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Abstract. Relativistic stellar-dynamical systems and their possible occurrence in nature are discussed. 
Features of the equilibrium models that have been constructed for spherical star clusters in general relativity 
are delineated. The results of studies of the stability of relativistic spherical clusters are reviewed. It is 
noted that the results, while not conclusive, indicate that realistic spherical clusters are stable against 
gravitational collapse if their central redshifts zc<0.55 and unstable if zc>0.55. More work is needed on 
this and other problems. 

1. Introduction 

About a decade ago, exciting developments in astronomy, involving, for example, the 
cosmic blackbody radiation, quasars, radio sources, and galaxies exhibiting violent 
activity, helped to nurture a renewed interest in possible astrophysical applications 
of general relativity. This interest flowered into a sustained outburst of work on rel­
ativistic models for the universe and for individual systems such as stars, clusters of 
stars, and black holes. 

The fact that no individual relativistic systems had yet been discovered - or course, 
it had long been generally accepted that the overall structure of the universe requires 
a relativistic description - did not deter speculation about them. And one might say 
rightly so, if only because of the present experimental situation, which associates 
relativistic neutron stars with pulsars and black holes with the unseen components 
in certain binary-star systems. 

There is as yet still no direct evidence for the existence of relativistic stellar systems 
(relativistic clusters of stars). And, depending on one's prejudices, he may or may not 
hope that the relativist's luck has run out as far as the arrival of evidence for the 
existence of yet another class of relativistic objects is concerned. In any case, at least 
a few relativists have expended considerable effort trying to discern the properties 
of relativistic stellar systems, and we shall here review the current theoretical situ­
ation. 

2. General Features of Relativistic Stellar Systems 

Relativistic effects should be important for a star cluster if the gravitational redshift 
of a photon emitted from the center of the cluster and received at infinity is greater 
than, say, a hundredth or so. Generally, except for a rather special class of clusters 
discussed below, such a significant redshift requires the ratio (we use units in which 
G = c=\) 

2M M/(10llmQ) 
^ 0 . 0 1 — ^ - - ^ (1) 

R R/(l pc) v } 
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to exceed about a hundredth, where M and R are the total mass-energy and the mean 
size of the system. This clearly requires either a very large mass density or, if the 
volume is moderate or large, a very large mass. 

If one supposes that clusters are not born in a relativistic state, the question im­
mediately arises whether they have been around long enough to permit evolution 
to such a state. This is a nagging question. It seems clear, on the one hand, that 
evolution pictured as driven by 2-body encounters will not do the trick: the associ­
ated evolution time-scales are simply too long, at least for the types of stellar systems 
that are known to exist (see, for example, Fackerell et aU 1969). On the other hand, 
computer simulations of the evolution of stellar systems (see, for example, the con­
tributions to this volume by Henon and by Spitzer) often point to a scenario involving 
rapid evolution - compared with evolution expected on the basis of 2-body encounters 
- of a stellar system's central regions toward ever increasing ratio (1). It has been 
suggested that what one is seeing here is a phenomenon driven by many-particle 
interactions and analogous to a thermal runaway, or gravothermal catastrophe, of 
the type proposed by Antonov (1962) and Lynden-Bell and Wood (1968). 

We shall return to the question of thermal runaways later, but for the moment let 
us suppose that nature does in fact have some way of making relativistic clusters. 
Once a cluster becomes relativistic, it should evolve rapidly. If the stars are of normal 
size, direct collisions between stars can be expected to occur rather frequently and to 
dominate the evolution. (For example, a relativistic cluster with 1012 solar-type stars 
in 1 pc will produce ~ 108 collisions per year!) One is then faced with the possibility 
that the center of the cluster is turned into one supermassive object. If the cluster 
'stars' are neutron stars or black holes, then energy-loss via emission of gravitational 
radiation during close binary encounters dominates the evolution (Greenstein, 1969), 
and it is interesting to speculate about the possibility of observing such radiation. 

