ∈ θ−1(AB).

Second, we prove that θ−1(X)↑ ⊆ θ−1(X↑). Let a ∈ θ−1(X)↑. Then b ≤ a
where b ∈ θ−1(X). Thus θ(b) ∈ X and so θ(b)≤ θ(a). Thus θ(a) ∈ X↑, giving
a ∈ θ−1(X↑).

We now combine these two results. We have that

θ−1(A)θ−1(B)⊆ θ−1(AB).

Thus
(θ−1(A)θ−1(B))↑ ⊆ θ−1(AB)↑ ⊆ θ−1((AB)↑).
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This gives θ−1(A) · θ−1(B)⊆ θ−1(A · B). But again we have ultrafilters on both sides
of the inclusion and so it is in fact an equality. This proves that θ−1 is a functor.

We prove that θ−1 is a covering functor. Suppose that A, B ∈G(T ) and
A−1
· A = B−1

· B and θ−1(A)= θ−1(B). Then A ∩ B 6= ∅. Thus A = B by
Lemma 2.11. It follows that θ−1 is star injective.

Let H ∈G(T ) be an idempotent ultrafilter such that θ−1(H)= B−1
· B where B

is an ultrafilter in S. Let b ∈ B and put a = θ(b). Then a−1a = θ(b−1b). Now
b−1b ∈ B−1

· B and so b−1b ∈ θ−1(H) and so θ(b−1b) ∈ H . Thus a−1a ∈ H . It
follows that (aH)↑ is a well-defined ultrafilter in T whose domain is H . Observe
that θ−1(aH) ∩ B 6= ∅. Thus θ−1(aH)= B by Lemma 2.11. It follows that θ−1 is
star surjective. 2

Let G be a groupoid. The set of bisections of G, denoted by B(G), forms an inverse
semigroup [24, 25]; in fact, it is a boolean inverse monoid. The following is a well-
known property of covering functors between groupoids.

LEMMA 2.16. Let α : G→ H be a covering functor between two groupoids. Then if
α(x)= ab there exist u, v ∈ G such that x = uv, α(u)= a and α(v)= b.

The process of constructing the inverse monoid of bisections of a groupoid is
functorial.

PROPOSITION 2.17. There is a contravariant functor B from the category of
groupoids and their covering functors to the category of boolean inverse monoids and
their monoid homomorphisms that preserves meets.

PROOF. Let α : G→ H be a covering functor between groupoids. Let B be a
bisection of H . Let a, b ∈ α−1(B) such that d(a)= d(b). Then α(a), α(b) ∈ B
and d(α(a))= d(α(b)). But B is a bisection and so α(a)= α(b). But α is star
injective and so a = b. Together with a dual argument, this proves that α−1(B) is
a bisection. We therefore have a well-defined function α−1

: B(H)→ B(G). This
map induces a homomorphism between the boolean algebras of idempotents and
α−1(A ∩ B)= α−1(A) ∩ α−1(B). We prove that α−1(AB)= α−1(A)α−1(B) and so
α−1 is a homomorphism. Let x ∈ α−1(AB). Then α(x)= ab. Then by Lemma 2.16
there exists u, v such that x = uv and α(u)= a and α(v)= b. Thus u ∈ α−1(A)
and v ∈ α−1(B) and hence x ∈ α−1(A)α−1(B). Thus we have established that
α−1(AB)⊆ α−1(A)α−1(B). To prove the reverse inclusion let x ∈ α−1(A)α−1(B).
Then x = uv where α(u) ∈ A and α(v) ∈ B. Thus α(x) ∈ AB and so x ∈ α−1(AB),
as required. We may therefore define B(α)= α−1. 2

So far we have only dealt with matters algebraical; we now deal with those
topological. Let G be a boolean groupoid. Denote by A(G) the set of compact open
bisections of G. We could take some shortcuts in the proof of the proposition below
using [24], but we have tried to be as elementary and explicit as possible. Observe,
by (6) in the following proposition, that boolean groupoids are locally compact.
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PROPOSITION 2.18. Let G be a boolean groupoid.

