
Faltings height and Néron–Tate height of a
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Abstract

We prove a formula, which, given a principally polarized abelian variety (A, λ) over the
field of algebraic numbers, relates the stable Faltings height of A with the Néron–Tate
height of a symmetric theta divisor on A. Our formula completes earlier results due to
Bost, Hindry, Autissier and Wagener. The local non-archimedean terms in our formula
can be expressed as the tropical moments of the tropicalizations of (A, λ).

1. Introduction

Let (A, λ) be a principally polarized abelian variety of positive dimension over the field of alge-
braic numbers Q̄. Let Θ be an effective symmetric ample divisor on A that defines the principal
polarization λ and put L = OA(Θ).

We are interested in the Néron–Tate height h′
L(Θ) of the cycle Θ. The Néron–Tate height

of higher-dimensional cycles was first constructed by Philippon [Phi91] and soon afterwards re-
obtained using different methods by, among others, Gubler [Gub94], Bost et al. [Bos96b, BGS94]
and Zhang [Zha95]. The Néron–Tate height h′

L(Θ) is non-negative and is an invariant of the pair
(A, λ).

Another natural invariant of (A, λ) is the stable Faltings height hF (A) of A introduced by
Faltings in [Fal83] as a key tool in his proof of the Mordell conjecture. It is natural to ask how
h′

L(Θ) and hF (A) are related.
Let k ⊂ Q̄ be a number field and assume that the pair (A, L) is defined over k. In [Aut06,

Hin93], Hindry and Autissier proved an identity relating h′
L(Θ) and hF (A) under the assumption

that A has everywhere good reduction over k. In order to state their result, we introduce some
notation.

Let s be a non-zero global section of L. Let M(k)∞ denote the set of complex embeddings
of k. For each v ∈ M(k)∞, we put the standard euclidean metric on k̄v

∼= C. Let ‖ · ‖v be a
canonical metric on Lv = L ⊗ k̄v (i.e. a smooth hermitian metric with a translation-invariant
curvature form). We then consider the local archimedean invariants

I(Av, λv) = log‖s‖v,L2 −
∫

A(k̄v)
log‖s‖v dμH,v, (1.1)
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where μH,v denotes the Haar measure on the complex torus A(k̄v), normalized to give A(k̄v) unit
volume, and where

‖s‖v,L2 =
(∫

A(k̄v)
‖s‖2

v dμH,v

)1/2

(1.2)

is the L2-norm of s. Here and below we denote by log the natural logarithm. The real number
I(Av, λv) does not depend on the choice of Θ or s or ‖ · ‖v (we verify this in § 12.4). We have
I(Av, λv) > 0 by the Jensen inequality.

In [Aut06, Théorème 3.1] and [Hin93, formula (A.17)], we find the following result. Assume
that A has everywhere good reduction over k. Write κ0 = log(π

√
2) and let g = dim(A). Then

the equality

hF (A) = 2g h′
L(Θ) − κ0 g +

2
[k : Q]

∑
v∈M(k)∞

I(Av, λv) (1.3)

holds in R. Formula (1.3) is obtained in both [Aut06, Hin93] as the result of a calculation
in Gillet–Soulé’s arithmetic intersection theory, combined with Moret-Bailly’s celebrated key
formula for abelian schemes [Mor85].

In [Aut06, Question], it is asked whether an extension of (1.3) might hold for arbitrary
principally polarized abelian varieties over Q̄ of the following shape. Assume that the abelian
variety A has semistable reduction over k. Let M(k)0 denote the set of non-archimedean places
of k and, for v ∈ M(k)0, denote by Nv the cardinality of the residue field at v. Then, for each
v ∈ M(k)0, there should exist a natural local invariant αv ∈ Q�0 of (A, λ) at v such that the
equality

hF (A) = 2g h′
L(Θ) − κ0 g +

2
[k : Q]

( ∑
v∈M(k)0

αv log Nv +
∑

v∈M(k)∞

I(Av, λv)
)

(1.4)

holds in R. The local invariant αv should vanish if and only if A has good reduction at v.
In [Aut06], Autissier established the identity (1.4) for elliptic curves, for Jacobians of genus

two curves and for arbitrary products of these. In [dJ18, Theorem 1.6], the first-named author
exhibited natural αv ∈ Q�0, and established (1.4), for all Jacobians and for arbitrary products
of these. In both [Aut06, dJ18], the local non-archimedean invariants αv are expressed in terms
of the combinatorics of the dual graph of the underlying semistable curve at v.

1.1 Main result
The goal of this paper is to give a complete affirmative answer to [Aut06, Question]. This is
established by combining Theorems A and B below.

Let v ∈ M(k)0 be a non-archimedean place of k. Let Aan
v be the Berkovich analytification of

A over the completion Cv of the algebraic closure of the completion kv of k at v. Similar to the
archimedean setting, the analytification Lan

v of L at v can be endowed with a canonical metric
‖ · ‖v; we refer to § 5 for a review of the construction and main properties of such canonical
metrics.

Analogous to (1.1), we define

I(Av, λv) = log‖s‖v,sup −
∫

Aan
v

log‖s‖v dμH,v, (1.5)

where
‖s‖v,sup = sup

x∈Aan
v

‖s(x)‖v (1.6)

2
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is the supremum norm of s and where μH,v is the pushforward into Aan
v of the Haar measure of

unit volume on the canonical skeleton of Aan
v . The canonical skeleton of Aan

v is a natural real
torus contained in Aan

v and to which Aan
v has a natural deformation retraction.

