ON D. E. LITTLEWOOD'S ALGEBRA OF S-FUNCTIONS

D. G. DUNCAN

1. Introduction. Several papers have been written on the "new" multiplication of S-functions since Littlewood [3, p. 206] first suggested the problem. M. Zia-ud-Din [13] calculated the case $\{m\} \otimes\{n\}$ for $m n \leqslant 12$, making use of the tables of the characters of the symmetric group of degree $m n$. Later Thrall [10, pp. 378-382] developed explicit formulae for the cases $\{m\} \otimes\{2\},\{m\} \otimes\{3\}$, $\{2\} \otimes\{m\}$ (where m is any integer). Recently Todd [12] has obtained a formula for the factors $\{\mu\} \otimes S_{n}=t_{n(\mu)}$ as sums of irreducible characters $\{\sigma\}$. This reduces the problem of calculating $\{\mu\} \otimes\{\lambda\}$ to the ordinary multiplication of S-functions [3, p. 94]. General solutions to the problem have also been obtained by Thrall [10; p. 375] and by Robinson [7; 8]. For these general results, however, the actual calculations are quite laborious in most cases.

In this paper a method of computing the general case $\{m\} \otimes\{4\}$ is developed and a formula is obtained (independently of Todd's method) for expressing the factors $t_{n(m)}$ as sums of S-functions $\{\sigma\}$. This formula provides a very brief method of calculating $t_{n(m)}$ and is easily adapted to recursive computation. The method of calculating $\{m\} \otimes\{4\}$ is also extended to cover all the remaining partitions of four. This method has been applied to calculate the products $\{7\} \otimes\{4\},\{7\} \otimes\left\{2,1^{2}\right\}$ in full.
2. Preliminary definitions and lemmas. Using Thrall's notation [10, p. 374], $t_{n(m)}=\{m\} \otimes S_{n}$,

$$
\begin{equation*}
\{m\} \otimes\{\mu\}=\sum_{\beta} \frac{\chi^{(\beta)}(\mu)}{\beta_{1}!\ldots \beta_{r}!}\left(\frac{t_{1(m)}}{1}\right)^{\beta_{1}} \ldots\left(\frac{t_{r(m)}}{r}\right)^{\beta_{r}} \tag{1}
\end{equation*}
$$

Hence, if the $t_{n(m)}$ are known as sums of S-functions the product $\{m\} \otimes\{\mu\}$ may be computed by the ordinary multiplication of S-functions.

In proving the direct and recursion formulae for $t_{n(m)}$ we will make use of the following three lemmas.

Definitions of Young diagram, n-hook, removal of an n-hook, star diagram and δ-number are given in [9].

Lemma 1. Let $(\sigma)=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ be a partition of mn into n or less parts, and suppose that the numbers $r_{1}=\sigma_{1}+n-1, r_{2}=\sigma_{2}+n-2, \ldots, r_{n}=\sigma_{n}$ are all incongruent $(\bmod n)$. Then the necessary and sufficient condition on s and k that a hook of length ns with top right node lying in the kth row may be removed from $[\sigma]$ is that $r_{k}=\sigma_{k}+(n-k) \geqslant n s$.

Received July 1, 1951; in revised form November 15, 1951. This paper contains the main results of a thesis written under the direction of Professor R. M. Thrall and submitted for the Ph. D. degree at the University of Michigan, August, 1950.

Proof. ${ }^{1}$ Since r_{1}, \ldots, r_{n} are incongruent $(\bmod n)$, the classes of congruent δ-numbers are exactly r_{1}, \ldots, r_{n} and the corresponding diagrams are simply vertical lines of r_{1}, \ldots, r_{n} nodes respectively. Hence for an $n s$-hook to be removable (with foot in the k th column), it is necessary and sufficient that $r_{k} \geqslant n s[9, \mathrm{p} .85$, Theorem C].

Lemma 2. Let (σ) be a partition of mn into n or less parts; then $[\sigma]$ has no n-core ${ }^{2}$ if and only if the numbers r_{1}, \ldots, r_{n} are incongruent $(\bmod n)$.

Proof. This lemma follows at once from the criterion (7.12) given in [11, p. 722].

Lemma 3. Let (σ) be a partition of mn defined as in Lemma 1. Then a hook of length $k n$ may be added to $[\sigma]$ commencing with the lower left node at the end of any of the n rows of $[\sigma]$ (including cases where $\sigma_{i}=0$) and a diagram $\left[\sigma^{\prime}\right]$ associated with a partition of $n(m+k)$ into n or less parts will result.

