ON D. E. LITTLEWOOD'S ALGEBRA OF S-FUNCTIONS

D. G. DUNCAN

1. Introduction. Several papers have been written on the "new" multiplication of S-functions since Littlewood [3, p. 206] first suggested the problem. M. Zia-ud-Din [13] calculated the case $\{m\} \otimes \{n\}$ for $mn \leq 12$, making use of the tables of the characters of the symmetric group of degree mn. Later Thrall [10, pp. 378-382] developed explicit formulae for the cases $\{m\} \otimes \{2\}, \{m\} \otimes \{3\},$ $\{2\} \otimes \{m\}$ (where m is any integer). Recently Todd [12] has obtained a formula for the factors $\{\mu\} \otimes S_n = t_{n(\mu)}$ as sums of irreducible characters $\{\sigma\}$. This reduces the problem of calculating $\{\mu\} \otimes \{\lambda\}$ to the ordinary multiplication of S-functions [3, p. 94]. General solutions to the problem have also been obtained by Thrall [10; p. 375] and by Robinson [7; 8]. For these general results, however, the actual calculations are quite laborious in most cases.

In this paper a method of computing the general case $\{m\} \otimes \{4\}$ is developed and a formula is obtained (independently of Todd's method) for expressing the factors $t_{n(m)}$ as sums of S-functions $\{\sigma\}$. This formula provides a very brief method of calculating $t_{n(m)}$ and is easily adapted to recursive computation. The method of calculating $\{m\} \otimes \{4\}$ is also extended to cover all the remaining partitions of four. This method has been applied to calculate the products $\{7\} \otimes \{4\}, \{7\} \otimes \{2,1^2\}$ in full.

2. Preliminary definitions and lemmas. Using Thrall's notation [10, p. 374], $t_{n(m)} = \{m\} \otimes S_n$,

(1)
$$\{m\} \otimes \{\mu\} = \sum_{\beta} \frac{\chi^{(\beta)}(\mu)}{\beta_1! \dots \beta_r!} \left(\frac{t_{1(m)}}{1}\right)^{\beta_1} \dots \left(\frac{t_{r(m)}}{r}\right)^{\beta_r}.$$

Hence, if the $t_{n(m)}$ are known as sums of S-functions the product $\{m\} \otimes \{\mu\}$ may be computed by the ordinary multiplication of S-functions.

In proving the direct and recursion formulae for $t_{n(m)}$ we will make use of the following three lemmas.

Definitions of Young diagram, *n*-hook, removal of an *n*-hook, star diagram and δ -number are given in [9].

LEMMA 1. Let $(\sigma) = (\sigma_1, \ldots, \sigma_n)$ be a partition of mn into n or less parts, and suppose that the numbers $r_1 = \sigma_1 + n - 1$, $r_2 = \sigma_2 + n - 2$, \ldots , $r_n = \sigma_n$ are all incongruent (mod n). Then the necessary and sufficient condition on s and k that a hook of length ns with top right node lying in the kth row may be removed from $[\sigma]$ is that $r_k = \sigma_k + (n - k) \ge ns$.

Received July 1, 1951; in revised form November 15, 1951. This paper contains the main results of a thesis written under the direction of Professor R. M. Thrall and submitted for the Ph. D. degree at the University of Michigan, August, 1950.

Proof.¹ Since r_1, \ldots, r_n are incongruent (mod n), the classes of congruent δ -numbers are exactly r_1, \ldots, r_n and the corresponding diagrams are simply vertical lines of r_1, \ldots, r_n nodes respectively. Hence for an *ns*-hook to be removable (with foot in the *k*th column), it is necessary and sufficient that $r_k \ge ns$ [9, p. 85, Theorem C].

LEMMA 2. Let (σ) be a partition of mn into n or less parts; then $[\sigma]$ has no n-core² if and only if the numbers r_1, \ldots, r_n are incongruent (mod n).

Proof. This lemma follows at once from the criterion (7.12) given in [11, p. 722].