The invariant I(Av, λv) is independent of the choice of L, the choice of canonical metric
‖ · ‖v and the choice of global section s (we verify this in § 7.2). It follows from the definition
that I(Av, λv) � 0 and equality is obtained if A has good reduction at v (we verify this in § 10.1).

Our first result is as follows.

Theorem A. Let (A, λ) be a principally polarized abelian variety over Q̄. Assume that A has
semistable reduction over the number field k and set g = dim(A). Let Θ be a symmetric effective
ample divisor on A that defines the polarization λ and put L = OA(Θ). Then the equality

hF (A) = 2g h′
L(Θ) − κ0 g +

2
[k : Q]

( ∑
v∈M(k)0

I(Av, λv) log Nv +
∑

v∈M(k)∞

I(Av, λv)
)

holds in R.

Note that the sum over M(k)0 is indeed finite since A has good reduction at almost all
v ∈ M(k)0. An important ingredient in our proof of Theorem A is Moret-Bailly’s well-known
key formula [Mor85] or more precisely Bost’s version [Bos96b] of the key formula in the number
field setting that expresses the stable Faltings height of a polarized abelian variety in terms of
a so-called Moret-Bailly model of it. We review the notion of Moret-Bailly models, and state
Bost’s version of the key formula, in § 13.

1.2 Tropical moments
As we discuss next, for all non-archimedean places v the term I(Av, λv) can be expressed as a
‘tropical moment’ of a principally polarized tropical abelian variety canonically associated to A
at v. This gives a concrete interpretation of the terms I(Av, λv) and makes it possible to calculate
the terms I(Av, λv) explicitly.

A principally polarized tropical abelian variety is a tuple (X, Y, Φ, b), where X, Y are finitely
generated free abelian groups, Φ: Y

∼−→ X is an isomorphism and b : Y × X → R is a bilinear map
such that b(·, Φ(·)) is positive definite. When (X, Y, Φ, b) is a principally polarized tropical abelian
variety, we have a natural associated inclusion Y ↪→ X∗

R
, where we write X∗

R
= Hom(X, R). The

cokernel Σ = X∗
R
/Y is a real torus and the bilinear map b naturally induces a norm ‖ · ‖ on X∗

R
.

We usually simply write Σ for a principally polarized tropical abelian variety if the underlying
data (X, Y, Φ, b) are understood.

Associated to the principally polarized tropical abelian variety Σ, we have its Voronoi polytope
centered at the origin

Vor(0) =
{

ν ∈ X∗
R

∣∣∣‖ν‖ = min
v′∈Y

‖ν − v′‖
}

.

The tropical moment of Σ is defined to be the value of the integral∫
Vor(0)

‖ν‖2 dμL(ν).

Here μL denotes the Lebesgue measure on X∗
R
, normalized to give Vor(0) unit volume.

Let v ∈ M(k)0 be a non-archimedean place of k. By Raynaud’s classical theory of non-
archimedean uniformization, see for example [BR15, BL91, FRSS18] or §§ 6–7, the canonical
skeleton Σv of the Berkovich analytic space Aan

v is naturally equipped with a structure of a
principally polarized tropical abelian variety.
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Theorem B. Let v ∈ M(k)0. The following statements hold.

(a) The local non-archimedean term I(Av, λv) is equal to half the tropical moment of the
canonical skeleton Σv.

(b) The term I(Av, λv) vanishes if and only if A has good reduction at v.
(c) I(Av, λv) is a rational number.

Parts (b) and (c) of the theorem follow easily from part (a). Indeed, it is clear that the
tropical moment of Σv vanishes if and only if Σv is a point. The latter holds if and only if A has
good reduction at v.

Next, the underlying bilinear form of the principally polarized tropical abelian variety Σv is
defined in terms of the discrete valuation corresponding to v and is, in particular, Z-valued. This
implies that the Voronoi polytope associated to Σv is a rational polyhedron and this gives that
the tropical moment of Σv is a rational number.

In the following we discuss a few applications of Theorems A and B.

1.3 Lower bounds for the stable Faltings height
First, as h′

L(Θ) is non-negative, Theorem A immediately implies the following lower bound for
the stable Faltings height of A.

Corollary. Assume that A has semistable reduction over the number field k and set g =
dim(A). Then the lower bound

hF (A) � −κ0 g +
2

[k : Q]

( ∑
v∈M(k)0

I(Av, λv) log Nv +
∑

v∈M(k)∞

I(Av, λv)
)

(1.7)

holds.

With the terms I(Av, λv) interpreted as half the tropical moments of the canonical skeleta
Σv, Wagener obtained the lower bound (1.7) in his 2016 PhD thesis [Wag16, Théorème A]. As
for each v ∈ M(k)0 we have I(Av, λv) � 0, the lower bound (1.7) improves upon the well-known
lower bound

hF (A) � −κ0 g +
2

[k : Q]

∑
v∈M(k)∞

I(Av, λv) (1.8)

for hF (A) due to Bost [Bos96a, GR14]. We recall that (1.8) can in turn be used to obtain
refinements of Masser’s ‘matrix lemma’ [Mas85]. See, for example, [Aut13] and the references
therein.