Proof. Let the top right node of the annexed hook lie in the $(p+1)$ th row of $\left[\sigma^{\prime}\right]$. Then if $\left[\sigma^{\prime}\right]$ is not a right diagram we have

$$
\left(\sigma_{p}-\sigma_{p+1}+1\right)+\ldots+\left(\sigma_{p+s-1}-\sigma_{p+s}+1\right)=n k
$$

for some value of s. That is, $\sigma_{p} \equiv \sigma_{p+s}-s(\bmod n)$, which contradicts the assumption that the r_{i} are incongruent.
3. Formulae for $t_{n(m)}$. The following theorems give direct and recursion formulae for $t_{n(m)}$.

Theorem 1. $\quad t_{n(m)}=\sum \phi_{\sigma}\{\sigma\}$ where (σ) ranges over all partitions of nm; ϕ_{σ} is zero if (σ) has more than n parts or if the Young diagram $[\sigma]$ associated with (σ) has a (non-zero) n-core. Otherwise $\phi_{\sigma}=\theta_{\sigma}$ where θ_{σ} is plus or minus one according as the sum of the leg-lengths of the removed n-hooks is even or odd.

Proof. ${ }^{3}$ Let $T_{n(m)}=\sum \phi_{\sigma}\{\sigma\}$ where $\sum \phi_{\sigma}\{\sigma\}$ satisfies all the conditions stated in the theorem. We take as an induction hypothesis that $T_{n(n)}=t_{n(h)}$ for all $h<m$. Now we have [10, p. 374]
$t_{n(1)}=S_{n}=\{n\}-\{n-1,1\}+\left\{n-2,1^{2}\right\}+\ldots+(-1)^{n-1}\left\{1^{n}\right\}=T_{n(1)}$.
Hence the theorem is true for $m=1$. Now in general,

$$
t_{n(m)}=\sum_{\beta} \frac{1}{\beta_{1}!\ldots \beta_{m}!}\left(\frac{S_{n}}{1}\right)^{\beta_{1}} \ldots\left(\frac{S_{n m}}{m}\right)^{\beta_{m}} .
$$

We will show (i) $T_{n(m)}, t_{n(m)}$ have the same derivatives with respect to $S_{n k}$ ($k=1, \ldots, m$) and (ii) $T_{n(m)}$ is a function of $S_{n k}(k=1, \ldots, m)$ only.

[^0]Now [4, p. 107]

$$
\begin{equation*}
k \frac{\partial t_{n(m)}}{\partial S_{n k}}=t_{n(m-k)}=\sum_{\mu} \phi_{\mu}\{\mu\} \tag{2}
\end{equation*}
$$

where (μ) ranges over all partitions of $n(m-k)$ an the ϕ_{μ} are, by the induction hypothesis, as described in the theorem. Also [4, p. 133]

$$
\begin{equation*}
(n k) \frac{\partial T_{n(m)}}{\partial S_{n k}}=\sum_{\sigma} \phi_{\sigma} \sum_{j=1}^{n}\left\{\sigma_{1}, \ldots, \sigma_{j}-n k, \ldots, \sigma_{n}\right\} \tag{3}
\end{equation*}
$$

or in the language of hooks:

$$
\begin{equation*}
(n k) \frac{\partial T_{n(m)}}{\partial S_{n k}}=\sum_{\sigma} \phi_{\sigma} \sum_{i}(-1)^{n_{i}}\left\{\sigma^{i}\right\} \tag{4}
\end{equation*}
$$

where $\left[\sigma^{i}\right]$ is obtained from $[\sigma]$ by removing an $n k$-hook of leg-length h_{i} commencing in the i th row and the summation is over all values of i (rows) from which such a hook may be removed. Now multiplying (2) by n we have:

$$
\begin{equation*}
(n k) \frac{\partial t_{n(m)}}{\partial S_{n k}}=n \sum_{\mu} \phi_{\mu}\{\mu\} . \tag{5}
\end{equation*}
$$

