ON D. E. LITTLEWOOD’S ALGEBRA OF S-FUNCTIONS
D. G. DUNCAN

1. Introduction. Several papers have been written on the “new’” multiplica-
tion of S-functions since Littlewood [3, p. 206] first suggested the problem.
M. Zia-ud-Din [13] calculated the case {m} ® {n} for mn < 12, making use of
the tables of the characters of the symmetric group of degree mn. Later Thrall
[10, pp. 378-382] developed explicit formulae for the cases {m} ® {2}, {m} ® {3},
{2} ® {m} (where m is any integer). Recently Todd [12] has obtained a formula
for the factors {u} ® S, = tn as sums of irreducible characters {¢}. This reduces
the problem of calculating {#} ® {A} tothe ordinary multiplication of S-functions
[3, p. 94]. General solutions to the problem have also been obtained by Thrall
[10; p. 375] and by Robinson [7; 8]. For these general results, however, the
actual calculations are quite laborious in most cases.

In this paper a method of computing the general case {m} ® {4} is devel-
oped and a formula is obtained (independently of Todd’s method) for expressing
the factors £, as sums of S-functions {¢}. This formula provides a very brief
method of calculating £, and is easily adapted to recursive computation. The
method of calculating {m} ® {4} is also extended to cover all the remaining
partitions of four. This method has been applied to calculate the products
{7} ® {4}, {7} ® {2,1%} in full.

2. Preliminary definitions and lemmas. Using Thrall’s notation {10, p. 374],
tn(m) = {m} ® Sm

Hence, if the #,¢, are known as sums of S-functions the product {m} ® {u} may
be computed by the ordinary multiplication of S-functions.

In proving the direct and recursion formulae for #,.,) we will make use of the
following three lemmas.

Definitions of Young diagram, n-hook, removal of an n-hook, star diagram
and é-number are given in [9].

LEmMA 1. Let (0) = (o1, . . ., 0n) be a partition of mn into n or less parts,
and suppose that the numbers ri = o1 +n—1, ro=0o+n—2, . . ., 1, =0,
are all incongruent (mod n). Then the necessary and sufficient condition on s and
k that a hook of length ns with top right node lying in the kth row may be removed
from (o] is that ry = op + (n — k) > ns.
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Proof.* Since ry, . . ., r, are incongruent (mod #), the classes of congruent
d-numbers are exactly 7y, . . ., 7, and the corresponding diagrams are simply
vertical linesof 7y, . . ., 7, nodes respectively. Hence for an ns-hook to be removable
(with foot in the kth column), it is necessary and sufficient that 7, > ns [9, p. 85,
Theorem C].

LEMMA 2. Let (o) be a partition of mn into n or less parts; then [o] has no
n-core? if and only if the numbers ry, . . ., 1, are incongruent (mod n).

Proof. This lemma follows at once from the criterion (7.12) given in [11,
p. 722].

LeEMMA 3. Let (o) be a partition of mn defined as in Lemma 1. Then a hook of
length kn may be added to (o] commencing with the lower left node at the end of
any of the n rows of [o] (including cases where o; = 0) and a diagram [o'] associat-
ed with a partition of n(m + k) into n or less parts will result.

Proof. Let the top right node of the annexed hook lie in the (p 4 1) th row of
[¢']. Then if [¢'] is not a right diagram we have

(0p—gpr1+ D)+ (opts-1— 045+ 1) =nk

for some value of s. That is, 0, = g, + ; — s (mod #), which contradicts the
assumption that the 7, are incongruent.

3. Formulae for t,,,. The following theorems give direct and recursion
formulae for f,(m-

THEOREM 1. t,my = X ¢.{c} where (¢) ranges over all partitions of nm; ¢, is
zero if (o) has more than n parts or if the Young diagram [o] associated with (o)
has a (non-zero) n-core. Otherwise ¢, = 0, where 0, 1s plus or minus one according
as the sum of the leg-lengths of the removed n-hooks is even or odd.