1.4 Elliptic curves
Let Σ be a circle of circumference

√
�. A small calculation yields that the tropical moment of Σ

is equal to 1
12�. This has the following application. Let (A, λ) be an elliptic curve with semistable

reduction over the number field k. Let Θ be an effective symmetric divisor on A that defines
the principal polarization λ and put L = OA(Θ). Then Θ is a two-torsion point of A, which
gives h′

L(Θ) = 0. If A has bad reduction at v ∈ M(k)0, then Σv is a circle of circumference√
ordv Δv, where Δv is the minimal discriminant of A at v. We conclude using Theorem B that

I(Av, λv) = 1
24 ordv Δv if v ∈ M(k)0.

Next, let v ∈ M(k)∞ and write A(k̄v) = C/(Z + τvZ), where τv ∈ H with H the Siegel upper
half plane. For τ ∈ H, we set q = e2π

√−1τ and let Δ(τ) = q
∏∞

n=1(1 − qn)24 be the usual discrimi-
nant modular form. By [Aut06, Proposition 2.1], we have I(Av, λv) = − 1

24 log(|Δ(τv)|(2 Im τv)6).
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Let hF (A) be the stable Faltings height of A. Applying Theorem A, we find that

12 [k : Q] hF (A) =
∑

v∈M(k)0

ordv Δv log Nv −
∑

v∈M(k)∞

log((2π)12|Δ(τv)|(Im τv)6).

This recovers the well-known Faltings–Silverman formula for the stable Faltings height of an
elliptic curve; cf. [Del85, Exemple 1.4 and Remarque 1.5] or [Fal84, Theorem 7] or [Sil84,
Proposition 1.1].

1.5 Jacobians
Let Γ be a compact connected metric graph. Let r(p, q) denote the effective resistance between
points p, q ∈ Γ. Fix q ∈ Γ and set f(x) = 1

2r(x, q). Following [BF06, BR07], we set

τ(Γ) =
∫

Γ
(f ′(x))2 dx. (1.9)

The real number τ(Γ) is independent of the choice of q. Let Jac(Γ) denote the tropical Jacobian
of Γ as in [MZ08]. Then Jac(Γ) is a principally polarized tropical abelian variety canonically
associated to Γ. We have shown in [dJS18, Theorem B] that its tropical moment is equal to

1
8�(Γ) − 1

2τ(Γ), (1.10)

where �(Γ) is the total length of Γ and τ(Γ) is the tau invariant of Γ as in (1.9).
This leads to the following application. Let C be a smooth projective geometrically connected

curve of genus g � 2 with semistable reduction over k and let (J, λ) be its Jacobian. Let v ∈
M(k)0. Let Γv be the dual graph of the geometric special fiber Cv̄ of the minimal regular model
C of C at v, endowed with its canonical metric structure as in [Zha93]. In particular, Γv is a
compact connected metric graph and its total length �(Γv) equals the number of singular points
of Cv̄. By [FC90, Theorem III.8.3], the tropical Jacobian Jac(Γv) of Γv is isometric with the
principally polarized tropical abelian variety Σv determined by (J, λ) at v.

Using (1.10) and Theorem B, the formula from Theorem A specializes into the formula

hF (J) = 2g h′
L(Θ) − κ0 g +

1
[k : Q]

∑
v∈M(k)0

(
1
8�(Γv) − 1

2τ(Γv)
)
log Nv +

2
[k : Q]

∑
v∈M(k)∞

I(Jv, λv)

(1.11)
for the stable Faltings height of J . This recovers [dJ18, Theorem 1.6].

Note that hF (J) is equal to the stable Faltings height hF (C) of the curve C itself; cf. [Paz19,
Proposition 6.5]. In the case that g = 2, the formula in (1.11) reproves [Aut06, Théorème 5.1]
and gives a uniform explanation for the entries in the table that follows directly upon [Aut06,
Théorème 5.1]. We refer to [dJS18, § 9] for more details about the g = 2 case.

1.6 The function field case
A slight variation of our arguments yields the following counterpart in the function field setting.

Let S be a smooth projective connected curve over an algebraically closed field and let F
denote the function field of S. Let (A, λ) be a principally polarized abelian variety of dimension
g with semistable reduction over F and let π : G → S denote the connected component of the
Néron model of A over S with zero section e : S → G. Let h(A) = deg e∗Ωg

G/S in Z denote the
modular degree of A.

Let Θ be a symmetric effective ample divisor on A defining the principal polarization λ
and denote by h′

L(Θ) the Néron–Tate height of Θ with respect to the line bundle L = OA(Θ).

5
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Then the equality

h(A) = 2g h′
L(Θ) + 2

∑
v∈|S|

I(Av, λv) (1.12)

holds. Here |S| denotes the set of closed points of S and I(Av, λv) is half the tropical moment
of the canonical skeleton of the Berkovich analytification of A at v.

From the fact that I(Av, λv) ∈ Q, we obtain h′
L(Θ) ∈ Q, a fact that seems not clear a priori.

Moreover, as the right-hand side of (1.12) is clearly non-negative, we obtain another proof of the
well-known fact that h(A) � 0; cf. [FC90, Proposition V.2.2] or [Mor85, Chapitre XI, 4.5]. We
leave the details of the proof of (1.12) to the interested reader.