Hence we must show the right sides of (4), (5) to be equal. For fixed (μ) we label the n values of $\phi_{\mu}\{\mu\}$ occurring on the right side of (5) by $\phi_{\mu}\{\mu\}_{1}, \ldots$, $\phi_{\mu}\{\mu\}_{n}$. Consider $\phi_{\mu}\{\mu\}_{\tau}$ (for $\phi_{\mu} \neq 0$), by Lemma 3 an $n k$-hook may be added to [μ] starting (bottom left node) at the r th row and a new diagram will result. Let this annexed hook terminate in the j th row, then denoting the augmented diagram by $[\sigma]$ we must show $\phi_{\mu}\{\mu\}_{r}=\phi_{\sigma}(-1)^{h_{j}}\left\{\sigma_{j}\right\}$ where $h_{j}=r-j$, that is, we must show $\phi_{\mu}=\theta_{\sigma}(-1)^{n_{i}}$. Now by Lemma 1 the $n k$-hook which is deleted from $[\sigma]$ to yield $[\mu]$ may be partitioned into $k n$-hooks which may be removed in order, starting at the top right node of the $n k$-hook. Again by Lemma 1, each deletion leaves a new diagram; hence the bottom left node of a given n-hook must lie in the same row as the top right node of its successor. Let the i th removed n-hook terminate in the q_{i} th row and commence in the q_{i-1} th row; then $q_{0}=j$ and $q_{k}=r$. Now the sum of the leg-lengths of these removed hooks is

$$
\left(q_{1}-q_{0}\right)+\ldots+\left(q_{k}-q_{k-1}\right)=q_{k}-q_{0}=r-j
$$

which is the leg-length $\left(h_{j}\right)$ of the $n k$-hook. But by the induction assumption

$$
\phi_{\mu}=\theta_{\sigma}(-1)^{\left(q_{1}-q_{o}\right)+\ldots+\left(q_{k}-q_{k}-1\right)}=\theta_{\sigma}(-1)^{h_{j}}
$$

as required. Similarly there corresponds to each

$$
\theta_{\sigma}(-1)^{n_{i}}\left\{\sigma^{j}\right\}
$$

a unique $\phi_{\mu}\{\mu\}_{r}$. To demonstrate (ii) we write [3, p. 86; 10, p. 374]

$$
\begin{equation*}
T_{n(m)}=\sum_{\sigma} \phi_{\sigma}\{\sigma\}=\sum_{\sigma} \phi_{\sigma} \sum_{\rho} \frac{h_{\rho}}{(m n)!} \cdot \chi_{\rho}^{\sigma} S_{\rho} \tag{6}
\end{equation*}
$$

where

$$
S_{\rho}=\left(s_{1}\right)^{\rho_{1}} \ldots\left(s_{n m}\right)^{\rho_{m n}}
$$

Now the coefficient of S_{ρ} on the right of (6) is

$$
\frac{h_{\rho}}{(m n)!} \sum_{\sigma} \phi_{\sigma} \chi_{\rho}^{\sigma}
$$

Now ϕ_{σ} has been shown [11] to be expressable as

$$
\phi_{\sigma}=\sum_{a} c_{a} \chi_{a}^{\sigma}
$$

where a ranges over partitions of $m n$ of the form $(\beta)_{n}$ where (β) is a partition of m and $(\beta)_{n}$ is the partition of $m n$ obtained from (β) on multiplying each element of (β) by n, that is, $(\beta)_{n}=\left(\beta_{1} n, \ldots, \beta_{m} n\right)$. Hence from the orthogonality relations for the characters of the symmetric group the coefficient of

$$
S_{\rho}=\frac{h_{\rho}}{(m n)!} \sum_{\sigma} \sum_{a} c_{a} \chi_{a}^{\sigma} \chi_{\rho}^{\sigma}
$$

is zero if (ρ) is not of the form $(\beta)_{n}$ also. Hence $T_{n(m)}$ is a function of the $S_{n k}$ ($k=1, \ldots, m$) only.

Theorem 2. Let $t_{n(m)}=\sum \phi_{\sigma}\{\sigma\}$, then $t_{n(m+1)}$ is obtained recursively as follows. To each $[\sigma]$ associated with a partition (σ) for which ϕ_{σ} is not zero we add an n-hook in all possible ways whose top right node lies in the first row of the augmented diagram $\left[\sigma^{\prime}\right]$. Then $t_{n(m+1)}=\sum \phi_{\sigma^{\prime}}\left\{\sigma^{\prime}\right\}$ where $\phi_{\sigma^{\prime}}=\phi_{\sigma}(-1)^{k}$ where k is the leg-length of the annexed hook.