If a relativistic cluster is not to evolve catastrophically rapidly on a dynamical 
time-scale, the evolution time-scale must be large compared with the time a typical 
star takes to traverse the system. For a given value of the ratio (1), this requirement 
places a lower limit on the size, and hence on the mass, of the system (Fackerell et a/., 
1969). For example, if the ratio 2M/R~0A, the lower limit on R~0.01 pc for a cluster 
of solar-type stars. For IM/R^OA and R~ 1 pc, M ~ 1012 mQ and the collision time-
scale ~ 104 yr. If the evolution time-scale is sufficiently greater than the star crossing-
time, then the cluster should evolve quasistatically; and at any moment it should be 
able to be approximated by a collisionless near-equilibrium state. 

3. Fundamental Equations of Relativistic 
Stellar Dynamics 

To date, almost all formal studies of relativistic stellar systems have adopted descrip­
tions in terms of a one-particle distribution function, Jf. An observer at a spacetime 
event (x, t) determines Jf there by measuring, in his local Lorentz frame, the number 
dN of stars occupying a volume d3x in physical space, occupying a volume d3p in 
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3-momentum space and having rest masses in the range dm: 

JT = dN/dmd3pd3x. (2) 

If the geometry of spacetime is described by the line element (latin indices run over 
0, 1, 2, 3) 

ds2 = gabdxadxb (3) 

in a particular curvilinear coordinate system (x°, x1, x2, x3), it can be shown that 
Equation (2) is equivalent to 

jr = dN/drpdrx, (4) 
with 

drp= -dp0 dpx dp2 dp3/^g, di^x = (p0/m) J^g dx1 dx2 dx3. 

(5) 

Here pa and pa are the covariant and contra variant components of a star's 4-momen-
tum, g is the determinant of the metric tensor, and m is a star's rest mass. The dis­
tribution function Jf is an invariant in that all observers at a given event agree on 
its value for a given group of stars. The distribution function determines a smoothed-
out stress-energy tensor 

- J (jr/m) p°pP drp. (6) 

The stress-energy tensor in turn determines the geometry via Einstein's field equa­
tions, 

Gab = SnTa\ (7) 

where Gab is the Einstein field tensor. If, for one reason or another, a cluster can be 
approximated as collisionless, the circle begun by Equations (6) and (7) is completed 
by demanding that the geometry determines the distribution function via the Boltz-
mann-Liouville, or collisionless Boltzmann, equation 

dx°djr dpa8JT 
ds dxa ds dpa 

p*dJf 1 dgbc dJf 
m oxa 2m dx" dpa 

The operator 2 is the derivative with respect to proper time along the path of a star 
through phase space. 

4. Relativistic Equilibrium Configurations 

Generalizations of familiar Newtonian methods enable one to break the circle formed 
by Equation (6)-(8) and to construct collisionless equilibrium configurations, for 
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which there is no explicit dependence on time t = x° (see, for example, Fackerell, 
1968; and Zel'dovich and Novikov, 1971). To date, only spherically symmetric con­
figurations have been constructed - almost always numerically. 

Under the assumption of spherical symmetry, the line element (3) takes the form 

ds2 = - ey ( r 'r) dt2 + ek (r' ° dr2 + r2 (d62 + sin2 9 dcp2) (9) 

in Scbwarzschild coordinates (t, r, 0, q>). At equilibrium, when the metric functions v 
and X are time independent, the Boltzmann-Liouville Equation (8) implies that Jf 
is generally (there are contrived exceptions - see Zel'dovich and Novikov, 1971) a 
function of the isolating integrals 

m,E = p0, and J = | > 2 + (p,/sin0)2]1/2 (10) 

along stellar orbits. The integral E is the energy of a star as measured at infinity, 
and J is the magnitude of its angular momentum. If Jf does not depend on J, the 
cluster has an isotropic velocity distribution and an effective isotropic pressure 

P=Tr
r=Te

d=T*. (11) 

Zel'dovich and Podurets (1965) constructed numerical equilibrium models by 
taking Jf to be that appropriate to a truncated isothermal cluster of identical stars, 

jr = Ae~ElkT S(m-m0) H{Ecm-E). (12) 

Here A is a normalization constant, k is Boltzmann's constant, T is the constant 
temperature as measured from infinity (the temperature as measured locally in the 
cluster is not constant but increases toward the center) and m0 is the rest mass of a 
star; H(x) is the step function 