1.7 Structure of the paper
Sections 2–9 are mostly preliminary. In these sections we review basic notions and results
concerning semistable models, cubical structures, Berkovich analytification, model metrics,
admissible metrics, Green’s functions, canonical metrics, Raynaud extensions, non-archimedean
uniformization, non-archimedean theta functions and tropicalization of abelian varieties.

In § 10 we investigate the relationship between canonical metrics and cubical line bundles
on semistable models and in § 11 we prove Theorem B. In § 12 we introduce the main relevant
structures on the archimedean side needed for our proof of Theorem A and in § 13 we recall the
stable Faltings height and state Bost’s key formula for it.

In § 14 we review the notion of Néron–Tate heights of cycles on abelian varieties over number
fields and prove a local decomposition formula for the height of a theta divisor. In § 15 we finally
give our proof of Theorem A.

Notation and terminology
When R is a discrete valuation ring with fraction field F , we denote its maximal ideal by mR,
its residue field by F̃ and we let 
 denote a generator of mR. Unless mentioned otherwise, we
endow F with the unique non-archimedean absolute value | · | : F → R whose valuation ring is
R and that is normalized such that |
| = e−1.

When M is a free rank-one R-module and s is a non-zero element of M ⊗R F , we write
ord(s) for the multiplicity of s, by which we mean the largest integer e such that s is contained
in M ⊗ me

R.
When X is an integral noetherian scheme, and L is a line bundle on X , we call a rational

section of L any element of the stalk Lη. Here η is the generic point of X . Let ξ ∈ X and let
K = OX ,η be the function field of X . The fraction field of the local ring OX ,ξ of X at ξ coincides
with K and the natural map Lξ ⊗OX ,ξ

K → Lη is an isomorphism. When OX ,ξ is a discrete
valuation ring and s is a non-zero rational section of L, we obtain via the natural isomorphism
Lξ ⊗OX ,ξ

K
∼−→ Lη a well-defined multiplicity ordξ,L(s) ∈ Z of s at ξ.

When V is a scheme over C or over an algebraically closed non-archimedean valued field, we
denote by V an the associated complex or Berkovich analytic space.

When k is a number field, we denote by M(k)0 the set of non-archimedean places of k, by
M(k)∞ the set of complex embeddings of k and we set M(k) = M(k)0 	 M(k)∞.

2. Semistable group schemes

Let S be a locally noetherian scheme. Let π : A → S be a smooth commutative group scheme
of finite type over S with zero section e : S → A. We call the identity component of A the open

6
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subscheme of A formed by taking the union of all fiberwise identity components. The group
scheme A is called semistable if the identity component of A is a semiabelian group scheme.

Let L be a line bundle on A. A rigidification of L is an isomorphism of line bun-
dles OS

∼−→ e∗L. For each I ⊂ {1, 2, 3}, let mI : A×S A×S A → A be the morphism given
functorially on points by sending (x1, x2, x3) to

∑
i∈I xi. Write D3(L) for the line bundle

D3(L) =
⊗

∅�=I⊂{1,2,3} m∗
IL⊗(−1)�I

on A×S A×S A. A cubical structure on L is an isomorphism
OA3

∼−→ D3(L) satisfying suitable symmetry and cocycle conditions as described in [Mor85,
Définition I.2.4.5]. A line bundle L on A endowed with a cubical structure is called a cubical line
bundle. A cubical line bundle is canonically rigidified.

By the theorem of the cube, each rigidified line bundle on an abelian variety over a field has
a unique cubical structure.

2.1 Cubical extensions
Assume that S is the spectrum of a discrete valuation ring R and assume that the generic fiber
of A is an abelian variety A. Let L be a cubical (that is, rigidified) line bundle on A. A cubical
line bundle L on A extending the cubical line bundle L is unique up to isomorphism, once one
exists, by [Mor85, Théorème II.1.1]. We have the following two important existence results for
cubical extensions. Let ΦA denote the group of connected components of the special fiber of A
and let n ∈ Z>0 be such that n · ΦA = 0.

Lemma 2.1. The cubical line bundle L⊗2n extends as a cubical line bundle over A.

Proof. This is [Mor85, Proposition II.1.2.1]. �
Lemma 2.2. Let R → R′ be a finite extension and let F ′ be the fraction field of R′. Let e denote
the ramification index of R → R′. Assume that 2n|e if n is even and n|e if n is odd. Then the
cubical line bundle LF ′ on AF ′ extends as a cubical line bundle over the group scheme A×R R′.

Proof. This is [Mor85, Proposition II.1.2.2]. �

3. Berkovich analytification

The purpose of this section is to set terminology and recall some basic notions concerning
Berkovich spaces. We use [Ber90, Cha11, Cha06, CT09, Gub10, Gub07] as our main references.

3.1 Berkovich analytic spaces
Let R be a complete discrete valuation ring, with fraction field F , and let F be the completion
of an algebraic closure of F , endowed with the unique extension of | · | as an absolute value on F.
We write F◦ for the valuation ring of F and F̃ for the residue field of F◦. When V is a separated
scheme of finite type over F , we are interested in the Berkovich analytification of the F-scheme
VF, denoted by V an. The step of passing to F first is natural for our purposes and moreover some
of the references that we use only consider Berkovich analytic spaces over algebraically closed
fields.