LEMMA 3. Let (σ) be a partition of mn defined as in Lemma 1. Then a hook of length kn may be added to $[\sigma]$ commencing with the lower left node at the end of any of the n rows of $[\sigma]$ (including cases where $\sigma_i = 0$) and a diagram $[\sigma']$ associated with a partition of n(m + k) into n or less parts will result.

Proof. Let the top right node of the annexed hook lie in the (p + 1) th row of $[\sigma']$. Then if $[\sigma']$ is not a right diagram we have

$$(\sigma_p - \sigma_{p+1} + 1) + \ldots + (\sigma_{p+s-1} - \sigma_{p+s} + 1) = nk$$

for some value of s. That is, $\sigma_p \equiv \sigma_{p+s} - s \pmod{n}$, which contradicts the assumption that the r_i are incongruent.

3. Formulae for $t_{n(m)}$. The following theorems give direct and recursion formulae for $t_{n(m)}$.

THEOREM 1. $t_{n(m)} = \sum \phi_{\sigma} \{\sigma\}$ where (σ) ranges over all partitions of nm; ϕ_{σ} is zero if (σ) has more than n parts or if the Young diagram $[\sigma]$ associated with (σ) has a (non-zero) n-core. Otherwise $\phi_{\sigma} = \theta_{\sigma}$ where θ_{σ} is plus or minus one according as the sum of the leg-lengths of the removed n-hooks is even or odd.

*Proof.*³ Let $T_{n(m)} = \sum \phi_{\sigma} \{\sigma\}$ where $\sum \phi_{\sigma} \{\sigma\}$ satisfies all the conditions stated in the theorem. We take as an induction hypothesis that $T_{n(h)} = t_{n(h)}$ for all h < m. Now we have [10, p. 374]

 $t_{n(1)} = S_n = \{n\} - \{n - 1, 1\} + \{n - 2, 1^2\} + \ldots + (-1)^{n-1} \{1^n\} = T_{n(1)}.$

Hence the theorem is true for m = 1. Now in general,

$$t_{n(m)} = \sum_{\beta} \frac{1}{\beta_1! \ldots \beta_m!} \left(\frac{S_n}{1} \right)^{\beta_1} \ldots \left(\frac{S_{nm}}{m} \right)^{\beta_m}.$$

We will show (i) $T_{n(m)}$, $t_{n(m)}$ have the same derivatives with respect to S_{nk} (k = 1, ..., m) and (ii) $T_{n(m)}$ is a function of S_{nk} (k = 1, ..., m) only.

¹I am indebted to Professor R. A. Staal for this proof which is shorter than my original one.

²When all possible *n*-hooks have been removed from a diagram the resulting diagram is called its *n*-core. The *n*-core and θ_{σ} are independent of the order of removal of the hooks [5], [6].

³For a method of evaluating the θ_{σ} which does not lead to the recursion formula see [1].

Now [4, p. 107]

(2)
$$k\frac{\partial t_{n(m)}}{\partial S_{nk}} = t_{n(m-k)} = \sum_{\mu} \phi_{\mu} \{\mu\},$$

where (μ) ranges over all partitions of n(m - k) and the ϕ_{μ} are, by the induction hypothesis, as described in the theorem. Also [4, p. 133]

(3)
$$(nk)\frac{\partial T_{n(m)}}{\partial S_{nk}} = \sum_{\sigma} \phi_{\sigma} \sum_{j=1}^{n} \{\sigma_{1}, \ldots, \sigma_{j} - nk, \ldots, \sigma_{n}\},$$

or in the language of hooks:

(4)
$$(nk)\frac{\partial T_{n(m)}}{\partial S_{nk}} = \sum_{\sigma} \phi_{\sigma} \sum_{i} (-1)^{h_{i}} \{\sigma^{i}\},$$

where $[\sigma^i]$ is obtained from $[\sigma]$ by removing an *nk*-hook of leg-length h_i commencing in the *i*th row and the summation is over all values of *i* (rows) from which such a hook may be removed. Now multiplying (2) by *n* we have:

(5)
$$(nk)\frac{\partial t_{n(m)}}{\partial S_{nk}} = n \sum_{\mu} \phi_{\mu} \{\mu\}.$$