H(x)=l x^O 
= 0 x < 0 , (13) 

so that the constant £CUT is the maximum energy of a star in the cluster. Fackerell 
(1968, 1970, 1971) and Ipser (1969) have also constructed isothermal models as well 
as a variety of other isotropic models that obey polytropic relations of the form 

- T j = aP" / ("+1) + P / ( r - l ) , (14) 

where a, n, and r are constants and P is the isotropic pressure (4.3). 
Certain features appear to be common to all these types of models. For example, 

as the central redshift zc - a convenient measure of the importance of general rel­
ativity that can take any value in the range (0, oo) - increases from zero, the ratio (1) 
at first increases to a maximum value typically ~0.3 and thereafter oscillates about 
its maximum. More importantly (and we shall shortly see why), the fractional binding 
energy, 

<fB^(M0-M)/M0 , (15) 

M0 = rest mass-energy of cluster, M = total mass-energy of cluster, also at first in-
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creases to a maximum value and thereafter oscillates about its maximum. Remark­
ably, the maximum value of $B and the corresponding zc show little variation from 
one type of model to another: for all isothermal and poly tropic models that have 
been studied, SB has a maximum value ~ 0.0355 ±0.005 at a central redshift zc~0.53 
±0.03. 

5. The Stability of Relativistic Stellar Systems 

Hoyle and Fowler (1967) proposed a quasar model in which the quasar lies at the 
center of a massive relativistic star cluster and derives its redshift from the gravitational 
field of the cluster. The viability of such a model clearly depends crucially on whether 
equilibrium clusters become unstable against gravitational collapse before their 
redshifts reach values as large as zc~ 3. The type of instability referred to here involves 
a gross overall instability of the gravitational field of a cluster. Having evolved to a 
point at which such an instability sets in, a cluster would subsequently collapse on a 
time scale of the order of the star transit-time across the cluster. One is consequently 
dealing here with a dynamical instability. 

Methods for studying the dynamical stability of relativistic spherical clusters to 
small spherical perturbations were developed by Ipser and Thorne (1968). They used 
the fact that collisions between stars can be neglected in a study of dynamical stability 
if the evolution time-scale is assumed to be large compared with the dynamical time-
scale. Briefly, their analysis begins with the expression 

ds2= -exp[vA(r) + vB(r, tj] df2 + exp[/^(r) + ;iB(r, *)] dr2 + 
+ r2{d62 + sm26)d(p2 (16) 

for the line element of a slightly perturbed spherical cluster, where the subscripts A 
and B refer to equilibrium quantities and small perturbations of those quantities, 
respectively. The distribution function is split in a particular way into an equilibrium 
part, jVA = F{m, EA = eVAp0, J), and a perturbed part, *Ar

B=f(xa, pa\ so that 

jV = jrA + tArB = F(m9 EA9 J)+/(*«, f). (17) 

Equations (6)-(8) are then linearized in v ,̂ XB, and /. The perturbation / is split into 
its even and odd parts, 

f± = i [ / ( x \ P ° , P*)±f(xa, p°, - />')] , (18) 

as a function of spatial momenta p" (a = 1,2,3), and a dynamical equation of the form 

(l/-FE)d2fJdt2 = £Tf_ (19) 

is derived. In this equation 

FE = [dF(m,EA,J)/dEA-]m,j, (20) 

and 3~ is an integro-differential operator in phase space. It is self-conjugate for well-
behaved odd functions /i, g which vanish outside the phase space of the equilibrium 
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cluster; that is 

h#-gd'Tpd'r'x = I g^hdrpdrx. (21) 

Attention is restricted to clusters satisfying the physically reasonable condition 

FE<0, (22) 

which implies that there are fewer stars at high energies than at low energies. It then 
follows from Equations (19) and (21) that a cluster is dynamically stable to spherical 
perturbations if and only if &~ is positive-definite, 

J g^g drpd^x>0, (23) 

for all well-behaved odd perturbation functions g. 
One can attempt determine a cluster's stability by inserting various trial functions 

in the integral in Equation (23). Ipser (1969) followed this path for trial functions of the 
simple form 

g = FEp'C(r). (24) 

His study of a wide variety of isothermal and polytropic clusters reveals a pattern that 
changes strikingly little from one cluster type to another: at small redshift F is 
positive-definite over the subspace of functions (24); but ZT ceases to be positive-
definite at a redshift very near that at which the fractional binding energy peaks. 
Consequently, the clusters studied are unstable if zc>0.55. 