We recall that the underlying set of V an consists of pairs x = (y, | · |), where y is a point
of VF and where | · | : κ(y) → R is an absolute value on the residue field at y that extends the
given absolute value on F. The point y is called the center of x. The space V an contains the
set V alg = V (F) of algebraic points of V naturally as a dense subset. The underlying topological
space of V an is Hausdorff, locally compact, locally contractible and path-connected if VF is
connected. The construction V 
→ V an is functorial; for example, when L is a line bundle on V ,
analytification produces a line bundle Lan on V an.
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Assume that V is geometrically integral and let F(V ) denote the function field of VF. Let y ∈
VF and let OVF,y denote the local ring of VF at y. For each x ∈ V an with center y, pullback along
the canonical map OVF,y → κ(y) gives rise to a multiplicative seminorm on F(V ) = FracOVF,y.
We denote this seminorm by | · |x. For f ∈ F(V ), we sometimes write |f(x)| instead of |f |x.

3.2 Reduction map
Let V be a geometrically integral and projective F -scheme. Write S = Spec R. One way of
obtaining V an as an analytic space is as follows [Gub07, § 2.7]. Let V be an integral scheme and
let V → S be a projective and flat morphism with generic fiber isomorphic to V . By base change
and 
-adic completion, one obtains from V an admissible formal scheme V over F◦. The analytic
space V an is naturally identified with the generic fiber of V. The special fiber of V is naturally
identified with the F̃-scheme V

F̃
. By virtue of these identifications, we obtain by [Ber90, § 2.4]

a canonical reduction map redV : V an → V
F̃
. The reduction map redV is surjective and, if ξ is a

generic point of V
F̃
, there exists a unique x ∈ V an such that redV(x) = ξ; see [Ber90, Proposition

2.4.4]. We call this point the Shilov point corresponding to ξ, denoted by xξ.

4. Metrics and Green’s functions

We continue with the setting of § 3 and review the notions of metrics and Green’s functions.

4.1 Model metrics
Let L be a line bundle on V and let Lan be its analytification over F. One has a natural notion
of continuous metrics on Lan. An important class of continuous metrics on Lan is provided by
models of (tensor powers of) L, as follows: let V → S be an integral, projective and flat model of
V and let L be a line bundle on V whose restriction to V is equal to L. There exists a continuous
metric ‖ · ‖L on Lan uniquely determined by the following property. Let s be a non-zero rational
section of L and view s as a rational section of L on V. Let x ∈ V an and write ξ = redV(x),
viewed as a point on V. Then ‖s(x)‖L is given by the following prescription. Let U be an open
neighborhood of ξ in V such that L is trivialized on U . Let t be a trivializing element of L(U)
and let f ∈ F (V ) be the unique rational function on U satisfying s = f · t on U . Then we put
‖s(x)‖L = |f(x)|.

A small verification shows that the assignment (s, x) 
→ ‖s(x)‖L is well defined and, in par-
ticular, is independent of the choice of U and of the trivializing section t. One calls ‖ · ‖L the
model metric on Lan determined by the model (V,L) of (V, L). More generally, a model metric
on Lan is any metric that is obtained by taking eth roots of a model metric determined by some
model of L⊗e for some e ∈ Z>0. The notion of model metrics can be extended to the setting of
formal models of V , but our assumption that V is projective ensures that for our purposes we
do not need them.

4.2 Semipositive and admissible metrics
Let ‖ · ‖ be a continuous metric on Lan. We call the metric ‖ · ‖ semipositive if ‖ · ‖ is obtained
as a uniform limit of model metrics on Lan associated to pairs (V,L) consisting of an integral
projective flat model V of V and a model L of some tensor power L⊗e as above, such that for
each (V,L), the first Chern class c1(L) has non-negative intersection with all complete curves in
the special fiber of V. We call the metric ‖ · ‖ admissible if ‖ · ‖ can be written as a quotient of
two semipositive metrics. We call the metric ‖ · ‖ bounded continuous if there exists a pair (V,L),
where L extends L such that the quotient ‖ · ‖/‖ · ‖L is a bounded and continuous function on
V an. An admissible metric is bounded continuous.
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We refer to [Cha11, Cha06, CT09, Zha95] for more precise definitions and extensive discus-
sions. The definitions of semipositive and admissible metrics given in [Gub10, Gub07] are more
involved, and work more generally for proper schemes V , but coincide with the current defini-
tions since we are assuming that V is projective. An important class of admissible metrics is
given by the canonical metrics on a rigidified symmetric ample line bundle on an abelian variety
over F . We discuss these canonical metrics in § 5.

4.3 Green’s functions
Let D be an effective Cartier divisor on V . Following [CT09, § 2], a Green’s function with respect
to D is any continuous function gD : V an \ Supp(D) → R obtained as follows: put L = OV (D) and
let ‖ · ‖ be any admissible metric on Lan. The divisor D determines a canonical global section sD

of L. Then, for each x ∈ V an \ Supp(D), we put gD(x) = − log‖sD(x)‖. The notion of a Green’s
function readily generalizes to arbitrary Cartier divisors on V . When gD : V an \ Supp(D) → R

is a Green’s function on V an with respect to the Cartier divisor D, the restriction of gD to
V alg \ Supp(D) is a Weil function on V alg with respect to D in the sense of [Lan83, § 10.2].