Hence we must show the right sides of (4), (5) to be equal. For fixed (μ) we label the *n* values of $\phi_{\mu}\{\mu\}$ occurring on the right side of (5) by $\phi_{\mu}\{\mu\}_1, \ldots, \phi_{\mu}\{\mu\}_n$. Consider $\phi_{\mu}\{\mu\}_r$ (for $\phi_{\mu} \neq 0$), by Lemma 3 an *nk*-hook may be added to [μ] starting (bottom left node) at the *r*th row and a new diagram will result. Let this annexed hook terminate in the *j*th row, then denoting the augmented diagram by [σ] we must show $\phi_{\mu}\{\mu\}_r = \phi_{\sigma}(-1)^{h_i}\{\sigma_j\}$ where $h_j = r - j$, that is, we must show $\phi_{\mu} = \theta_{\sigma}(-1)^{h_i}$. Now by Lemma 1 the *nk*-hook which is deleted from [σ] to yield [μ] may be partitioned into *k n*-hooks which may be removed in order, starting at the top right node of the *nk*-hook. Again by Lemma 1, each deletion leaves a new diagram; hence the bottom left node of a given *n*-hook must lie in the same row as the top right node of its successor. Let the *i*th removed *n*-hook terminate in the q_i th row and commence in the q_{i-1} th row; then $q_0 = j$ and $q_k = r$. Now the sum of the leg-lengths of these removed hooks is

$$(q_1 - q_0) + \ldots + (q_k - q_{k-1}) = q_k - q_0 = r - j,$$

which is the leg-length (h_j) of the *nk*-hook. But by the induction assumption

$$\phi_{\mu} = \theta_{\sigma}(-1)^{(q_1-q_{\sigma})+\ldots+(q_k-q_{k-1})} = \theta_{\sigma}(-1)^{h_j},$$

as required. Similarly there corresponds to each

$$\theta_{\sigma} (-1)^{h_i} \{\sigma^i\}$$

a unique $\phi_{\mu}{\mu}_{r}$. To demonstrate (ii) we write [3, p. 86; 10, p. 374]

(6)
$$T_{n(m)} = \sum_{\sigma} \phi_{\sigma} \{\sigma\} = \sum_{\sigma} \phi_{\sigma} \sum_{\rho} \frac{h_{\rho}}{(mn)!} \cdot \chi_{\rho}^{\sigma} S_{\rho}$$

where

$$S_{\rho} = (s_1)^{\rho_1} \dots (s_{nm})^{\rho_{mn}}.$$

https://doi.org/10.4153/CJM-1952-045-3 Published online by Cambridge University Press

Now the coefficient of S_{ρ} on the right of (6) is

$$\frac{h_{\rho}}{(mn)!}\sum_{\sigma} \phi_{\sigma}\chi_{\rho}^{\sigma}.$$

Now ϕ_{σ} has been shown [11] to be expressable as

$$\phi_{\sigma} = \sum_{a} c_{a} \chi_{a}^{\sigma}$$

where a ranges over partitions of mn of the form $(\beta)_n$ where (β) is a partition of m and $(\beta)_n$ is the partition of mn obtained from (β) on multiplying each element of (β) by n, that is, $(\beta)_n = (\beta_1 n, \ldots, \beta_m n)$. Hence from the orthogonality relations for the characters of the symmetric group the coefficient of

$$S_{\rho} = \frac{h_{\rho}}{(mn)!} \sum_{\sigma} \sum_{a} c_{a} \chi_{a}^{\sigma} \chi_{\rho}^{\sigma}$$

is zero if (ρ) is not of the form $(\beta)_n$ also. Hence $T_{n(m)}$ is a function of the S_{nk} (k = 1, ..., m) only.

THEOREM 2. Let $t_{n(m)} = \sum \phi_{\sigma} \{\sigma\}$, then $t_{n(m+1)}$ is obtained recursively as follows. To each $[\sigma]$ associated with a partition (σ) for which ϕ_{σ} is not zero we add an *n*-hook in all possible ways whose top right node lies in the first row of the augmented diagram $[\sigma']$. Then $t_{n(m+1)} = \sum \phi_{\sigma'} \{\sigma'\}$ where $\phi_{\sigma'} = \phi_{\sigma'} (-1)^k$ where k is the leg-length of the annexed hook.

