NONTRIVIAL RATIONAL POLYNOMIALS IN TWO VARIABLES HAVE REDUCIBLE FIBRES

Walter D. Neumann and Paul Norbury

We show that every $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ which is a rational polynomial map with irreducible fibres is a coordinate.

We shall call a polynomial map $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ a "coordinate" if there is a g such that $(f, g): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ is a polynomial automorphism. Equivalently, by Abhyankar-Moh and Suzuki $[\mathbf{1}, \mathbf{1 2}], f$ has one, and therefore all, fibres isomorphic to \mathbb{C}. Following [7] we call a polynomial $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ "rational" if the general fibres of f (and hence all fibres of f) are rational curves. The following theorem, which says that a rational polynomial map with irreducible fibres cannot be part of a counterexample to the 2-dimensional Jacobian Conjecture, has appeared in the literature several times. It appears with an algebraic proof in Razar [10]. It appears in [4, Theorem 2.5] (as corrected in the Corrigendum), and Lee and Weber, who give a geometric proof in [6], also cite the reference Friedland [3], which we have not seen.

THEOREM 1. If $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is a rational polynomial map with irreducible fibres and is not a coordinate then f has no jacobian partner (that is, there is no polynomial g such that the jacobian of (f, g) is a nonzero constant).

In this note we prove the above theorem is empty:
ThEOREM 2. There is no f satisfying the assumptions of the above theorem. That is, a rational f with irreducible fibres is a coordinate.

Proof: This theorem is implicit in [7]. Suppose f is rational. As in [7, 6, 9], et cetera, we consider a nonsingular compactification $Y=\mathbb{C}^{2} \cup E$ of \mathbb{C}^{2} such that f extends to a holomorphic map $\bar{f}: Y \rightarrow \mathbb{P}^{\mathbf{l}}$. Then E is a union of smooth rational curves E_{1}, \ldots, E_{n} with normal crossings. An E_{i} is called horizontal if $\bar{f} \mid E_{i}$ is nonconstant. Let δ be the number of horizontal curves. Then we have

$$
\delta-1=\sum_{a \in \mathbb{C}}\left(r_{a}-1\right)
$$

Received 25th May, 1998

This research is supported by the Australian Research Council.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.
where r_{a} is the number of irreducible components of $f^{-1}(a)$. This is Miyanishi and Sugie [7, Lemma 1.6] who attribute it to Saito [11], and Lê and Weber [6, Lemma 4] who attribute it to Kaliman [5, Corollary 2]. The proof is simple arithmetic from the topological observation that on the one hand the Euler characteristic of Y is $n+2$ and on the other hand it is $4+\sum_{a \in \mathbb{P}^{1}}\left(\bar{r}_{a}-1\right)$, where \bar{r}_{a} is the number of components of $\bar{f}^{-1}(a), a \in \mathbb{P}^{1}$.

By this formula, if f has irreducible fibres then there is just one horizontal curve. [7, Lemma 1.7] now says that f is a coordinate. This also follows from the following proposition, which implies that the generic fibres of f have just one point at infinity and are thus isomorphic to \mathbb{C}.

Proposition 3. Let $f: \mathbb{C}^{2} \rightarrow \mathbb{C}$ be any polynomial map and $\bar{f}: Y \rightarrow \mathbb{P}^{1}$ an extension as above. Denote by d the greatest common divisor of the degrees of \bar{f} on the horizontal curves of Y and D the sum of these degrees. Then the general fibre of f has d components (so $f=h \circ f_{1}$ for some polynomials $f_{1}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and $h: \mathbb{C} \rightarrow \mathbb{C}$ with degree $(h)=d$), each of which is a compact curve with D / d punctures.

Proof: Let $E_{1}, \ldots, E_{\delta}$ be the horizontal curves and $d_{1}, \ldots, d_{\delta}$ be the degrees of \bar{f} on these. Note that the points at infinity of a general fibre $f^{-1}(a)$ are the points where $\bar{f}^{1}(a)$ meet the horizontal curves E_{i}, so there are d_{i} such points on E_{i} for $i=1, \ldots, \delta$. The relationship between plumbing diagram and splice diagram (see [9, 2]) says that the splice diagram Γ for a regular link at infinity for f (see [8]) has δ nodes with arrows at them, and the number of arrows at these nodes are $d_{1}, \ldots, d_{\delta}$ respectively. Let Γ_{0} be the same splice diagram but with $d_{1} / d, \ldots, d_{\delta} / d$ arrows at these nodes. Then a minimal Seifert surface S for the link represented by Γ will consist of d parallel copies of a minimal Seifert surface for the link represented by Γ_{0}, so this S has d components. But the general fibre of f is such a minimal Seifert surface [8, Theorem 1], completing the proof. (It also follows that Γ_{0} is the regular splice diagram for the polynomial f_{1} of the proposition.)

References

[1] S. Abhyankar and T.T. Moh, 'Embeddings of the line in the plane', J. Reine Angew. Math. 276 (1975), 148-166.
[2] D. Eisenbud and W.D. Neumann, Three dimensional link theory and invariants of plane curve singularities, Ann. of Math. Stud. 101 (Princeton University Press, Princeton, NJ, 1985).
[3] S. Friedland, 'On the plane jacobian conjecture', (Preprint IHES, May 1994) (per [6]).
[4] R. Heitmann, 'On the Jacobian conjecture', J. Pure Appl. Algebra 64 (1990), 36-72 and Corrigendum ibid. 90 (1993), 199-200.
[5] S. Kaliman, 'Two remarks on polynomials in two variables', Pacific J. Math. 154 (1992), 285-295.
[6] Lê Dung Tráng and C. Weber, 'Polynômes á fibres rationnelles et conjecture de jacobienne á 2 variables', C.R. Acad. Sci. Paris 320 (1995), 581-584.
[7] M. Miyanishi and T. Sugie, 'Generically rational polynomials', Osaka J. Math. 17 (1980), 339-362.
[8] W.D. Neumann, 'Complex algebraic plane curves via their links at infinity', Invent. Math. 98 (1989), 445-489.
[9] W.D. Neumann, 'Irregular links at infinity of complex affine plane curves', Quart. J. Math. (to appear).
[10] M. Razar, 'Polynomial maps with constant Jacobian', Israel J. Math. 32 (1979), 97-106.
[11] H. Saito, 'Fonctions entières qui se reduisent à certains polynòmes. II', Osaka J. Math. 9 (1977), 649-674.
[12] M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l'espace \mathbb{C}^{2}, J. Math. Soc. Japan 26 (1974), 241-257.

Department of Mathematics
The University of Melbourne
Parkville, Vic 3052
Australia
e-mail: neumann@maths.mu.oz.au

Department of Mathematics
The University of Melbourne Parkville, Vic 3052
Australia
e-mail: norbs@maths.mu.oz.au