(1) Go is an open set in G.
(2) G ∗ G is a closed set in G × G.
(3) If A is a closed bisection then A−1

· A is a closed subset of Go.
(4) The product of two open sets is an open set.
(5) The product of two closed sets is a closed set.
(6) An open bisection is closed if and only if it is compact. Thus clopen bisections

are the same thing as compact open bisections.
(7) The product of two compact open bisections is a compact open bisection.
(8) A(G) is a boolean inverse monoid.

PROOF. We prove these results in the order in which they are stated.

Part (1). In an étale topological groupoid Go is always open [26].

Part (2). In a topological groupoid G in which Go is Hausdorff the set G ∗ G is closed.
This follows from general topology.

Part (3). Because A is a bisection, A−1
· A = {d(a) : a ∈ A} = d(A), a subset of Go.

In an étale topological groupoid, the map d : G→ Go is open [26], and so it maps
closed sets to closed sets. Thus if A is a closed bisection, then A−1 A is a closed subset
of Go.

Part (4). In an étale topological groupoid the product of any two open sets is an open
set [26].

Part (5). Let A and B be closed sets in G. Then A × B is a closed set in
G × G. Because our topological groupoid is Hausdorff, (2) implies that A ∗ B =
(A × B) ∩ (G ∗ G) is a closed subset of G × G. In an étale topological groupoid
the multiplication map is open and so maps closed sets to closed sets. Thus AB is
closed.

Part (6). Observe that to determine whether a subset of a space is compact it is enough
to use covers whose elements are taken from a basis for the topology. In our case, the
basis consists of compact open bisections. Let A be a clopen bisection which we
are required to show is compact. Let A =

⋃
Bi be an open cover of A, where by

our observation above each Bi is a compact open bisection. Now the Bi are pairwise
compatible since they are bounded above, and so by Lemma 2.1(2), A−1 A =

⋃
B−1

i Bi

where A−1 A and the B−1
i Bi are subsets of Go. But by (2) above, A−1 A is a closed

subspace of a compact space Go and so it is compact. It follows that we can write
A−1 A =

⋃m
i=1 B−1

i Bi for some finite number of elements. Now
⋃m

i=1 Bi ⊆ A and the
domains of

⋃m
i=1 Bi and A are the same. It follows that A =

⋃m
i=1 Bi , and so we have

proved that A is compact. Conversely, let A be a compact open bisection. But every
compact subset of a Hausdorff space is closed and so A is clopen.

Part (7). This follows by (4), (5) and (6) and the fact that the product of bisections is
a bisection.
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Part (8). The inverse of a compact open bisection is a compact open bisection and so
together with (6) we have that A(G) is an inverse subsemigroup of B(G). By (1), Go
is an open subspace of G [26], it is compact by fiat, and it is automatically a bisection.
Thus Go is a compact open set and is the identity element of A(S). Now G has a
basis of compact open bisections each of which is clopen, thus these intersect with Go
to give a basis of clopen subsets for Go. It follows that Go is a boolean space
and this implies that the idempotents of A(G) form a boolean algebra. The natural
partial order in A(G) is just subset inclusion. If A, B ∈ A(G) then A ∩ B is a clopen
bisection. It follows that A(G) has all nonempty finite meets. Finally, if A, B ∈ A(G)
are orthogonal then A ∪ B is a bisection and it is clopen since both A and B are clopen.
Hence A ∪ B ∈ A(G) and so A(G) has finite orthogonal joins. Thus A(G) is a boolean
inverse monoid, as claimed. 2

Let G be a boolean groupoid. For each g ∈ G, define

Fg = {A ∈ A(G) : g ∈ A}.

LEMMA 2.19. With the above definition, we have the following.

(1) Fg is an ultrafilter in the inverse semigroup A(G).
(2) F−1

g · Fg = Fg−1g and Fg · F−1
g = Fgg−1 .

(3) If there exists gh then Fg · Fh = Fgh .
(4) Fg = Fh if and only if g = h.
(5) Each ultrafilter F in the boolean inverse monoid A(G) is of the form Fg for some

g ∈ G.

PROOF. We prove these results in the order in which they are stated.