Proof. The proof follows at once from Lemmas 1, 2, 3 and Theorem 1.

In recent papers [7, 8, 12], Robinson and Todd have given independent methods for evaluating $\{\mu\} \otimes \{\lambda\}$ by step by step building processes. Robinson gives a systematic procedure (in place of Littlewood's more or less empirical methods) by means of which the irreducible components of $\{\mu\} \otimes \{\lambda\}$ can be determined. In this general method the recursion is from n to n + 1. Todd gives a general method and also treats the restricted case $\{m\} \otimes S_n = t_{n(m)}$ studied here. He gives recursion formulae by means of which $t_{n(m)}$ may be determined if $t_{n-1(m)}$ and $t_{n(m-1)}$ are both known. In the above methods the quantity θ_{σ} is made use of throughout.

4. The product $\{m\} \otimes \{4\}$. We now develop a method for computing the general case $\{m\} \otimes \{4\}$. From the calculations for $\{m\} \otimes \{4\}$ (for a specific value of m) $\{m\} \otimes \{2, 1^2\}$ is obtained by inspection. A modification of this method is also given for computing $\{m\} \otimes \{3,1\}$ and $\{m\} \otimes \{1^4\}$. The remaining case, $\{m\} \otimes \{2^2\}$, follows immediately from the calculations for $\{m\} \otimes \{4\}$ and $\{m\} \otimes \{1^4\}$; hence the method applies to every partition of four.

Writing t_i for $t_{i(m)}$ we have, from (1) of §2;

$$\{m\} \otimes \{4\} = \frac{1}{24}(t_1^4 + 6t_1^2t_2 + 3t_2^2 + 8t_3t_1 + 6t_4).$$

Rearranging terms we have

(7)
$$\{m\} \otimes \{4\} = \frac{1}{12} \left[\frac{3}{2} (t_1^2 + t_2)^2 - t_1^4 + 4t_3 t_1 + 3t_4 \right].$$

Now [10, p. 380]

$$\frac{1}{2}(t_1^2 + t_2) = \{m\} \otimes \{2\} = \sum_{v} \{2m - 2v, 2v\}, \qquad v \leq \frac{1}{2}m.$$

It remains to develop explicit formulae for t_1^4 , t_3t_1 as sums of irreducible characters $\{\sigma\}$; t_4 being known by Theorem 1.

The following congruence relations will be used in the proofs which follow. Let

$$t_3t_1 = \sum_{\lambda} \theta_{\lambda}^{t_4 t_1} \{\lambda\}, \quad t_4 = \sum_{\lambda} \theta_{\lambda}^{t_4} \{\lambda\}, \quad t_1^4 = \sum_{\lambda} \theta_{\lambda}^{t_1^4} \{\lambda\}.$$

Now

 $\theta_{\lambda}^{t_{3}t_{1}}, \quad \theta_{\lambda}^{t_{4}}, \quad \theta_{\lambda}^{t_{1}}$

are integers or zero, hence we have, from (7),

(8)
$$\theta_{\lambda}^{t_s t_1} \equiv \theta_{\lambda}^{t_1^*} \pmod{3},$$

(9)
$$\theta_{\lambda}^{t_{\star}} \equiv \theta_{\lambda}^{t_{\star}^{\star}} \pmod{2}.$$

We now derive a formula for $t_1^4 = \{m\}^4$. Let (λ) be an arbitrary partition $(\lambda_1, \lambda_2, \lambda_3, \lambda_4)$ of 4m into four or less parts. We proceed to calculate the coefficient of $\{\lambda\}$ in $\{m\}^4$. To illustrate a term in the product $\{m\}^4$ diagramatically we denote the Young diagrams $[m]_i$ by the respective notations:

X X X . . . X, 0 0 0 . . . 0, * * * . . . *, - - - . . . -.

