HIGHLY SYMMETRIC HOMOGENEOUS SPACES

L. N. MANN

We consider effective homogeneous spaces M = G/H where G is a compact connected Lie group, H is a closed subgroup and G acts effectively on M (i.e., H contains no non-trivial subgroup normal in G). It is known that dim $G \leq m^2/2 + m/2$ where $m = \dim M$ and that if dim $G = m^2/2 + m/2$, then M is diffeomorphic to the standard sphere S^m or the standard real projective space RP^m [1]. In addition it has been shown that for fixed m there are gaps in the possible dimensions for G below the maximal bound [4; 5]. Using the Main Lemma of [3], we give a classification of all effective homogeneous spaces M = G/H with dim $G \ge m^2/4 + m/2$, $m \ge 19$. In particular, if M is simplyconnected we conclude that $M = CP^n$, m = 2n, or $M = S^{m-k} \times V^k$, $0 \le k \le m/2$, where V^k is a k-dimensional simply-connected homogeneous space.

THEOREM. Let $M^m = G/H$ be an effective homogeneous space with dim $G \ge m^2/4 + m/2$, $m \ge 19$. Then exactly one of the following holds:

(1) $M = CP^n$ (m = 2n) and G is locally isomorphic to SU(n + 1).

(2) $M = CP^n \times S^1$ (m = 2n + 1) and G is locally isomorphic to U(n + 1).

(3) M is a simple lens space finitely covered by S^{2n+1} (m = 2n + 1) and G is locally isomorphic to U(n + 1).

(In possibilities (4) through (6), $V^k = G_2/H_2$ denotes a k-dimensional homogeneous space, $0 \leq k \leq m/2$, and G is locally isomorphic to

 $\operatorname{Spin}(m-k+1) \times G_2$

where G_2 is a compact connected Lie group with dim $G_2 \leq k(k+1)/2$.)

(4) $M = RP^{m-k} \times V^k.$

(5) $M = S^{m-k} \times V^k.$

(6) $M = S^{m-k} \times_{\kappa} V^k$ where K is a group of order two acting freely on $S^{m-k} \times V^k$ and generated by (A_1, A_2) where A_1 is the antipodal map on S^{m-k} and A_2 is an element of order two of $N(H_2, G_2)/H_2$.

COROLLARY. If M is simply-connected, then $M = CP^n$ or $M = S^{m-k} \times V^k$ where V^k is simply-connected.

Proof of the Theorem. Since G acts effectively on M, we may apply the Main Lemma of [3]. Possibilities (1), (2) and (3) then correspond to cases (α), (β) and (γ) of the Main Lemma. We are left with case (δ) of the Main Lemma. Therefore G is locally isomorphic to Spin $(m - k + 1) \times G_2$, $0 \le k \le m/2$,

Received August 1, 1972. This research was partially supported by NSF Grant GP-29664.

where $G_1 = \text{Spin}(m - k + 1)$ acts almost effectively, i.e. with finite kernel, on M with orbits which are some combination of fixed points, standard (m - k)-spheres and standard real projective (m - k)-spaces. It follows moreover from [4, Theorem 1] that dim $G_2 \leq k(k + 1)/2$. Since the almost effective actions of G_1 and G_2 on M commute it is easily verified that if $y = g_2g_1x$ for $x, y \in M$ and $g_1 \in G_1, g_2 \in G_2$ then

$$(G_1)_y = g_1(G_1)_x g_1^{-1}$$

where $(G_1)_{\psi}$ denotes the isotropy or stability subgroup of G_1 at y. But $G_1 \times G_2$ is transitive on M and it follows from the observation above that all the orbits of the action of G_1 on M are of the same type. Let $H_1 = (G_1)_x$ for some $x \in M$. By Borel [2], M is a fibre bundle over M/G_1 with fibre G_1/H_1 (either S^{m-k} or RP^{m-k}) and structural group $N(H_1, G_1)/H_1$. If $G_1/H_1 = RP^{m-k}$, then the structural group $N(H_1, G_1)/H_1$ is trivial and we have possibility (4). So we assume $G_1/H_1 = S^{m-k}$. If the bundle is still trivial then of course we have possibility (5). So we are left with the case where M is the total space of a non-trivial S^{m-k} bundle over M/G_1 . We can describe the bundle as follows [2]. Let F be the fixed point set of H_1 on M and let $K = N(H_1, G_1)/H_1 \cong Z_2$. Now K acts freely on F and we have the principal K-bundle : $F \to M/G_1$. The associated $G_1/H_1 = S^{m-k}$ bundle is

$$M = S^{m-k} \times_{\kappa} F \to M/G_1.$$

We show G_2 acts transitively on F. The orbits of G_2 on M are all of the same type and G_2 leaves the subset F invariant. Since the actions of G_2 and Kcommute on F and G_2 acts transitively on $M/G_1 = F/K$, K acts transitively on F/G_2 . Therefore F/G_2 consists of either one or two points and, hence, there are either one or two orbits for the action of G_2 on F. But if there are two orbits, K permutes these two orbits and

$$M = S^{m-k} \times_{\kappa} F = RP^{m-k} \times F_0$$

where F_0 is one of these two orbits. However, this would place us back in possibility (4). Therefore $F = G_2/H_2$.

Since K acts freely on F, it is easily verified that K is isomorphic to a subgroup S of $N(H_2, G_2)/H_2$ and, in fact, the action of K on F is equivalent to the action of S on G_2/H_2 induced from the standard action of $N(H_2, G_2)/H_2$ on G_2/H_2 . This completes the proof of the theorem.

For
$$k \leq k_0 = [\frac{1}{2}((1+8m)^{1/2}-3)],$$

 $\frac{1}{2}(m-k)(m-k+1) + \frac{1}{2}k(k+1) < \frac{1}{2}(m-k+1)(m-k+2).$

Therefore it follows from the theorem that to list the effective homogeneous spaces G/H with dim $G \ge (m - k)(m - k + 1)/2$, $k \le k_0$, it is sufficient to list all homogeneous spaces of dimension less than or equal to k. For small

values of k this program is not difficult. As an example we list below all homogeneous spaces of dimensions one, two and three:

$$k = 1: S^{1}$$

$$k = 2: S^{2}, RP^{2}, T^{2}$$

$$k = 3: S^{3}, RP^{3}, T^{3}, RP^{2} \times S^{1}, S^{2} \times S^{1}, S^{2} \times z_{2} S^{1},$$

$$S^{3}/F \text{ (where } F \text{ is any finite subgroup of } S^{3}\text{).}$$

References

- 1. Garret Birkhoff, Extensions of Lie groups, Math. Z. 53 (1950), 226-235.
- 2. A. Borel, Transformation groups with two classes of orbits, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 983–985.
- 3. H. T. Ku, L. N. Mann, J. L. Sicks, and J. C. Su, Degree of symmetry of a product manifold, Trans. Amer. Math. Soc. 146 (1969), 133-149.
- 4. L. N. Mann, Gaps in the dimensions of transformation groups, Illinois J. Math. 10 (1966), 532-546.
- 5. Further gaps in the dimensions of transformation groups, Illinois J. Math. 13 (1969), 740-756.

University of Massachusetts, Amherst Massachusetts