Part (1). It is immediate that Fg is a filter. It remains to show that it is an ultrafilter.
Let A ∈ A(G) be a compact open bisection with the property that, for each B ∈ Fg ,
A ∩ B 6= ∅. We shall show that g ∈ A from which it follows that A ∈ Fg and so by
Lemma 2.4 we deduce that Fg is an ultrafilter. Let O be any open set containing g.
Then there is a basic compact open set g ∈ D such that D ⊆ O . By assumption
D ∩ A 6= ∅ and so O ∩ A 6= ∅. Thus every open set containing g has nonempty
intersection with A. But A is closed and so g ∈ A, as required.

Part (2). It is clear that F−1
g · Fg ⊆ Fg−1g . But we now use the fact that the left-hand

side is an ultrafilter and the right-hand side an (ultra)filter. They must therefore be
equal.

Part (3). Similar argument to (2) above.

Part (4). Suppose that g 6= h. By assumption the groupoid G is Hausdorff. Thus there
are basic compact open bisections A and B such that g ∈ A and h ∈ B and A ∩ B = ∅
which shows that Fg 6= Fh .

Part (5). Let F be an ultrafilter in A(G). We prove that F ⊆ Fg for some g ∈ G from
which the result follows. Let A ∈ F . Then A is a compact set. Consider the set
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F ′ = {A ∩ B : B ∈ F}. Then this is a set of closed subsets of A which has the finite
intersection property because F is an ultrafilter. It follows that

⋂
F ′ is nonempty.

Let g ∈
⋂

F ′. Then g belongs to every element of F and so by construction F ⊆ Fg ,
as required. 2

PROPOSITION 2.20. The construction A is a contravariant functor from the category
of boolean groupoids to the category of boolean inverse monoids.

PROOF. By Proposition 2.18, A(G) is a boolean inverse monoid. Let α : G→ H
be a continuous proper covering functor. Thus α−1 takes clopen bisections of H to
clopen bisections of G and so compact open bisections to compact open bisections.
Combining this observation with Proposition 2.17, we have that α−1

: A(H)→ A(G)
is a monoid homomorphism which preserves meets. It is clearly a boolean algebra
map from the boolean algebra of idempotents of A(H) to the boolean algebra of
idempotents of A(G). It remains to prove that the inverse images of ultrafilters in A(G)
are ultrafilters in A(H). Let F be an ultrafilter in A(G). Then by Lemma 2.19(5), there
exists g ∈ G such that F = Fg . Put h = α(g) ∈ H . Then Fh is an ultrafilter in A(H).
The result will be proved if we can show that A ∈ Fh if and only if α−1(A) ∈ Fg .
Suppose that A ∈ Fh . Then h ∈ A and so α(g) ∈ A, which gives that g ∈ α−1(A)
and so α−1(A) ∈ Fg . Conversely, suppose that α−1(A) ∈ Fg . Then g ∈ α−1(A) and
so h ∈ A, giving A ∈ Fh . 2

Let S be a boolean inverse monoid. For each s ∈ S define

Ks = {A ∈G(S) : s ∈ A},

the set of all ultrafilters in S that contain the element s. Clearly K0 = ∅ but for s 6= 0
we have that Ks 6= ∅ by Lemma 2.5(1). It follows by (2) below that the set {Ks : s ∈ S}
is the basis for a topology � on the groupoid G(S).

LEMMA 2.21. Let S be a boolean monoid. With the above definition we have the
following.

(1) Each Ks is a bisection.
(2) Ks ∩Kt =Ks∧t .
(3) K−1

s =Ks−1 .
(4) Ks Kt =Kst .
(5) Ks ⊆Kt if and only if s ≤ t .
(6) Ks =Kt if and only if s = t .
(7) If s ∨ t exists then Ks ∪Kt =Ks∨t .
(8) Ks ∪Kt is a bisection if and only if s ∨ t exists.
(9) Let e and { fi : i ∈ I } be idempotents of S. Then if Ke =

⋃
i∈I K fi there exists a

finite subset I ′ ⊆ I such that Ke =
⋃

i∈I ′K fi .
(10) Let s and {ti : i ∈ I } be elements of S such that ti ≤ s. Then Ks =

⋃
i∈I Kti if and

only if Ks−1s =
⋃

i∈I Ks−1ti .
(11) Each Ks is compact.
(12) Each compact open bisection of G(S) is equal to Ks for some s ∈ S.
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PROOF. We prove these results in the order in which they are stated.