Then a diagram $[\lambda]$, corresponding to $\{\lambda\}$ must appear in the product $[m]_1$ $[m]_2$ $[m]_3$ $[m]_4$ as follows:

 $[\lambda] = x x x \dots x 0 0 0 \dots 0 * * * \dots * - - \dots - \\0 0 0 \dots 0 * * * \dots * - - - \dots - * * * \dots * - - - \dots - \\- - - \dots -$

Now labelling the set of nodes in the first row which arises from $[m]_i$ by u_{i1} , in the second row by u_{i2} etc., we have:

```
 \begin{array}{ll} m = u_{11} & \text{and} & \lambda_1 = u_{11} + u_{21} + u_{31} + u_{41} \\ m = u_{21} + u_{22} & \lambda_2 = u_{22} + u_{32} + u_{42} \\ m = u_{31} + u_{32} + u_{33} & \lambda_3 = u_{33} + u_{43} \\ m = u_{41} + u_{42} + u_{43} + u_{44} & \lambda_4 = u_{44} \end{array}
```

By a repeated application of the rule for the ordinary multiplication of S-functions we see that the necessary and sufficient conditions that a set of

integers u_{ij} form a Young diagram appearing in the product $\{m\}^4$ are the following:

(a) $\sum_{i} u_{ij} = \lambda_{j}$ (c) $u_{ij} \ge 0$ (c) $u_{ij} \ge 0$ (c) $u_{ij} \ge 0$ (c) $u_{22} + u_{32} \le u_{11} + u_{21} + u_{31}$ (c) $u_{33} \le u_{22}$ (c) $u_{ij} \ge 0$ (c) $u_{33} \le u_{22} + u_{32}$ (c) (c) $u_{33} \le u_{22} + u_{33}$ (c) $u_{22} + u_{32} \le u_{11} + u_{21}$ (c) $u_{33} \le u_{22} + u_{33}$ (c) $u_{22} + u_{33} \le u_{23}$ (c) $u_{23} \le u_{23} + u_{33}$ (c) $u_{23} \le u_{23} + u_{23} + u_{33} + u_{23} + u_{33} + u_{23} + u_{33} + u$

Conditions (a), (b), (c) follow from the geometry of the Young diagram; (d), . . . , (h) follow from the rule for multiplying S-functions of type $\{m\}$. Now it follows from conditions (a), (b) that the quantities u_{33} , u_{32} , u_{22} determine all the u_{ij} uniquely. Relabelling these quantities i, j, k respectively, we write all the u_{ij} in terms of the quantities $i, j, k, \lambda_1, \lambda_2, \lambda_3, \lambda_4, m$:

 $u_{11} = m \qquad u_{31} = m - (i + j)$ $u_{21} = m - k \qquad u_{44} = \lambda_4$ $u_{22} = k \qquad u_{43} = \lambda_3 - i$ $u_{32} = j \qquad u_{42} = \lambda_2 - (k + j)$ $u_{33} = i \qquad u_{41} = \lambda_1 + (i + j + k) - 3m$ witting (d) (b) we have:

Now rewriting $(d), \ldots, (h)$ we have:

$$\begin{array}{ll} (\mathbf{d}') \ k \leqslant \frac{1}{2}(2m-j) & (\mathbf{g}') \ \lambda_3 - j \leqslant k \\ (\mathbf{e}') \ k \leqslant 3m - \lambda_2 - (i+j) & (\mathbf{h}') \ \lambda_4 \leqslant i \\ (\mathbf{f}') \ i \leqslant k \end{array}$$

Combining these inequalities with $u_{ij} \ge 0$, we obtain the following limits for i, j, k:

$$\max (\lambda_4, \lambda_3 + \lambda_4 - m) \leq i \leq \min (m, \lambda_3) 0 \leq j \leq \min (m - i, \lambda_2 - i) N \leq k \leq M$$

where

$$M = \min \left(\frac{1}{2} (2m - j), \lambda_2 - j, 3m - (\lambda_2 + i + j) \right)$$

$$N = \max \left(i, \lambda_3 - j, 3m - (\lambda_1 + i + j) \right)$$

Now setting $K_{ij} = \max(0, 1 + M - N)$ we have

THEOREM 3.

$$t_1^4 = \{m\}^4 = \sum_{\lambda} \theta_{\lambda}^{t_1^*} \{\lambda\} \text{ where } \theta_{\lambda}^{t_1^*} = \sum_{i,j} K_{ij}$$

and i, j range over the values indicated above.