5. Canonical metrics

Let A be an abelian variety over F and let L be a rigidified ample line bundle on A that we
assume moreover to be symmetric. We thus have a unique isomorphism of rigidified line bundles
[−1]∗L ∼−→ L. Gubler constructed in [Gub07, § 3.3] a canonical metric ‖ · ‖L on Lan using formal
model metrics and taking uniform limits. The discussion in [Zha95, § 2] shows that ‖ · ‖L can
alternatively be obtained by working with model metrics obtained from integral projective flat
models of A and taking uniform limits of such.

5.1 Axiomatic characterization
This leads to the following characterization of ‖ · ‖L; cf. [Zha95, Theorem 2.2]. Let m ∈ Z>0 and
denote by [m] : A → A the multiplication-by-m. We have a unique isomorphism ϕm : [m]∗L ∼−→
L⊗m2

of rigidified line bundles on A (see, for instance, [Mor85, Proposition I.5.5]). The canonical
metric ‖ · ‖L is the unique bounded continuous metric on Lan that has the property that the
isomorphism ϕm is an isometry with respect to the canonically induced metrics on [m]∗L and
L⊗m2

.
The canonical metric ‖ · ‖L is independent of the choice of m and is invariant under extensions

of the base field F . As can be verified immediately, if the given rigidification of L is multiplied by
a scalar λ ∈ F×, then the canonical metric on L associated to the new rigidification is obtained by
multiplying ‖ · ‖L by |λ|. Furthermore, for each n ∈ Z>0, the canonical metric on the symmetric
rigidified ample line bundle L⊗n is given by ‖ · ‖⊗n

L .
In § 10, we see how ‖ · ‖L is connected to the Néron model of A over the valuation ring of

F . We discuss here a special case. If A has good reduction over the valuation ring R of F , then,
by [Mor85, II.3.5 and VI.2.1], the line bundle L extends uniquely as a cubical symmetric ample
line bundle L over the Néron model of A over R, which now is an abelian scheme over R. In this
case ‖ · ‖L is just the model metric associated to L. The metric ‖ · ‖L is in general not a model
metric, but it is always an admissible metric [Cha11, Gub07, Zha95].

5.2 Translation by a two-torsion point
We continue to assume that L is symmetric, ample and rigidified. As our considerations are
analytic in nature, we work over the field F. Let y ∈ A[2] be a two-torsion point of A and write
Ty : A

∼−→ A for translation along y. We have that T ∗
y L is a symmetric ample line bundle on A.
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Lemma 5.1. Let ‖ · ‖L be the canonical metric on Lan. Then the pullback metric T ∗
y ‖ · ‖L is a

canonical metric on T ∗
y Lan.

Proof. It suffices to show that T ∗
y ‖ · ‖⊗4

L is a canonical metric on (T ∗
y Lan)⊗4. As the met-

ric T ∗
y ‖ · ‖⊗4

L is bounded continuous, it suffices to show that there exists an isomorphism
[2]∗(T ∗

y L)⊗4 ∼−→ (T ∗
y L)⊗16 that is an isometry for the metrics induced from ‖ · ‖L. We may

construct such an isomorphism as follows. Starting from the isomorphism ϕ2 : [2]∗L ∼−→ L⊗4,
we obtain by pullback along Ty an isomorphism [2]∗L = T ∗

y [2]∗L ∼−→ (T ∗
y L)⊗4. From this, we

obtain by pullback along [2] an isomorphism [4]∗L ∼−→ [2]∗(T ∗
y L)⊗4. On the other hand, we have,

again starting from the isomorphism ϕ2 : [2]∗L ∼−→ L⊗4, by pullback along [2], an isomorphism
ϕ4 : [4]∗L ∼−→ L⊗16 and then by pullback along Ty an isomorphism [4]∗L = T ∗

y [4]∗L ∼−→ (T ∗
y L)⊗16.

Combining the results of applying [2]∗ ◦ T ∗
y , respectively T ∗

y ◦ [2]∗, to ϕ2, we find an isomorphism
[2]∗(T ∗

y L)⊗4 ∼−→ (T ∗
y L)⊗16. This isomorphism is by construction an isometry for the induced

metrics from ‖ · ‖L. �

5.3 Néron functions
Let s be a non-zero rational section of the rigidified symmetric ample line bundle L and write
D = divL s. Following [Lan83, § 11.1], we call a Néron function with respect to D any Weil
function Λ: Aalg \ Supp(D) → R with respect to D such that there exists a rational function h
on A whose divisor is equal to −[2]∗D + 4D and such that, away from the support of div h, the
identity

4 Λ(x) − Λ(2x) = − log |h(x)| (5.1)

is satisfied. For the notion of Weil function, we refer to [Lan83, § 10.2].
We note that the isomorphism ϕ2 : [2]∗L ∼−→ L⊗4 of line bundles from § 5.1 allows us to

view the rational section s⊗4 ⊗ [2]∗s⊗−1 of the rigidified trivial line bundle L⊗4 ⊗ [2]∗L⊗−1 as a
rational function h on A whose divisor is equal to −[2]∗D + 4D. The fact that ϕ2 is an isometry
for the canonical metrics translates into the identity

−4 log‖s(x)‖L + log‖s(2x)‖L = − log |h(x)| (5.2)

on Aan wherever each of the three terms is defined.
Write gD for the Green’s function − log ‖s‖L on Aan (cf. § 4.3). The restriction of gD to

Aalg \ Supp(D) is a Weil function with respect to D. We conclude from (5.2) that the restriction
of gD to Aalg \ Supp(D) is in fact a Néron function with respect to D. It is shown in [Lan83,
§ 11.1] that a Néron function with respect to D is unique up to an additive constant.