Part (1). Let A, B ∈Ks such that A−1
· A = B−1

· B. Then s ∈ A ∩ B and so in
particular A ∩ B 6= ∅. Thus by Lemma 2.11, A = B. The dual result also holds.

Part (2). Let A ∈Ks ∩Kt . Then s, t ∈ A. But A is a filter and so s ∧ t ∈ A from which
it follows that A ∈Ks∧t . Conversely, let A ∈Ks∧t . Then s ∧ t ∈ A. But s ∧ t ≤ s, t
and A is a filter and so s, t ∈ A and so A ∈Ks ∩Kt .

Part (3). Straightforward.

Part (4). Let A ∈Ks and B ∈Kt . Then st ∈ A · B and so Ks Ks Kt ⊆Kst Kt ⊆Kst .
Conversely, let A ∈Kst . Put H = A−1

· A. Then A = (st H)↑. Put B = (s(t Ht−1)↑)↑

and C = (t H)↑. Then B ∈Ks , and C ∈Kt and A = B · C . Thus Kst ⊆Ks Kt .

Part (5). Let Ks ⊆Kt . Suppose that s � t . Then by Lemma 2.2(3), there exists a
nonzero element s′ such that s′ ≤ s and s′ ∧ t = 0. By Lemma 2.5(1), let A be an
ultrafilter containing s′. Then A contains s. Thus A ∈Ks and so A ∈Kt . It follows
that t ∈ A. But s′, t ∈ A implies that s′ ∧ t ∈ A and so 0 ∈ A, which is a contradiction.
It follows that s ≤ t . The converse is immediate since any ultrafilter containing s must
contain t as well.

Part (6). This is immediate by (5).

Part (7). This follows by (5) above and Lemma 2.14.

Part (8). One direction is immediate. Suppose that Ks ∪Kt is a bisection. We
prove that s and t are compatible. We prove that st−1 is an idempotent. The fact
that s−1t is an idempotent follows by symmetry. If st−1

= 0 there is nothing to
prove so we may assume that st−1

6= 0. Thus e = s−1st−1t 6= 0. Let H be any
ultrafilter containing e; such exists by Lemma 2.5(1). Necessarily H is an idempotent
ultrafilter by Lemma 2.9. Since e ∈ H both s−1s, t−1t ∈ H . Put A = (s H)↑ and
B = (t H)↑. Then A ∈Ks and B ∈Kt . But A−1

· A = B−1
· B by construction and

we are assuming our set is a bisection so it follows that A = B. Thus s−1t ∈ H . We
have proved that every ultrafilter containing e contains s−1t . By Lemma 2.5(2), we
have that s−1st−1t ≤ s−1t . Thus st−1

≤ ss−1t t−1. We have proved that st−1 is an
idempotent.

Part (9). The proof of this result is essentially the same as the proof in the case of
boolean algebras. Let e and { fi : i ∈ I } be idempotents of S such that Ke =

⋃
i∈I K fi

By (5), we have that fi ≤ e for all i ∈ I .
We begin with a simple observation. Let f < e and denote the complement of f in

the boolean algebra e↓ by f ′. Then it is easy to show that K \K f =K f ′ .
Suppose that for each finite subset I1 ⊆ I we have that Ke 6=

⋃
i∈I1

K fi . We shall
derive a contradiction which will prove the result. Specifically, we prove that the set
J = { f ′i : i ∈ I } has the property that every finite nonempty subset has a nonempty
meet. It follows that J generates a filter base and so generates a filter. This in
turn is contained in an ultrafilter G. But by construction fi /∈ G for each i ∈ I
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which contradicts what we were given. Thus it only remains to show that the set
J = { f ′i : i ∈ I } has the property that every finite nonempty subset has a nonempty
meet. Let J1 ⊆ J be a finite nonempty subset. We wish to show that f =

∧
i∈J1

f ′i 6= 0.
But

K f =
⋂
i∈J1

K f ′i
=

⋂
i∈J1

Ke \K fi =Ke

∖(⋃
i∈J1

K fi

)
.

However, by assumption this set is nonempty and so f 6= 0.

Part (10). Let s and {ti : i ∈ I } be elements of S such that ti ≤ s. Suppose first that
Ks =

⋃
i∈I Kti . We shall prove that Ks−1s =

⋃
i∈I Ks−1ti .