Proof. The proof follows at once from Lemmas 1, 2, 3 and Theorem 1.
In recent papers [7, 8, 12], Robinson and Todd have given independent methods for evaluating $\{\mu\} \otimes\{\lambda\}$ by step by step building processes. Robinson gives a systematic procedure (in place of Littlewood's more or less empirical methods) by means of which the irreducible components of $\{\mu\} \otimes\{\lambda\}$ can be determined. In this general method the recursion is from n to $n+1$. Todd gives a general method and also treats the restricted case $\{m\} \otimes S_{n}=t_{n(m)}$ studied here. He gives recursion formulae by means of which $t_{n(m)}$ may be determined if $t_{n-1(m)}$ and $t_{n(m-1)}$ are both known. In the above methods the quantity θ_{σ} is made use of throughout.
4. The product $\{m\} \otimes\{4\}$. We now develop a method for computing the general case $\{m\} \otimes\{4\}$. From the calculations for $\{m\} \otimes\{4\}$ (for a specific value of $m)\{m\} \otimes\left\{2,1^{2}\right\}$ is obtained by inspection. A modification of this method is also given for computing $\{m\} \otimes\{3,1\}$ and $\{m\} \otimes\left\{1^{4}\right\}$. The remaining case, $\{m\} \otimes\left\{2^{2}\right\}$, follows immediately from the calculations for $\{m\} \otimes\{4\}$ and $\{m\} \otimes\left\{1^{4}\right\}$; hence the method applies to every partition of four.

Writing t_{i} for $t_{i(m)}$ we have, from (1) of $\S 2$;

$$
\{m\} \otimes\{4\}=\frac{1}{24}\left(t_{1}^{4}+6 t_{1}^{2} t_{2}+3 t_{2}^{2}+8 t_{3} t_{1}+6 t_{4}\right)
$$

Rearranging terms we have

$$
\begin{equation*}
\{m\} \otimes\{4\}=\frac{1}{12}\left[\frac{3}{2}\left(t_{1}{ }^{2}+t_{2}\right)^{2}-t_{1}^{4}+4 t_{3} t_{1}+3 t_{4}\right] . \tag{7}
\end{equation*}
$$

Now [10, p. 380]

$$
\frac{1}{2}\left(t_{1}^{2}+t_{2}\right)=\{m\} \otimes\{2\}=\sum_{v}\{2 m-2 v, 2 v\}, \quad v \leqslant \frac{1}{2} m
$$

It remains to develop explicit formulae for $t_{1}{ }^{4}, t_{3} t_{1}$ as sums of irreducible characters $\{\sigma\} ; t_{4}$ being known by Theorem 1 .

The following congruence relations will be used in the proofs which follow. Let

$$
t_{3} t_{1}=\sum_{\lambda} \theta_{\lambda}^{t_{3} t_{1}}\{\lambda\}, \quad t_{4}=\sum_{\lambda} \theta_{\lambda}^{t_{d}}\{\lambda\}, \quad t_{1}^{4}=\sum_{\lambda} \theta_{\lambda}^{t_{1}^{4}}\{\lambda\} .
$$

Now

$$
\theta_{\lambda}^{t_{3}^{t_{3} t_{1}}, \quad \theta_{\lambda}^{t_{4}}, \quad \theta_{\lambda}^{t_{1} *}}
$$

are integers or zero, hence we have, from (7),

$$
\begin{align*}
\theta_{\lambda}^{t_{s} t_{1}} & \equiv \theta_{\lambda}^{t_{1}{ }^{\star}} \quad(\bmod 3), \tag{8}\\
\theta_{\lambda}^{t_{\iota}} & \equiv \theta_{\lambda}^{t_{1}{ }^{\star}} \quad(\bmod 2) .
\end{align*}
$$

We now derive a formula for $t_{1}{ }^{4}=\{m\}^{4}$. Let (λ) be an arbitrary partition $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right)$ of $4 m$ into four or less parts. We proceed to calculate the coefficient of $\{\lambda\}$ in $\{m\}^{4}$. To illustrate a term in the product $\{m\}^{4}$ diagramatically we denote the Young diagrams $[m]_{i}$ by the respective notations:

$$
\text { x x x } \ldots \text { x, o o o . . . o, *** } * \text {. . *, . . - . . . -. }
$$

Then a diagram $[\lambda]$, corresponding to $\{\lambda\}$ must appear in the product $[m]_{1}$ $[m]_{2}[m]_{3}[m]_{4}$ as follows:

```
[\lambda]=x\timesx...xooo...o****...*-. ...-
    o o o...o o***...* - - . ...-
```