6. Raynaud extensions

Let R be a complete discrete valuation ring with fraction field F . We briefly discuss the theory
of Raynaud extensions for polarized abelian varieties over F , following [FC90, Chapter II].

Assume that we are given an abelian variety A over F with split semistable reduction, and
a rigidified ample line bundle L on A, determining a polarization λA,L : A → At of A. Write
S = Spec R and let v denote the closed point of S. Let G denote the identity component of the
Néron model of A over S. By our assumptions, the scheme G is a semiabelian scheme over S. By
[Mor85, II.3.5 and VI.2.1], the group scheme G is endowed with a unique cubical ample extension
LG of L. The Raynaud extension construction [FC90, II.1–2] can be applied to the pair (G,LG)
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to yield a canonical short exact sequence, for the fppf topology, of commutative group schemes

1 �� T �� G̃
q

�� B �� 0 (6.1)

over S. Here T is a split torus and B an abelian scheme. The Raynaud construction produces an
ample cubical line bundle L̃G̃ on G̃ and an isomorphism G̃v

∼−→ Gv of special fibers. In particular,
the formal completions of G and G̃ are identified.

Let Gt denote the identity component of the Néron model of the dual abelian variety At. We
similarly have, associated to Gt, a Raynaud extension

1 �� T t �� G̃t �� Bt �� 0 (6.2)

over S with T t a split torus. Let X = Hom(T, Gm) and Y = Hom(T t, Gm), both viewed as
étale group schemes over S. For u ∈ X(S), we usually denote by χu : T → Gm the corresponding
character. From extension (6.1), we obtain an associated pushout diagram

1 �� T

χu

��

�� G̃

eu

��

q
�� B �� 0

1 �� Gm
�� G̃u

�� B �� 0

(6.3)

in the category of commutative S-group schemes with the fppf topology. The pushout construc-
tion gives rise to a morphism Ω: X → Bt of group schemes by sending u to the class of the
algebraically trivial line bundle on B determined by the Gm-torsor G̃u. Similarly, the extension
(6.2) determines an assignment u′ 
→ eu′ and a morphism of group schemes Ω′ : Y → B.

The polarization λA,L : A → At associated to L extends canonically into an isogeny
λG,L : G → Gt. Functoriality of the Raynaud extension gives an isogeny λT,L : T → T t, an isogeny
λG̃,L : G̃ → G̃t and a polarization λB,L : B → Bt. These morphisms fit together into a morphism
of short exact sequences of commutative group schemes

1 �� T

λT,L

��

�� G̃

λG̃,L

��

q
�� B

λB,L

��

�� 0

1 �� T t �� G̃t �� Bt �� 0

(6.4)

over S. The morphism λT,L induces by pullback a morphism Φ: Y → X of group schemes and
the diagram

Y
Φ ��

Ω′
��

X

Ω
��

B
λB,L

�� Bt

commutes. If L defines a principal polarization, then Φ: Y → X and each of the maps λ in (6.4)
is an isomorphism.

In addition to the above canonical data associated to (A, L), we may and do pick some non-
canonical further data as follows. For these extra data, a finite extension of the field F may be
needed, but this is harmless for our purposes. Denote the generic fibers of G̃ and B by E and B,
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respectively. Let q : E → B be the map induced by q : G̃ → B. Set X = X(F ), Y = Y (F ). First
of all, we may and do pick an injective lift

Y

υ
��

Ω′
η

�����������

E(F )
q

�� B(F )

(6.5)

of the map Ω′
η. Similarly, we may pick an injective lift υt : X → Et(F ) of the quotient map

Et(F ) → Bt(F ). We view Y as a subgroup of E(F ) and X as a subgroup of Et(F ) via the maps
υ, υt. We can arrange that eu(u′) = eu′(u) for u ∈ X, u′ ∈ Y .

Let P denote the Poincaré bundle on B ×S Bt, endowed with its canonical rigidification, and
let P be its generic fiber. We may further suppose that the map

t : Y × X → P, (u′, u) 
→ t(u′, u) = eu(u′) = eu′(u)

defines a trivialization of the invertible sheaf (Ω′
η × Ωη)∗P on Y × X.

Next, we may and do pick an ample cubical line bundle M on B such that M determines
the polarization λB,L : B → Bt and such that q∗M is identified with L̃G̃ as cubical line bundles.
Denote by M the generic fiber of M, which is thus a rigidified ample line bundle on B. If L
determines a principal polarization, then so does M .