Let F ∈Ks−1s . Then s−1s ∈ F and F is an idempotent ultrafilter by Lemma 2.9.
Then (s F)↑ ∈Ks . By assumption, (s F)↑ ∈Kti for some i ∈ I . Hence ti ∈ (s F)↑.
There is therefore an idempotent f ∈ F such that s f ≤ ti . Thus s−1s f ≤ s−1ti . But
s−1s, f ∈ F implies that s−1s f ∈ F . It follows that s−1ti ∈ F and so F ∈Ks−1ti .
The proof of the reverse inclusion is almost immediate. Suppose that F ∈Ks−1ti . Then
s−1ti ∈ F . But ti ≤ s and so s−1ti ≤ s−1s. It follows that s−1s ∈ F .

Now suppose that Ks−1s =
⋃

i∈I Ks−1ti . We shall prove that Ks =
⋃

i∈I Kti . Let
F ∈Ks . Then s ∈ F and so F = (s F−1

· F)↑ by Lemma 2.8. It follows that s−1s ∈
F−1
· F , an ultrafilter by Proposition 2.13. By assumption, F−1

· F ∈Ks−1ti for some
i ∈ I . Now s(s−1ti ) ∈ F and ss−1ti ≤ ti and so ti ∈ F , as required. The proof of the
reverse inclusion is immediate since si ≤ t .

Part (11). Suppose that Ks ⊆
⋃

i∈I Kti . By (2), we do not lose any generality by
assuming that we have equality. It follows by (5) that ti ≤ s for each i ∈ I . By (10),
we have that Ks−1s =

⋃
i∈I Ks−1ti . But s−1s and s−1ti for i ∈ I are all idempotents. It

follows by (9) that there is a finite subset I ′ ⊆ I such that Ks−1s =
⋃

i∈I ′Ks−1ti . By
(10), we deduce that Ks =

⋃
i∈I ′Kti , and so we have proved that Ks is compact, as

claimed.

Part (12). Let A be a compact open bisection in the groupoid G(S). Because it is an
open set it is a union of basic compact open bisections, and because it is compact it is
a union of only a finite number of these sets. Thus

A =
m⋃

i=1

Ksi .

By (8) above the elements s1, . . . , sm are pairwise compatible. Thus by Lemma 2.3,
the join s =

∨m
i=1 si exists. It follows by (7) above that A =Ks , as required. 2

PROPOSITION 2.22. Let S be a boolean inverse monoid. Then G(S) is a boolean
groupoid with respect to the topology �. If θ : S→ T is a morphism of boolean
inverse monoids then G(θ) :G(S)→G(T ) is a continuous covering functor. Thus
the construction G is a contravariant functor from the category of boolean inverse
monoids to the category of boolean groupoids.
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PROOF. We proceed in a number of steps.

Step 1. The basic open sets are also closed. Let s ∈ S be a nonzero element and let
F ∈G(S) \Ks . By assumption s /∈ F , and so by Lemma 2.4 there exists t ∈ F such
that s ∧ t = 0. Thus F ∈Kt and Kt ∩Ks = ∅. It follows that Ks is also a closed
subset. The compactness of these sets follows from Lemma 2.21(11).

Step 2. The topology � is Hausdorff. Let F and G be two distinct ultrafilters in S; in
other words, elements of the groupoid G(S). If s ∈ F and s ∧ G 6= 0 then s ∈ G by
Lemma 2.4. Since F cannot be a subset of G there must exist s ∈ F and t ∈ G such
that s ∧ t = 0. Then F ∈Ks , G ∈Kt and Ks ∩Kt = ∅.

Step 3. G(S) is a topological groupoid. We have to prove that the inversion map
and the multiplication map are both continuous. The fact that the inversion map is
continuous follows by Lemma 2.21(3). We must now prove that the multiplication map
µ :G(S) ∗G(S)→G(S) is continuous. To do this we prove that

µ−1(Ka)=

( ⋃
06=bc≤a

Kb ×Kc

)
∩ (G(S) ∗G(S)).