Proof3 Let Tuem = 2 ¢.{c} where Y ¢,{c} satisfies all the conditions
stated in the theorem. We take as an induction hypothesis that T,m = fum
for all 2 < m. Now we have [10, p. 374]

iy =Sp={n} —{n -1} +{n -2+ ...+ (-1 H{1"} = Tho.

Hence the theorem is true for m = 1. Now in general,

_ 1 §£ B (é'w)ﬁm
t"(m)—;——ﬁl!.-.ﬂm(l) -\, .

We will show (i) Thm, tumy have the same derivatives with respect to S,
(B=1,...,m)and (ii) Ty is a function of S,x (¢ = 1, .. ., m) only.

1] am indebted to Professor R. A. Staal for this proof which is shorter than my original one.

*When all possible #-hooks have been removed from a diagram the resulting diagram is
called its n-core. The n-core and 0 are independent of the order of removal of the hooks
(5], [6].

3For a method of evaluating the 6, which does not lead to the recursion formula see [1].
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Now [4, p. 107]
nim
(2) k?é;)c = bptm—t) = Z“ d’u{l"}

where (u) ranges over all partitions of #(m — k) an the ¢, are, by the induction
hypothesis, as described in the theorem. Also [4, p. 133]

aTnm “
3) (nk) ()—Z¢.,Zl{o’l,...,a,—nk,...,an},
2 J=
or in the language of hookS'
aTnm i
4) ( k) ) = Z ¢vZ (= l)h {Ui}r

where [¢?] is obtained from [U’] by removing an nk-hook of leg-length %; com-
mencing in the 7th row and the summation is over all values of ¢ (rows) from
which such a hook may be removed. Now multiplying (2) by # we have:

) (nk) atnm) Z buln

Hence we must show the right sides of (4), (5) to be equal. For fixed (u) we
label the 7 values of ¢,{u} occurring on the right side of (5) by ¢.{u}s, - - -
¢u{uls. Consider ¢ {u}, (for ¢, £ 0), by Lemma 3 an nk-hook may be added to
[u] starting (bottom left node) at the rth row and a new diagram will result.
Let this annexed hook terminate in the jth row, then denoting the augmented
diagram by [¢] we must show ¢u{u}, = ¢.( — 1)*{o,;} where h; = r — j, that
is, we must show ¢, = 6,( — 1)%. Now by Lemma 1 the nk-hook which is
deleted from [¢] to vield [u] may be partitioned into k n-hooks which may be
removed in order, starting at the top right node of the nk-hook. Again by
Lemma 1, each deletion leaves a new diagram; hence the bottom left node
of a given #n-hook must lie in the same row as the top right node of its successor.
Let the sth removed #-hook terminate in the ¢;th row and commence in the
gi1th row; then ¢o = j and ¢; = r. Now the sum of the leg-lengths of these
removed hooks is

(Gr—q)+ . .+ @ —@-0) =G —q=7r—]
which is the leg-length (%;) of the nk-hook. But by the induction assumption

¢” — 0"(_ 1)(41‘10)+.--+(Qk"dk—1) — 0”(_ 1)1”,

as required. Similarly there corresponds to each

0, (— l)hi{ai}
a unique ¢,{u}, To demonstrate (ii) we write [3, p. 86; 10, p. 374]
h o
(6) Totmy = Z« ¢v{‘7} = E, d’vzp: W:{ﬁ- XpSp
where
= (s ... (Sam)™™.

https://doi.org/10.4153/CJM-1952-045-3 Published online by Cambridge University Press


file:///7fl7l
https://doi.org/10.4153/CJM-1952-045-3

LITTLEWOOD’S ALGEBRA OF S-FUNCTIONS 507

Now the coefficient of S, on the right of (6) is

k, ,
2 $oXo

(mn)! <

Now ¢, has been shown [11] to be expressable as

b = E CaXa
a

where a ranges over partitions of m#n of the form (8), where (B8) is a partition of
m and (B), is the partition of mz obtained from (8) on multiplying each element
of (B) by n, thatis, (8), = (B, . . .,8xn). Hence from the orthogonality relations
for the characters of the symmetric group the coefficient of

Z Z CaXaXp

is zero if (p) is not of the form (B), also. Hence T,y is a function of the S,
(=1,..., m)only.