This behavior, which tends to be supported by Fackerell's (1970) stability calcula­
tions, tempts one to adopt the general picture that a spherical cluster born at low zc 

will evolve in the direction of increasing zc and binding energy along a sequence of 
initially stable states, and will become unstable near zc = 0.55. There is an impediment 
to adopting this picture, however. It arises from work by Bisnovatyi-Kogan and 
Zel'dovich (1969), who studied the so-called y-law cluster models. Such a model 
consists of a nearly constant-density core surrounded by an extended mantle in 
which the density of total mass-energy, —T%{r\ and the mass energy inside radius 
r, M(r\ have the behavior 

-T$(r) ,—„ M{r) ? ^ — , . (25) 
0 W l + 6y + y22nr2 w l+6y + y2 v ' 

The constant y is the ratio of the isotropic pressure to the density in the core and 
mantle. The join between the core and mantle occurs at a radius 

rCOrMyl2nQc)ll\ Qc = -T°(r = 0). (26) 

Surrounding the mantle is an envelope in which the sensity drops to zero. The red-
shift a photon experiences in traveling from the center to the outer edge, Rm, of the 
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mantle is 

Z c M * > c o r e ) 2 y - l - ( 2 7 ) 

Bisnovatyi-Kogan and Zel'dovich (1969) pointed out that, in principle, Equations 
(25)-(27) for sufficiently small y allow the construction of models with arbitrarily large 
redshifts and arbitrarily small ratios 2M(r)/r everywhere. Hence, they argued, by 
choosing y very small, one could construct large-redshift models that must be stable, 
since the models have very small ratios P/(—TQ) and 2M(r)/r and hence are locally 
nearby Newtonian everywhere. 

Bisnovatyi-Kogan and Thorne (1970) showed that the operator 9~ is in fact positive-
definite for all trial functions of the form (24) if and only if y< 0.117. Add to this the 
fact that the fractional binding energy of the pure-mantle models (infinite Qa zc, and 
Rm) peaks as a function of y at y~ 0.025. Then, remembering the way isothermal and 
polytropic clusters behave, one is strongly drawn to the conjecture that y-law models 
are stable if y<> 0.025. 

What will be the properties of stable y-law models? Note that for each value of y 
and QC, a minimum size R, and hence total mass Af, of the system is needed to produce 
a desired redshift. For example, for y = 0.025, 

R>(1 +zc)20/(15ec
1/2), M>0.05 R. (28) 

Hence if z c =l , then J R > 3 X 105 pc for a massive object with £ c ~10 1 2 m© pc"3; and 
R^3x 104 pc for a less massive object with the large density gc~1014m© pc"3 

(corresponding to, say, 108 stars in ~0.01 pc). Though these radii may not be un­
manageable, the corresponding total masses, M > 3 x l 0 1 7 m o and 3 x l 0 1 6 m o , 
might be. And matters only get worse as zc is increased At very small y one runs into 
problems with the very large radii (> Hubble radius) needed to produce large red-
shifts. Conversely, if models can be stable for y near 0.1, then the possibility of large 
redshifts becomes more attractive. 

Obviously, more work is needed to conclusively demonstrate whether reasonable 
spherical clusters can be stable at central redshifts significantly larger than zc = 0.55. 

Up until now we have not raised the question of dynamical stability to nonspherical 
perturbations. Nonspherical perturbations, in contrast with spherical perturbations, 
take on an added significance in general relativity in that the associated motion of the 
cluster's overall gravitational field generates gravitational radiation. If a cluster 
reached a point of onset of instability to nonspherical perturbations, its subsequent 
unstable motion might produce copious amounts of gravitational waves. Unfor­
tunately, the gravity-wave experimentalist is out of luck here, at least regarding clusters 
with FE^0. One can show (Ipser, 1975) that, just as in Newtonian theory, so also in 
general relativity, a spherical isotropic cluster with FE^0 is dynamically stable to 
nonspherical perturbations. 