Let a ∈ A be an ultrafilter such that A = B · C . Then a ∈ (BC)↑ and so bc ≤ a for
some b ∈ B and c ∈ C . Thus B ∈Kb, C ∈Kc and 0 6= bc ≤ a. To prove the reverse
inclusion, suppose that 0 6= bc ≤ a and B ∈Kb, C ∈Kc and the product B · C exists.
Then B · C is an ultrafilter containing a and so B · C ∈Ka .

Step 4. G(S) is étale. We shall show that d :G(S)→G(S)o is a local homeo-
morphism. To do this it is enough to prove that the map d :Ks→Ks−1s given by
A 7→ A−1

· A is a homeomorphism. It is bijective by Lemmas 2.8 and 2.11. It is
continuous because inversion and multiplication are continuous. To show that it is
open, we use Lemma 2.21(5): Kt is an open set in Ks if and only if t ≤ s. It follows
that Kt−1t is an open set in Ks−1s .

The fact that G(S)o is compact follows from the proof of classical Stone duality.
We have therefore proved that G(S) is a boolean groupoid.

By Proposition 2.15, it only remains to show that θ−1 is continuous. Let Ks be a
basic open set in G(S). Put t = θ(s). Then Kt is a basic open set in G(T ). Our claim
will be proved if we can show that F ∈Kt if and only if θ−1(F) ∈Ks . But the proof
of this is immediate. 2

The following concludes the proof of our main result by showing that our
contravariant functors A and G establish a dual equivalence between the categories
of boolean inverse monoids and boolean groupoids.

PROPOSITION 2.23.

(1) Let G be a boolean groupoid. Then G is isomorphic to GA(G) as topological
groupoids under the map g 7→ Fg .
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(2) Let S be a boolean inverse monoid. Then S is isomorphic to AG(S) under the
map s 7→Ks .

PROOF. We prove these results in the order in which they are stated.
First, consider (1). By Lemma 2.19(4) and (5), the groupoids are isomorphic under

this map so it only remains to prove that this map is a homeomorphism. We show first
that the map is open. Let U be a compact open bisection of G. We show that

{Fg : g ∈U } =KU .

Let g ∈U . Then Fg is an ultrafilter of A(G). It consists of all compact open bisections
of G that contain g. But U is such a one. Thus U ∈ Fg and so Fg ∈KU . Now
let A ∈KU . Then A is an ultrafilter of A(G) and U ∈ A. But by Lemma 2.19(5),
we know that A = Fh for some h ∈ G. But U ∈ A and so h ∈U . It follows that
A ∈ {Fg : g ∈U }. Finally, we prove that it is continuous. A basic compact open subset
of GA(G) is of the form KU where U is a compact open bisection in G. The inverse
image of KU under the map is the set of all elements g ∈ G such that Fg ∈KU . But
Fg ∈KU if and only if U ∈ Fg if and only if g ∈U . Thus the inverse image of KU
under the map is U .

Part (2) is immediate by Lemma 2.21(4) and (9). 2

REMARK 2.24. The one aspect of our duality that is not as straightforward as we
would have hoped is our definition of a morphism θ : S→ T between boolean inverse
monoids. This includes the requirement that the inverse images of ultrafilters be
ultrafilters. We can see why some such condition is needed by considering the case
where S is a boolean algebra. Then the inverse image of any nonidempotent ultrafilter
in T has to be empty. If we waive (M3) and assume only (M1) and (M2) we can prove
that the inverse images of idempotent ultrafilters are idempotent using Lemma 2.13 as
follows. Let H ⊆ T be an idempotent ultrafilter. Then H ∩ E(T ) is an ultrafilter in the
boolean algebra E(T ). Thus θ−1(H ∩ E(T )) ∩ E(S) is an ultrafilter in the boolean
algebra E(S). It follows that (θ−1(H ∩ E(T )) ∩ E(S))↑ is an idempotent ultrafilter
in S. But (θ−1(H ∩ E(T )) ∩ E(S))↑ ⊆ θ−1(H) and θ−1(H) is a filter, so it follows
that (θ−1(H ∩ E(T )) ∩ E(S))↑ = θ−1(H), showing that θ−1(H) is an idempotent
ultrafilter.

We conclude this section with three examples.