This formula illustrates the fact (which is easily proved directly in the general case) that if

$$\{m\}^n = \sum_{\lambda} \theta_{\lambda}^{t_1^n} \{\lambda\},\$$
$$\{m+k\}^n = \sum_{\bar{\lambda}} \theta_{\bar{\lambda}}^{\bar{t}_1^n} \{\bar{\lambda}\},\$$

then if $(\bar{\sigma})$ is a partition of n(m+k) with $\bar{\sigma}_n \ge k$, and if $(\sigma) = (\bar{\sigma}_1 - k, \ldots, \bar{\sigma}_n - k)$, then

$$\theta_{\sigma}^{t_1^n} = \theta_{\bar{\sigma}}^{\underline{t}_1^n}.$$

Hence we have a recursion formula for $\{m+1\}^n$ in terms of $\{m\}^n$ for all partitions (σ) of (m+1)(n) with $\sigma_n \ge 1$.

The following theorem enables us to compute the quantity t_3t_1 by inspection.

THEOREM 4.

$$t_3 t_1 = \sum_{\lambda} \theta_{\lambda}^{t_s t_1} \{\lambda\}$$

where $\theta_{\lambda}^{t_{3}t_{1}} = 1, 0, -1$ according as $\theta_{\lambda}t_{1}^{4}$ is congruent to 1, 0, -1 respectively (mod 3).

Proof. The congruence (mod 3) has been established (8). It remains to be shown that $\theta_{\lambda}^{t_3 t_1}$ is always 1, 0, or -1. To show this we let [10, p. 381] $t_3 = \sum g(\lambda') \{\lambda'\}$ where $g(\lambda')$ is 1, 0, -1 according as $(1 + \lambda_1 - \lambda_2)$ is congruent to 1, 0, $-1 \pmod{3}$, and (λ') ranges over all partitions of 3m into three or fewer parts. Now $t_1 = \{m\}$, hence

(10)
$$t_3 t_1 = \sum_{\lambda'} g(\lambda') \{\lambda'\} \{m\} = \sum_{\lambda} \theta_{\lambda}^{t_s t_1} \{\lambda\}.$$

Consider a partition (λ) of 4m, then

$$heta_{\lambda}^{t_{3}t_{1}} = \sum_{\lambda'} g(\lambda'),$$

where the summation is over all partitions (λ') from which (λ) can be obtained on multiplying $\{\lambda'\}$ by $\{m\}$. Now consider which diagrams $[\lambda']$ are obtained from $[\lambda]$ on deleting *m* nodes as indicated in (10) above. Since (λ') is a partition of 3*m* into three or fewer parts, this amounts to deleting $(m - \lambda_4)$ nodes from the first three rows of $[\lambda]$ in accordance with the rule for multiplying $\{\lambda'\}$ $\{m\}$. Four cases arise:

$$\begin{array}{ll} (\mathrm{i}) \ \lambda_1 - \lambda_2 \geqslant m - \lambda_4, & \lambda_2 - \lambda_3 \geqslant m - \lambda_4 \\ (\mathrm{ii}) \ \lambda_1 - \lambda_2 \geqslant m - \lambda_4, & \lambda_2 - \lambda_3 < m - \lambda_4 \\ (\mathrm{iii}) \ \lambda_1 - \lambda_2 < m - \lambda_4, & \lambda_2 - \lambda_3 \geqslant m - \lambda_4 \\ (\mathrm{iv}) \ \lambda_1 - \lambda_2 < m - \lambda_4, & \lambda_2 - \lambda_3 < m - \lambda_4 \end{array}$$