5 (mn)'

THEOREM 2. Let tymy = > dolc}, them tym 41y ts obtained recursively as
follows. To each [o] associated with a partition (¢) for which ¢, is not zero we add an
n-hook in all possible ways whose top right node lies in the first row of the augmented
diagram [d']. Then tym+1y = 2 ¢'{d’} where ¢,/ = ¢, ( — 1)* where k is the
leg-length of the annexed hook.

Proof. The proof follows at once from Lemmas 1, 2, 3 and Theorem 1.

In recent papers [7, 8, 12], Robinson and Todd have given independent
methods for evaluating {u} ® {A} by step by step building processes. Robinson
gives a systematic procedure (in place of Littlewood’s more or less empirical
methods) by means of which the irreducible components of {u} ® {A} can be
determined. In this general method the recursion is from # to # + 1. Todd gives
a general method and also treats the restricted case {m} ® S, = tyum studied
here. He gives recursion formulae by means of which #,¢,) may be determined
if ¢, — 1wy and Z,em — 1y are both known. In the above methods the quantity 6,
is made use of throughout.

4. The product {m} ® {4}. We now develop a method for computing
the general case {m} ® {4}. From the calculations for {m} ® {4} (for a specific
value of m) {m} ® {2, 12} is obtained by inspection. A modification of this
method is also given for computing {m} ® {3,1} and {m} ® {1¢}. The remaining
case, {m} @ {22}, follows immediately from the calculations for {m} ® {4}
and {m} ® {14}; hence the method applies to every partition of four.

Writing ¢, for ¢;u we have, from (1) of §2;

{m} ® {4} = 2—14-@1“ + 6t,°t, + 3t.° + 8tsty + 614).
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Rearranging terms we have

(7 {m} @ {4} = 11—2[-‘;3(# + )" — o' + 4tgts + 3t4].
Now [10, p. 380]
1t +t) = {m ® (2] = X {2m — 20, 20}, v < 3m.

v

It remains to develop explicit formulae for ¢4, ¢3¢, as sums of irreducible charac-
ters {c¢}; {4 being known by Theorem 1.

The following congruence relations will be used in the proofs which follow.
Let

baty = ;o;*‘*{x}, by = ijox{x}, b= Zxay‘{x}.

Now
1794 z. 11*
0, S, O\

are integers or zero, hence we have, from (7),

(8) 0" = 6" (mod 3),

) o3 = 6" (mod 2).

We now derive a formula for #* = {m}*% Let (\) be an arbitrary partition
(A1, A2, A3, Ay) of 4m into four or less parts. We proceed to calculate the coefficient
of {A} in {m}4 To illustrate a term in the product {m}*diagramatically we denote
the Young diagrams [m]; by the respective notations:

XXX...X,000...0,%¥%%...% ===.,..-

Then a diagram [A], corresponding to {A} must appear in the product [m];
[m]e [m]s [m]s as follows:

[Al=xXX...X000...0%%%...%---...-
000 ...0 %% %...% - ...~
I T

Now labelling the set of nodes in the first row which arises from [m]; by %4,
in the second row by u;; etc., we have:

m = uy and A = %11 + %1 + %1 + Us
m = U + U Ay = tog + U3y + U4

m = Uz + Uz + Uz A3 = U3z + U3

m = Uy + Usg + Usz + Uss Ay = Uy

By a repeated application of the rule for the ordinary multiplication of
S-functions we see that the necessary and sufficient conditions that a set of
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integers u;; form a Young diagram appearing in the product {m}* are the

following:
(@ X1 uy =N (€) N <oy 4w + us
(b) Zj Uiy =M () wuss < U2
(©) ui; 2> 0 (®) Ns < nae+ use
(d) Uoe + Uze < U1y + Uz (h) A < uss
Conditions (a), (b), (c) follow from the geometry of the Young diagram;
(d), ..., (h) follow from the rule for multiplying S-functions of type {m]}.