EXAMPLE 2.25. Our first example shows that our theory is a proper extension of
Stone duality. Let X be a finite nonempty set. Then the symmetric inverse monoid,
I (X), on X is a boolean inverse monoid; the semilattice of idempotents of I (X)
is isomorphic to the boolean algebra of all subsets of X . Because I (X) is finite
and has finite intersections, each filter in I (X) is principal and the ultrafilters are in
bijective correspondence with the elements of I (X) whose domains, and therefore
whose ranges, contain exactly one element. The boolean groupoid associated with
I (X) is therefore the groupoid X × X with the discrete topology. I recall attending
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a lecture by Boris Schein in which he described the elements of X × X as being
infinitesimal elements. It was an attractive phrase but at the time I regarded it as
metaphorical rather than mathematical. I think the main theorem of this paper shows
that it was in fact mathematical.

EXAMPLE 2.26. Our second example shows that our theory is analogous to the
classical theory of sheaves of groups [10]. An inverse semigroup S is said to be Clifford
if its idempotents are central. This is equivalent to the condition that s−1s = ss−1

for all s ∈ S. Such inverse semigroups can be described as presheaves of groups
over their semilattices of idempotents; see [16, Section 5.2] for details. If S is a
boolean inverse monoid which is Clifford then the groupoid G(S) is a disjoint union
of groups: to see why, let A be an ultrafilter in S. We claim that A−1

· A = A · A−1.
Let x ∈ A−1

· A. Then a−1a ≤ x for some a ∈ A. By assumption a−1a = aa−1. Thus
aa−1

≤ x and so x ∈ A · A−1. We have proved that A−1
· A ⊆ A · A−1 and the reverse

inclusion follows by symmetry. It follows that in the groupoid G(S) the maps d and r
coincide and we will write them both as p. We therefore have a local homeomorphism
p :G(S)→G(S)o giving us a sheaf-space of groups. We recover S from this sheaf-
space by using only those sections, which are in this context the same as bisections,
over the clopen subspaces of G(S)o.

EXAMPLE 2.27. The groupoids studied in [8, 9] are boolean when restricted to the
case where the ultrametric spaces in question are compact. From [9, Lemma 3.5],
the groupoids have a basis of open bisections each of which is homeomorphic to an
open ball of the ultrametric space. By [9, Proposition 4.2(3)], every open ball is closed,
and closed subsets of compact spaces are compact, thus each of these open bisections
is also compact. It follows that the groupoid has a basis of compact open bisections.

3. Cuntz groupoids

We begin by describing an example that connects our main theorem with work
of ours on the way in which the Thompson groups Vn,1 may be constructed from
the polycyclic inverse monoids [17–19]. The polycyclic inverse monoids were first
introduced and studied by Nivat and Perrot [23]. They were rediscovered by Cuntz [3]
in the course of his work on what are now called Cuntz C∗-algebras; for this reason,
these inverse monoids are usually called Cuntz inverse semigroups in the C∗-algebra
literature [24, 25]. Whatever one chooses to call them they are a fascinating class of
inverse monoids arising both in formal language theory and the theory of wavelets [1].
We shall return to the polycyclic monoids later, but first we shall describe a class of
boolean groupoids.

We shall use the following standard notation below. If A is a finite set then A∗

denotes the free monoid on A, which consists of all finite strings over A. By Aω we
mean the set of all right-infinite strings over A.

We follow [24, 25]. For n ≥ 2 and finite, put An = {a1, . . . , an}. If x is a finite
string then |x | is its length. Then Gn is the subset of Aωn × Z× Aωn consisting of
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triples of the form (xw, |x | − |y|, yw)where x, y ∈ A∗n andw ∈ Aωn . This set becomes
a groupoid when the product is defined by (z, k, z′)(z′, k′, z′′)= (z, k + k′, z′′) and
inverses by (z, k, z′)−1

= (z′,−k, z). For x, y ∈ A∗n and V ⊆ Aωn open define

Ux,y,V = {(xw, |x | − |y|, yw) : w ∈ V },

clearly a bisection, and if V = Aωn denote Ux,y,Aωn by Ux,y . Let � be the topology
on Gn with basis the sets Ux,y,V . Then Gn is a boolean groupoid called the Cuntz
groupoid. Our goal is to describe the boolean inverse monoid A(Gn). Let Pn be
the polycyclic monoid on n generators; see [17] for a quick introduction. Define
ψ : Pn→ A(Gn) by ψ(xy−1)=Ux,y . This is an injective homomorphism. Each
element of A(Gn) is the finite orthogonal join of elements of ψ(Pn). We now make
one further observation. The idempotents a1a−1