We will consider (i) in detail. The number of nodes which may be deleted from λ_3 is 0, 1, 2, ..., min $(\lambda_3 - \lambda_4, m - \lambda_4) = s$. We first delete zero nodes from $\lambda_3, m - \lambda_4 - r$ from λ_1 and r from λ_2 ($r = 0, 1, ..., m - \lambda_4$). This gives rise to the set of values for $g(\lambda')$ whose sum is indicated as T_1 below. We next delete one node from $\lambda_3, m - \lambda_4 - (r + 1)$ from λ_1 and r from λ_2 ($r = 0, 1, ..., m - \lambda_4$). This gives $T_1, \ldots, m - \lambda_4 - 1$), giving rise to a set of values for $g(\lambda')$ with sum indicated as T_2 below. This process is continued to the $s = \min(\lambda_3 - \lambda_4, m - \lambda_4)$ step. Denoting the set of values 0, -1, 1, by x_1, x_2, x_3 , not necessarily respectively but in the same cyclic order, the sums T_1, \ldots, T_s must then appear as follows:

$$T_{1} = x_{1} + x_{2} + x_{3} + x_{1} + x_{2} + x_{3} + x_{1} + \dots + x_{4} \qquad (m - \lambda_{4} + 1) \text{ terms}$$

$$T_{2} = x_{3} + x_{1} + x_{2} + x_{3} + x_{1} + x_{2} + \dots + x_{4} \qquad (m - \lambda_{4}) \qquad \text{terms}$$

$$T_{3} = x_{2} + x_{3} + x_{1} + x_{2} + x_{3} + \dots + x_{k} \qquad (m - \lambda_{4} - 1) \text{ terms}$$

Now since $x_1 + x_2 + x_3 = 0$, we have at once:

$$\theta_{\lambda}^{t_s t_1} = \sum_{\lambda'} g(\lambda') = T_1 + \ldots + T_s = 0$$

if $s \equiv 0 \pmod{3}$, since each set of three rows has total sum zero. If $s \equiv 1 \pmod{3}$ the sum is simply T_s which is obviously 1, -1 or zero in all cases. If $s \equiv 2 \pmod{3}$ we partition the final two rows T_{s-1} , T_s as indicated below:

$$T_{s-1} = x_1 + x_2 + x_3 + x_1 + x_2 + x_3 + \dots + x_i,$$

$$T_s = x_3 + x_1 + x_2 + x_3 + x_1 + \dots + x_j.$$

Hence $T_1 + \ldots + T_s = T_{s-1} + T_s$ is 0, x_1 , or $x_1 + x_3$ which is obviously one of 0, 1, or -1 for all values of x_1, x_3 . Thus the proof for case (i) is complete. The cases (ii), (iii), (iv) give rise to a similar type of array of values as displayed above for case (i); again by direct calculation the total sum is seen to be 0,1, or -1. This completes the proof of the theorem.

The remaining term of (7),

$$\frac{1}{4}(t_1^2 + t_2)^2 = \left[\sum \{2m - 2v, 2v\}\right]^2,$$

is computed directly by the ordinary multiplication of S-functions. This calculation is somewhat lengthy although it is a considerable simplification of the direct calculation of t_2^2 and $t_1^2t_2$ independently.

5. The remaining partitions of four. We first consider the case $\{m\} \otimes \{2, 1^2\}$:

$$\{m\} \otimes \{2, 1^2\} = \frac{1}{24}(3t_1^4 - 6t_1^2t_2 - 3t_2^2 + 6t_4)$$
$$= \frac{1}{12} \left[-\frac{3}{2}(t_1^2 + t_2)^2 + 3t_1^4 + 3t_4 \right]$$

Hence $\{m\} \otimes \{2, 1^2\}$ may be computed by inspection from the calculations for $\{m\} \otimes \{4\}$.