Now it follows from conditions (a), (b) that the quantities %33, %33, %23 determine
all the u;; uniquely. Relabelling these quantities ¢, j, k respectively, we write all
the u;; in terms of the quantities 7, 7, &, N1, g, A3, Ny, m:

Uyl = m u31=m_($+])
Uy =m — R Ugg = A4
Uy = k Ugz3 = Ng — 1
Uzs = ] U2 = Ay — (B 4 7)
u33=i u41=)\1+(1+]‘+k)—3m
Now rewriting (d), . .., (h) we have:
d) k< 3C2m —j) @)\ —ji<k
(€) k< 3m — Ny — (2 47) ) A<
) i<k
Combining these inequalities with #;; > 0, we obtain the following limits for
1, J, k:
max ()\4, As + )\4 —_ m) < 7 < min (m, )3)
0<j <min(m — 1, Ay — 17)
NLKEL M
where M =min 32m —j), N2 — 7, 3m — (A2 + 17+ 7))

N =max (4, \s — 7, 3m — M+ 174+ 7))
Now setting K;; = max (0, 1 + M — N) we have
THEOREM 3.
b= {m}t = ; 05 {\} where 65*° = ;KU
2]

and i, j range over the values indicated above.

This formula illustrates the fact (which is easily proved directly in the general
case) that if
; 02" (N},

{m+ k)" = Zx 5" {X}

{m}"

then if (¢) is a partition of n(m 4+ k) with 6, > &k, and if (¢) = (61— &, ...,
G, — k), then

" tn
0, = 05 .
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Hence we have a recursion formula for {m + 1}"in terms of {m}" for all partitions
(o) of (m + 1)(n) with ¢, > 1.

The following theorem enables us to compute the quantity ¢3¢; by inspection.

THEOREM 4.
t3t1 = Z 0)? h{)\}
A

where O\ = 1, 0, — 1 according as 6it1* is congruent to 1, 0, — 1 respectively
(mod 3).

Proof. The congruence (mod 3) has been established (8). It remains to be
shown that 6,%% is always 1, 0, or — 1. To show this we let [10, p. 381]
t3=72 g(\){N} where g(\') is 1, 0, — 1 according as (1 4+ A; — \p) is congruent
to 1, 0, — 1 (mod 3), and (\’) ranges over all partitions of 3m into three or
fewer parts. Now ¢; = {m}, hence
(10) tt = 20 e(W) N {m) = 20 00" (A

Consider a partition (A) of 4m, then
ot = 20 g(\),
=

where the summation is over all partitions (\") from which (\) can be obtained
on multiplying {\'} by {m}. Now consider which diagrams [\’] are obtained
from [A] on deleting m nodes as indicated in (10) above. Since (\’) is a partition
of 3m into three or fewer parts, this amounts to deleting (m — As) nodes from
the first three rows of [A] in accordance with the rule for multiplying {N'} {m]}.
Four cases arise:
(i)>\1—)\2>m—)\4, )\2—)\3>m—)\4
(ii))\l-—>\2>m—)\4, )\2—->\3<m—)\4
(111)>\1—>\2<m—>\4, )\2—>\3>m—)\4
(iv)>\1—>\2<m-—)\4, )\2—)\3<m—)\4

We will consider (i) in detail. The number of nodes which may be deleted
from \;is 0, 1, 2, ..., min (A\3 — Ay, m — Ay) = 5. We first delete zero nodes
from N3, m — Ay — 7 from Ay and 7 from X\, (r = 0, 1, . .., m — A\y). This gives
rise to the set of values for g(\") whose sum is indicated as T'; below. We next
delete one node from A3, m — Ay — (r + 1) from A; and 7 from A, (r = 0,
1,...,m — Ay — 1), giving rise to a set of values for g(\") with sum indicated
as T'» below. This process is continued to the s = min (A3 — Ay, m — \4) step.
Denoting the set of values 0, — 1, 1, by xi, X2, x3, not necessarily respectively
but in the same cyclic order, the sums Ty, . . ., Ty must then appear as follows:

Ti=x1+x+xs+x1+x2+x3+x14+...+ x; (m — A+ 1) terms
T, X3+ w1+ xet s+ +x4+ ...+ x; (m — \g) terms
T3 = XoF+xst+x1+xaFxs+...+ x; (m — Ay — 1) terms
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Now since x; + x2 + x3 = 0, we have at once:
bt = > g\ =T+ ...+ T, =0
=

if s =0 (mod 3), since each set of three rows has total sum zero. If s =1
(mod 3) the sum is simply 7'y which is obviously 1, — 1 or zero in all cases.
If s =2 (mod 3) we partition the final two rows T's _ i, T as indicated below:

+x3]i§‘+x2 Fast v,
+ %1+ x2 +x3!+x1+...—|—x,.
Hence Th+.. .4+ Ts=Ts_1+ T is 0, x1, or x1 + x3 which is obviously
one of 0, 1, or — 1 for all values of x1, x3. Thus the proof for case (i) is complete.
The cases (ii), (iii), (iv) give rise to a similar type of array of values as displayed
above for case (i); again by direct calculation the total sum is seen to be 0,1,

or — 1. This completes the proof of the theorem.
The remaining term of (7),

i(tf + 1) =2 {2m — 20, 20} ],

is computed directly by the ordinary multiplication of S-functions. This calcula-
tion is somewhat lengthy although it is a considerable simplification of the
direct calculation of ¢,? and #,%, independently.

Too1 = %1+ %2

Iy = X3

5. The remaining partitions of four. We first consider the case {m} ® {2, 12}:
{m} ® {2,1°} = 511(3# — 61ty — 3ts" + 6ts)

= 11—2[— %(112 + 1) + 34 + 3t4:|.

Hence {m} ® {2, 12} may be computed by inspection from the calculations
for {m} ® {4}.

To compute {m} ® {1¢}, {m} ® {3, 1} we modify the above method as
follows:

{m} ® {14} = '21—4@14 - 6151252 + 3t22 + 8153):1 -_ 6t4)

= —113[%(112 — 1) — 0t 4t — 3&}.

This calculation follows at once from the results for {m} ® {4} except for the

term }(t" — t2)". Now
= {m}2={2m} 4+ (2m — 1,1} + {2m — 2,2} + ... + {m, m}
and by Theorem 1 we have
to={2m} — {2m — 1,1} + ...+ (= O)™{m, m}.
Hence the term
1l — b)) = D {2m — 0,0}, w=1,3,...,m),
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where m' is the greatest odd integer < m. The term (4" — 5)* is now computed
by the ordinary multiplication of S-functions.
Now

{m} ® {3r 1} = 1_12—[\%14 - 'g(t12 - t2)2 - 3t4],

hence this case follows by inspection from the calculations for {m} ® {14}.
For the remaining case {m} ® {22} we have

{m} ® {22} = %[3014 + tzz) - 2t14 - 4153151].

Here the coefficient of #;%; is zero but the quantity £,2 must be calculated.
We do this indirectly by making use of the results already obtained for
{m} ® {4}, {m} ® {14}, and the following identity:

00+ 1)+ ' - W] = 0+ ).

6. Conclusion. By means of the method developed here and the earlier work
of Thrall, the cases {m} ® {2}, {m} ® {3}, {m} ® {4} may be computed
directly. The next case, {m} ® {5}, is considerably more complicated and does
not readily lend itself to direct calculation.

The author has used this method to compute the products {7} ® {4},
{7} ® {2,12} in full, Some Results in Littlewood's Algebra of S-funciions, thesis
(microfilmed), University of Michigan, 1950. The cases {5} ® {4}, {6} ® {4}
have been computed recently by another method by Foulkes [2].
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