1 , . . . , ana−1
n form an orthogonal set

in Pn . Their images will have an orthogonal join in A(G) which we now calculate:

n∨
i=1

ψ(ai a
−1
i )=

n∨
i=1

Uai ,ai = 1

the identity on the set of identities of Gn . In the terminology of [18], the inverse
monoid Cn = A(Gn) is the strong orthogonal completion of the polycyclic monoid Pn .
We therefore have the following proposition.

PROPOSITION 3.1. The boolean inverse monoid Cn associated to the Cuntz groupoid
Gn is the strong orthogonal completion of the polycyclic (or Cuntz) monoid Pn . The
group of units of Cn is the Thompson group Vn,1.

To conclude this section, we carry out a calculation which suggests an avenue of
further development. All upwardly closed cosets in Pn were completely described
in [19]motivated by calculations carried out by Kawamura [11, 12]. We therefore have
explicit descriptions of the ultrafilters in Pn . In the result below, it is the groupoid, not
the topological groupoid, that is constructed; the topology is the one described in [22].

PROPOSITION 3.2. The elements of the groupoid Gn can be identified with the
ultrafilters in Pn .

PROOF. An idempotent ultrafilter H in Pn is determined by an element z ∈ Aωn
because

H = {uu−1
: u is a finite prefix of z}↑.

Now let A be an arbitrary ultrafilter such that A−1
· A = H . Then we may write

A = (aH)↑ where d(a) ∈ H . Let a = xy−1 where yy−1
∈ H and so y is a prefix

of z. Thus we may write z = yw. We now calculate K = A · A−1. This is just

H = {vv−1
: v is a finite prefix of xw}↑.

Thus the ultrafilter A determines the ordered pair (xw, yw). However, by choosing a
different coset representative we obtain a different ordered pair. Suppose that x ′y′−1
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determines the same coset of H as xy−1. Then (x ′y′−1)−1xy−1
∈ H . This product

must be above an idempotent in H and so, since P∗n is E∗-unitary, it must itself be
a nonzero idempotent. It follows that x and x ′ are prefix-comparable. Assume that
x = x ′ p for some finite string p. It follows that (x ′y′−1)−1xy−1

= y′ py−1. Since this
has to be an idempotent we have that y′ p = y. In addition, y is a prefix of z. Thus

(xw, |x | − |y|, yw)= (x ′ pw, |x ′| − |y′|, y′ pw).

In other words, the coset A determines an element of the groupoid Gn .
Suppose now that

(z̄, k, z)= (xw, k, yw)= (x ′w′, k, y′w′),

an element of Gn . Let H be the idempotent ultrafilter of Pn determined by the infinite
string z. We prove that xy−1 and x ′y′−1 determine the same coset of H . We shall
suppose that k ≥ 0. Now z = yw = y′w′ and so y and y′ are prefix-comparable.
Suppose that y = y′ p for some finite string p. Then pw = w′. Now xw = x ′w′ and
so xw = x ′ pw. It is tempting to cancel the w. But such a temptation must be resisted
because w is an infinite string. It is here that we use the information provided by the
number k. We have that

|x | = |y| + k = |y′| + |p| + k = |x ′| + |p| = |x ′ p|.

But x and x ′ p are prefix-comparable and have the same length and so they must be
equal. We therefore have that x = x ′ p. We can now calculate (x ′y′−1)−1xy−1 which
is a prefix of z and so xy−1 and x ′y′−1 determine the same coset of H . 2

The significance of this example is that although Pn is not a boolean inverse monoid
it can still be used to construct a boolean groupoid. From that groupoid one can
construct a boolean inverse monoid, namely Cn , into which Pn embeds. The boolean
inverse monoid Cn is a completion of Pn as shown in [18]. However, Cn is somewhat
complex. To calculate the groupoid Gn it is easier to start with Pn and construct Gn
from the ultrafilters in Pn . Such ultrafilters are intimately connected with what we call
in [20] universal actions. We shall develop this idea further in a subsequent paper.
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