To compute $\{m\} \otimes \{1^4\}, \{m\} \otimes \{3, 1\}$ we modify the above method as follows:

$$\{m\} \otimes \{1^4\} = \frac{1}{24}(t_1^4 - 6t_1^2t_2 + 3t_2^2 + 8t_3t_1 - 6t_4)$$
$$= \frac{1}{12} \left[\frac{3}{2}(t_1^2 - t_2)^2 - t_1^4 + 4t_3t_1 - 3t_4\right].$$

This calculation follows at once from the results for $\{m\} \otimes \{4\}$ except for the term $\frac{1}{4}(t_1^2 - t_2)^2$. Now

 $t_1^2 = \{m\}^2 = \{2m\} + \{2m - 1, 1\} + \{2m - 2, 2\} + \ldots + \{m, m\}$ and by Theorem 1 we have

$$t_2 = \{2m\} - \{2m - 1, 1\} + \ldots + (-1)^m \{m, m\}.$$

Hence the term

$$\frac{1}{2}(t_1^2 - t_2) = \sum_{v} \{2m - v, v\}, \qquad (v = 1, 3, \ldots, m'),$$

where m' is the greatest odd integer $\leq m$. The term $\frac{1}{4}(t_1^2 - 2)^2$ is now computed by the ordinary multiplication of S-functions.

Now

$$\{m\} \otimes \{3, 1\} = \frac{1}{12} \left[3t_1^4 - \frac{3}{2} (t_1^2 - t_2)^2 - 3t_4 \right],$$

hence this case follows by inspection from the calculations for $\{m\} \otimes \{1^4\}$.

For the remaining case $\{m\} \otimes \{2^2\}$ we have

$$\{m\} \otimes \{2^2\} = \frac{1}{12} \left[3(t_1^4 + t_2^2) - 2t_1^4 - 4t_3t_1 \right].$$

Here the coefficient of $t_1^2 t_2$ is zero but the quantity t_2^2 must be calculated. We do this indirectly by making use of the results already obtained for $\{m\} \otimes \{4\}, \{m\} \otimes \{1^4\}$, and the following identity:

$$\frac{1}{2}\left[\left(t_1^2+t_2\right)^2+\left(t_1^2-t_2\right)^2\right]=\left(t_1^4+t_2^2\right).$$

6. Conclusion. By means of the method developed here and the earlier work of Thrall, the cases $\{m\} \otimes \{2\}, \{m\} \otimes \{3\}, \{m\} \otimes \{4\}$ may be computed directly. The next case, $\{m\} \otimes \{5\}$, is considerably more complicated and does not readily lend itself to direct calculation.

The author has used this method to compute the products $\{7\} \otimes \{4\}$, $\{7\} \otimes \{2,1^2\}$ in full, Some Results in Littlewood's Algebra of S-functions, thesis (microfilmed), University of Michigan, 1950. The cases $\{5\} \otimes \{4\}$, $\{6\} \otimes \{4\}$ have been computed recently by another method by Foulkes [2].

References

- 1. D. G. Duncan, Note on a formula by Todd, J. London Math. Soc., vol. 27 (1952), 235-236.
- H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc., vol. 25 (1950), 205-209.
- 3. D. E. Littlewood, The theory of group characters and matrix representations of groups (Oxford, 1950).
- 4. F. D. Murnaghan, The theory of group representations (Baltimore, 1938).
- 5. T. Nakayama, On some modular properties of irreducible representations of a symmetric group, Jap. J. Math., vol. 17 (1940), 165–184.
- G. de B. Robinson, On the representations of the symmetric group III, Amer. J. Math., vol. 70, (1948), 277-294.
- On the disjoint product of irreducible representations of the symmetric group, Can. J. Math., vol. 1 (1949), 166–175.
- 8. —, Induced representations and invariants, Can. J. Math., vol. 2 (1950), 334-343.
- 9. R. A. Staal, Star Diagrams and the symmetric group, Can. J. Math., vol. 2 (1950), 79-92.
- 10. R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., vol. 64 (1942), 371-388.
- 11. R. M. Thrall and G. de B. Robinson, Supplement to a paper of G. de B. Robinson, Amer. J. Math., vol. 73 (1951), 721-724.
- 12. J. A. Todd, A note on the algebra of S-functions, Proc. Cambridge Phil. Soc., vol. 45 (1949), 328-334.
- 13. M. Zia-ud-Din, Proc. Edinburgh Math. Soc., vol. 5 (1936), 43-45.

The University of Arizona