 ***...* - - . . . -
 Now labelling the set of nodes in the first row which arises from $[m]_{i}$ by $u_{i 1}$, in the second row by $u_{i 2}$ etc., we have:

$$
\begin{aligned}
& m=u_{11} \\
& m=u_{21}+u_{22} \\
& m=u_{31}+u_{32}+u_{33} \\
& m=u_{41}+u_{42}+u_{43}+u_{44}
\end{aligned}
$$

$$
\text { and } \begin{aligned}
\lambda_{1} & =u_{11}+u_{21}+u_{31}+u_{41} \\
\lambda_{2} & =u_{22}+u_{32}+u_{42} \\
\lambda_{3} & =u_{33}+u_{43} \\
& \lambda_{4}
\end{aligned}
$$

By a repeated application of the rule for the ordinary multiplication of S-functions we see that the necessary and sufficient conditions that a set of
integers $u_{i j}$ form a Young diagram appearing in the product $\{m\}^{4}$ are the following:
(a) $\sum_{i} \quad u_{i j}=\lambda_{j}$
(e) $\lambda_{2} \leqslant u_{11}+u_{21}+u_{31}$
(b) $\sum_{j} \quad u_{i j}=m$
(f) $u_{33} \leqslant u_{22}$
(c) $\quad u_{i j} \geqslant 0$
(g) $\lambda_{3} \leqslant u_{22}+u_{32}$
(d) $u_{22}+u_{32} \leqslant u_{11}+u_{21}$
(h) $\lambda_{4} \leqslant u_{33}$

Conditions (a), (b), (c) follow from the geometry of the Young diagram; (d), ..., (h) follow from the rule for multiplying S-functions of type $\{m\}$. Now it follows from conditions (a), (b) that the quantities u_{33}, u_{32}, u_{22} determine all the $u_{i j}$ uniquely. Relabelling these quantities i, j, k respectively, we write all the $u_{i j}$ in terms of the quantities $i, j, k, \lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, m$:

$$
\begin{aligned}
& u_{11}=m \\
& u_{21}=m-k \\
& u_{22}=k \\
& u_{32}=j \\
& u_{33}=i
\end{aligned}
$$

$$
\begin{aligned}
& u_{31}=m-(i+j) \\
& u_{44}=\lambda_{4} \\
& u_{43}=\lambda_{3}-i \\
& u_{42}=\lambda_{2}-(k+j) \\
& u_{41}=\lambda_{1}+(i+j+k)-3 m
\end{aligned}
$$

Now rewriting (d), . . , (h) we have:

$$
\begin{array}{ll}
\left(\mathrm{d}^{\prime}\right) k \leqslant \frac{1}{2}(2 m-j) & \text { (g') } \lambda_{3}-j \leqslant k \\
\left(\mathrm{e}^{\prime}\right) k \leqslant 3 m-\lambda_{2}-(i+j) & \text { (h') } \lambda_{4} \leqslant i \\
\left(\mathrm{f}^{\prime}\right) i \leqslant k &
\end{array}
$$

Combining these inequalities with $u_{i j} \geqslant 0$, we obtain the following limits for i, j, k :

$$
\begin{aligned}
\max \left(\lambda_{4}, \lambda_{3}+\lambda_{4}-m\right) & \leqslant i \leqslant \min \left(m, \lambda_{3}\right) \\
0 & \leqslant j \leqslant \min \left(m-i, \lambda_{2}-i\right) \\
N & \leqslant k \leqslant M
\end{aligned}
$$

where

$$
\begin{aligned}
& M=\min \left(\frac{1}{2}(2 m-j), \lambda_{2}-j, 3 m-\left(\lambda_{2}+i+j\right)\right) \\
& N=\max \left(i, \lambda_{3}-j, 3 m-\left(\lambda_{1}+i+j\right)\right)
\end{aligned}
$$

Now setting $K_{i j}=\max (0,1+M-N)$ we have
Theorem 3.

$$
t_{1}^{4}=\{m\}^{4}=\sum_{\lambda} \theta_{\lambda}^{l_{1}{ }^{*}}\{\lambda\} \text { where } \theta_{\lambda}^{t_{1}^{*}}=\sum_{i, j} K_{i j}
$$

and i, j range over the values indicated above.
This formula illustrates the fact (which is easily proved directly in the general case) that if

$$
\begin{aligned}
\{m\}^{n} & =\sum_{\lambda} \theta_{\lambda}^{t_{1} n^{n}}\{\lambda\}, \\
\{m+k\}^{n} & =\sum_{\bar{\lambda}} \theta_{\lambda}^{t_{1}{ }^{n}}\{\bar{\lambda}\}
\end{aligned}
$$

then if $(\bar{\sigma})$ is a partition of $n(m+k)$ with $\bar{\sigma}_{n} \geqslant k$, and if $(\sigma)=\left(\bar{\sigma}_{1}-k, \ldots\right.$, $\left.\bar{\sigma}_{n}-k\right)$, then

$$
\theta_{\sigma}^{t_{\sigma}^{1} n}=\theta_{\sigma}^{t_{\sigma}^{1} n} .
$$

Hence we have a recursion formula for $\{m+1\}^{n}$ in terms of $\{m\}^{n}$ for all partitions (σ) of $(m+1)(n)$ with $\sigma_{n} \geqslant 1$.