On occasion, there appear analyses expressing interest in some sort of secular, as 
opposed to dynamical, stability of stellar systems. One type of such analyses seeks to 
determine whether there exist equilibrium states for which the system's entropy, 
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defined in one way or another, is a maximum subject to certain constraints, usually 
those of fixed mass-energy and stars. For example, Antonov (1962) and Lynden-Bell 
and Wood (1968) studied the Boltzmann entropy of Newtonian systems for which 
there are no limits on the velocities of the constituent particles, but which are held in by 
boxes of finite size in physical space. They found that a Newtonian spherical equili­
brium configuration is a local entropy-maximum, when compared with all neigh­
boring configurations having the same energy, mass, and confining radius, if and only 
if it is isothermal and the confining radius is less than the critical value —0.335 M\jS, 
where M0 and $ are the mass and energy of the configuration. They argued that 
confined systems with radii greater than the critical value have no states of locally 
maximum entropy to which they can evolve, and should experience a thermal run­
away, or gravothermal catastrophe. Presumably, a thermal runaway is driven by 
encounters - perhaps collective in nature - and involves evolution to states of ever 
increasing entropy and density contrast, on a time scale that is fairly rapid and is 
determined by the driving mechanism but is nevertheless long compared with the 
dynamical time-scale (hence the term secular). 

Even if some sort of thermal runaway is actually important for confined systems, it 
is not immediately clear what the situation is for realistic star clusters, which are not 
held in by boxes. In fact, recent calculations (Ipser, 1974, 1975) in Newtonian theory 
and in general relativity suggest that perhaps secular-stability criteria involving 
entropy maxima are not very useful for realistic self-bound stellar systems. The 
calculations derive a criterion for the Boltzmann entropy, 

S= -k \jf \njr &rp &rx, (29) 

of a self-bound spherical equilibrium cluster to be a maximum, when compared with 
the entropy of all neighboring configurations having the same energy and stars. 
According to the criterion, 5 is a maximum if and only if the cluster has a truncated 
isothermal distribution function and the corresponding isentropic gas sphere - which 
has the same radial distribution of density and pressure as the cluster - is dynamically 
stable to spherical perturbations. One finds, however, that this criterion cannot be 
satisfied for a cluster unless its distribution function is so heavily truncated that the 
cluster is unrealistic. Hence one is led to conclude that no realistic clusters are Boltz-
mann-entropy maxima; and, further, that at present it is not clear how the occurrence 
of any sort of thermal runaway can be predicted or pinpointed by appealing to entropy 
arguments. 

6. Conclusion 

In this paper we have reviewed aspects of the current theoretical situation pertaining 
to relativistic stellar systems. Several important problems remain at an unsatisfactory 
stage of solution, and others have not even been tackled yet. It seems clear that rela­
tivistic stellar dynamics offers fertile ground for future study. 
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DISCUSSION 
Contopoulos: What is the role of gravitational radiation in your systems? 

(1) How large is the gravitational radiation due to the graininess of the system? 
(2) What is the role of non-spherical perturbations of spherical clusters? 
Ipser: For spherical perturbations of spherical systems there is no gravitational radiation. Nonspherical 

perturbations do involve gravitational radiation. I have recently been able to show that, just as in New­
tonian theory, so also in general relativity, spherical systems are stable to nonradial perturbations if the 
distribution function is a decreasing function of the energy of a star. Also, the incoherent gravitational 
radiation emitted due to the graininess of the cluster is not important compared with other processes. 

Bardeen: There is one example of a rotating relativistic 'stellar-dynamical' system - the relativistic 
version of the cold MacLaurin disk. The structure of such disks was calculated numerically for models with 
all central redshifts from zero to infinity by Bardeen and Wagoner a few years ago. The binding energy 
increases monotonically with redshift, so one suspects the disks are stable against overall collapse even when 
infinitely relativistic. However, they are certainly violently unstable to fragmentation. They do exhibit 
such interesting phenomena as the ergotoroids mentioned by Ipser. 

Ipser: I agree that your rapidly rotating disks are probably stable to overall collapse. 
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