The following theorem enables us to compute the quantity $t_{3} t_{1}$ by inspection.
Theorem 4.

$$
t_{3} t_{1}=\sum_{\lambda} \theta_{\lambda}^{t_{3} t_{1}}\{\lambda\}
$$

where $\theta_{\lambda}{ }^{t_{s} t_{1}}=1,0,-1$ according as $\theta_{\lambda} t_{1}{ }^{4}$ is congruent to $1,0,-1$ respectively $(\bmod 3)$.

Proof. The congruence $(\bmod 3)$ has been established (8). It remains to be shown that $\theta_{\lambda}{ }^{t_{3} t_{1}}$ is always 1,0 , or -1 . To show this we let [10, p. 381] $t_{3}=\sum g\left(\lambda^{\prime}\right)\left\{\lambda^{\prime}\right\}$ where $g\left(\lambda^{\prime}\right)$ is $1,0,-1$ according as $\left(1+\lambda_{1}-\lambda_{2}\right)$ is congruent to $1,0,-1(\bmod 3)$, and $\left(\lambda^{\prime}\right)$ ranges over all partitions of $3 m$ into three or fewer parts. Now $t_{1}=\{m\}$, hence

$$
\begin{equation*}
t_{3} t_{1}=\sum_{\lambda^{\prime}} g\left(\lambda^{\prime}\right)\left\{\lambda^{\prime}\right\}\{m\}=\sum_{\lambda} \theta_{\lambda^{t_{3}} t_{1}}\{\lambda\} \tag{10}
\end{equation*}
$$

Consider a partition (λ) of $4 m$, then

$$
\theta_{\lambda^{t_{3}} t_{1}}=\sum_{\lambda^{\prime}} g\left(\lambda^{\prime}\right)
$$

where the summation is over all partitions (λ^{\prime}) from which (λ) can be obtained on multiplying $\left\{\lambda^{\prime}\right\}$ by $\{m\}$. Now consider which diagrams $\left[\lambda^{\prime}\right]$ are obtained from $[\lambda]$ on deleting m nodes as indicated in (10) above. Since (λ^{\prime}) is a partition of $3 m$ into three or fewer parts, this amounts to deleting ($m-\lambda_{4}$) nodes from the first three rows of $[\lambda]$ in accordance with the rule for multiplying $\left\{\lambda^{\prime}\right\}\{m\}$. Four cases arise:
(i) $\lambda_{1}-\lambda_{2} \geqslant m-\lambda_{4}, \quad \lambda_{2}-\lambda_{3} \geqslant m-\lambda_{4}$
(ii) $\lambda_{1}-\lambda_{2} \geqslant m-\lambda_{4}, \quad \lambda_{2}-\lambda_{3}<m-\lambda_{4}$
(iii) $\lambda_{1}-\lambda_{2}<m-\lambda_{4}, \quad \lambda_{2}-\lambda_{3} \geqslant m-\lambda_{4}$
(iv) $\lambda_{1}-\lambda_{2}<m-\lambda_{4}, \quad \lambda_{2}-\lambda_{3}<m-\lambda_{4}$

We will consider (i) in detail. The number of nodes which may be deleted from λ_{3} is $0,1,2, \ldots, \min \left(\lambda_{3}-\lambda_{4}, m-\lambda_{4}\right)=s$. We first delete zero nodes from $\lambda_{3}, m-\lambda_{4}-r$ from λ_{1} and r from $\lambda_{2}\left(r=0,1, \ldots, m-\lambda_{4}\right)$. This gives rise to the set of values for $g\left(\lambda^{\prime}\right)$ whose sum is indicated as T_{1} below. We next delete one node from $\lambda_{3}, m-\lambda_{4}-(r+1)$ from λ_{1} and r from $\lambda_{2}(r=0$, $\left.1, \ldots, m-\lambda_{4}-1\right)$, giving rise to a set of values for $g\left(\lambda^{\prime}\right)$ with sum indicated as T_{2} below. This process is continued to the $s=\min \left(\lambda_{3}-\lambda_{4}, m-\lambda_{4}\right)$ step. Denoting the set of values $0,-1,1$, by x_{1}, x_{2}, x_{3}, not necessarily respectively but in the same cyclic order, the sums T_{1}, \ldots, T_{s} must then appear as follows:

$T_{1}=x_{1}+x_{2}+x_{3}+x_{1}+x_{2}+x_{3}+x_{1}+\ldots+x_{i}$	$\left(m-\lambda_{4}+1\right)$ terms		
$T_{2}=$	$x_{3}+x_{1}+x_{2}+x_{3}+x_{1}+x_{2}+\ldots+x_{j}$	$\left(m-\lambda_{4}\right)$	terms
$T_{3}=$	$x_{2}+x_{3}+x_{1}+x_{2}+x_{3}+\ldots+x_{k}$	$\left(m-\lambda_{4}-1\right)$ terms	

Now since $x_{1}+x_{2}+x_{3}=0$, we have at once:

$$
\theta_{\lambda}^{t_{3} t_{1}}=\sum_{\lambda^{\prime}} g\left(\lambda^{\prime}\right)=T_{1}+\ldots+T_{s}=0
$$

if $s \equiv 0(\bmod 3)$, since each set of three rows has total sum zero. If $s \equiv 1$ $(\bmod 3)$ the sum is simply T_{s} which is obviously $1,-1$ or zero in all cases. If $s \equiv 2(\bmod 3)$ we partition the final two rows T_{s-1}, T_{s} as indicated below:

Hence $T_{1}+\ldots+T_{s}=T_{s-1}+T_{s}$ is $0, x_{1}$, or $x_{1}+x_{3}$ which is obviously one of 0,1 , or -1 for all values of x_{1}, x_{3}. Thus the proof for case (i) is complete. The cases (ii), (iii), (iv) give rise to a similar type of array of values as displayed above for case (i); again by direct calculation the total sum is seen to be 0,1 , or -1 . This completes the proof of the theorem.

The remaining term of (7),

$$
\frac{1}{4}\left(t_{1}{ }^{2}+t_{2}\right)^{2}=\left[\sum\{2 m-2 v, 2 v\}\right]^{2}
$$

is computed directly by the ordinary multiplication of S-functions. This calculation is somewhat lengthy although it is a considerable simplification of the direct calculation of $t_{2}{ }^{2}$ and $t_{1}{ }^{2} t_{2}$ independently.
5. The remaining partitions of four. We first consider the case $\{m\} \otimes\left\{2,1^{2}\right\}$:

$$
\begin{aligned}
\{m\} \otimes\left\{2,1^{2}\right\} & =\frac{1}{24}\left(3 t_{1}{ }^{4}-6 t_{1}{ }^{2} t_{2}-3 t_{2}{ }^{2}+6 t_{4}\right) \\
& =\frac{1}{12}\left[-\frac{3}{2}\left(t_{1}{ }^{2}+t_{2}\right)^{2}+3 t_{1}{ }^{4}+3 t_{4}\right] .
\end{aligned}
$$

Hence $\{m\} \otimes\left\{2,1^{2}\right\}$ may be computed by inspection from the calculations for $\{m\} \otimes\{4\}$.

To compute $\{m\} \otimes\left\{1^{4}\right\},\{m\} \otimes\{3,1\}$ we modify the above method as follows:

$$
\begin{aligned}
\{m\} \otimes\left\{1^{4}\right\} & =\frac{1}{24}\left(t_{1}{ }^{4}-6 t_{1}{ }^{2} t_{2}+3 t_{2}{ }^{2}+8 t_{3} t_{1}-6 t_{4}\right) \\
& =\frac{1}{12}\left[\frac{3}{2}\left(t_{1}{ }^{2}-t_{2}\right)^{2}-t_{1}{ }^{4}+4 t_{3} t_{1}-3 t_{4}\right] .
\end{aligned}
$$

This calculation follows at once from the results for $\{m\} \otimes\{4\}$ except for the term $\frac{1}{4}\left(t_{1}{ }^{2}-t_{2}\right)^{2}$. Now

$$
t_{1}{ }^{2}=\{m\}^{2}=\{2 m\}+\{2 m-1,1\}+\{2 m-2,2\}+\ldots+\{m, m\}
$$

and by Theorem 1 we have

$$
t_{2}=\{2 m\}-\{2 m-1,1\}+\ldots+(-1)^{m}\{m, m\}
$$

Hence the term

$$
\frac{1}{2}\left(t_{1}^{2}-t_{2}\right)=\sum_{v}\{2 m-v, v\}, \quad\left(v=1,3, \ldots, m^{\prime}\right)
$$

where m^{\prime} is the greatest odd integer $\leqslant m$. The term $\frac{1}{4}\left(t_{1}{ }^{2}-{ }_{2}\right)^{2}$ is now computed by the ordinary multiplication of S-functions.

Now

$$
\{m\} \otimes\{3,1\}=\frac{1}{12}\left[3 t_{1}{ }^{4}-\frac{3}{2}\left(t_{1}^{2}-t_{2}\right)^{2}-3 t_{4}\right]
$$

hence this case follows by inspection from the calculations for $\{m\} \otimes\left\{1^{4}\right\}$.
For the remaining case $\{m\} \otimes\left\{2^{2}\right\}$ we have

$$
\{m\} \otimes\left\{2^{2}\right\}=\frac{1}{12}\left[3\left(t_{1}^{4}+t_{2}^{2}\right)-2 t_{1}^{4}-4 t_{3} t_{1}\right] .
$$

Here the coefficient of $t_{1}{ }^{2} t_{2}$ is zero but the quantity $t_{2}{ }^{2}$ must be calculated. We do this indirectly by making use of the results already obtained for $\{m\} \otimes\{4\},\{m\} \otimes\left\{1^{4}\right\}$, and the following identity:

$$
\frac{1}{2}\left[\left(t_{1}^{2}+t_{2}\right)^{2}+\left(t_{1}^{2}-t_{2}\right)^{2}\right]=\left(t_{1}^{4}+t_{2}^{2}\right)
$$

6. Conclusion. By means of the method developed here and the earlier work of Thrall, the cases $\{m\} \otimes\{2\},\{m\} \otimes\{3\},\{m\} \otimes\{4\}$ may be computed directly. The next case, $\{m\} \otimes\{5\}$, is considerably more complicated and does not readily lend itself to direct calculation.

The author has used this method to compute the products $\{7\} \otimes\{4\}$, $\{7\} \otimes\left\{2,1^{2}\right\}$ in full, Some Results in Littlewood's Algebra of S-functions, thesis (microfilmed), University of Michigan, 1950. The cases $\{5\} \otimes\{4\},\{6\} \otimes\{4\}$ have been computed recently by another method by Foulkes [2].

References

1. D. G. Duncan, Note on a formula by Todd, J. London Math. Soc., vol. 27 (1952), 235-236.
2. H. O. Foulkes, Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form, J. London Math. Soc., vol. 25 (1950), 205-209.
3. D. E. Littlewood, The theory of group characters and matrix representations of groups (Oxford, 1950).
4. F. D. Murnaghan, The theory of group representations (Baltimore, 1938).
5. T. Nakayama, On some modular properties of irreducible representations of a symmetric group, Jap. J. Math., vol. 17 (1940), 165-184.
6. G. de B. Robinson, On the representations of the symmetric group III, Amer. J. Math., vol. 70, (1948), 277-294.
7. -_ On the disjoint product of irreducible representations of the symmetric group, Can. J. Math., vol. 1 (1949), 166-175.
8. _-_ Induced representations and invariants, Can. J. Math., vol. 2 (1950), 334-343.
9. R. A. Staal, Star Diagrams and the symmetric group, Can. J. Math., vol. 2 (1950), 79-92.
10. R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math., vol. 64 (1942), 371-388.
11. R. M. Thrall and G. de B. Robinson, Supplement to a paper of G. de B. Robinson, Amer. J. Math., vol. 73 (1951), 721-724.
12. J. A. Todd, A note on the algebra of S-functions, Proc. Cambridge Phil. Soc., vol. 45 (1949), 328-334.
13. M. Zia-ud-Din, Proc. Edinburgh Math. Soc., vol. 5 (1936), 43-45.

The University of Arizona

[^0]: ${ }^{1}$ I am indebted to Professor R. A. Staal for this proof which is shorter than my original one.
 ${ }^{2}$ When all possible n-hooks have been removed from a diagram the resulting diagram is called its n-core. The n-core and θ_{σ} are independent of the order of removal of the hooks [5], [6].
 ${ }^{3}$ For a method of evaluating the θ_{σ} which does not lead to the recursion formula see [1].