Let mB : B ×S B → B denote the additively written group operation of B and denote by
p1, p2 : B ×S B → B the projections onto the first, respectively the second, factor. We have a
canonical identification

m∗
BM⊗ p∗1M−1 ⊗ p∗2M−1 = (id, λB,L)∗P (6.6)

of rigidified line bundles on B ×S B.
Finally, we may and do, pick, given our choices of υ, υ′ and M, a trivialization c : Y → M of

the rigidified line bundle (Ω′
η)

∗M on Y such that via the restriction of the canonical identification
given by (6.6) to the generic fiber, the trivialization c satisfies the relation

c(u′ + v′) ⊗ c(u′)−1 ⊗ c(v′)−1 = t(u′, Φ(v′)) (6.7)

for all u′, v′ ∈ Y .
We call the data (M, Φ, c) a triple associated to the rigidified ample line bundle L. For u ∈ X,

we denote by Eu the rigidified line bundle determined by the generic fiber of G̃u. By [FRSS18,
Theorem 3.6], two triples (M1, Φ1, c1) and (M2, Φ2, c2) define the same rigidified line bundle if
and only if Φ1 = Φ2 and there exists u ∈ X such that M1 ⊗ M−1

2
∼= Eu and c1 ⊗ c−1

2
∼= εu. Here,

for u ∈ X, we denote by εu : Y → Eu(F ) the composite of the inclusion υ : Y → E(F ) and the
map eu : E(F ) → Eu(F ). It is straightforward to extend the notion of associated triple to the
setting of rigidified ample line bundles defined over F.

Denote by ‖ · ‖M the model metric on Man derived from M and by ‖ · ‖P the model metric
on P an derived from P. By construction, the rigidification of M is an isometry for the metric
‖ · ‖M and the canonical rigidification of P is an isometry for the metric ‖ · ‖P . For u′ ∈ Y , v ∈ X,
we put

b(u′, v) = − log‖t(u′, v)‖P , ctrop(u′) = − log‖c(u′)‖M . (6.8)

Then b is a Z-valued bilinear map on Y × X and ctrop is a Z-valued function on Y . From (6.6)
and (6.7), we derive the fundamental identity

b(u′, Φ(v′)) = ctrop(u′ + v′) − ctrop(u′) − ctrop(v′) (6.9)
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for all u′, v′ ∈ Y . The assumption that L is ample implies that the map Y × Y → Z given by
sending (u′, v′) ∈ Y × Y to b(u′, Φ(v′)) is positive definite.

The tuple (X, Y, Φ, b) constitutes a polarized tropical abelian variety. Let X∗ = Hom(X, Z)
and X∗

R
= X∗ ⊗ R = Hom(X, R). The bilinear map b realizes Y as a subgroup of X∗ of finite

index. We write Σ for the real torus X∗
R
/Y . We note that Σ is a point if and only if A has good

reduction over R.

7. Non-archimedean uniformization of abelian varieties

In [Ber90, § 6.5], the classical rigid analytic uniformization of abelian varieties (see [BL91] for a
thorough treatment) is established in the context of Berkovich analytic spaces. We discuss the
matter here briefly. Our main references are [FRSS18, Gub10]. We continue with the notation
and assumptions from § 6. The map υ from (6.5) induces, upon analytification, an exact sequence

0 �� Y
υ �� Ean

p
�� Aan �� 0

of analytic groups. We refer to the map p : Ean → Aan as the non-archimedean uniformization
of A and we call the group Y the group of periods of Aan. We have a canonical isomorphism
p∗Lan ∼−→ q∗Man of rigidified analytic line bundles on Ean.

7.1 Tropicalization
Let 〈·, ·〉 : X × X∗

R
→ R denote the natural evaluation pairing. The tropicalization map

trop: T an → X∗
R

is given by the rule

〈u, trop(z)〉 = − log |χu(z)|, u ∈ X, z ∈ T an. (7.1)

The tropicalization map is a surjective homomorphism and extends in a natural way to a
surjective homomorphism trop: Ean → X∗

R
by setting

〈u, trop(z)〉 = − log‖eu(z)‖Eu , u ∈ X, z ∈ Ean. (7.2)

Here ‖ · ‖Eu is the model metric on Ean
u determined by the Gm-torsor G̃u on B.

Write Σ = X∗
R
/Y . The homomorphism trop: Ean → X∗

R
gives rise to a morphism of short

exact sequences

0 �� Y
υ �� Ean

p
��

trop
��

Aan ��

τ

��

0

0 �� Y �� X∗
R

�� Σ �� 0

(7.3)

The map τ : Aan → Σ turns out to be a deformation retraction. Following [FRSS18, § 4] and
[Gub10, Example 7.2], there exists a natural section σ : X∗

R
→ Ean of trop. We denote by ι : Σ →

Aan the resulting section of τ . We usually view Σ = X∗
R
/Y as a subspace of Aan via the map ι.

When viewed as a subspace of Aan via ι, we call Σ the canonical skeleton of Aan.

Lemma 7.1. The restriction of the retraction map τ : Aan → Σ = X∗
R
/Y to A(F ) induces an

isomorphism of groups A(F )/G(R) ∼−→ X∗/Y .
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Proof. We have canonical identifications (cf. [FC90, p. 78])

A(F )/G(R) = E(F )/υ(Y ) · G(R)

= G̃(F )/υ(Y ) · G(R)

= G̃(F )/υ(Y ) · G̃(R)

and

G̃(F )/G̃(R) = T (F )/T (R)

= Hom(X, F ∗/R∗).

The restriction of the tropicalization map trop: Ean → X∗
R

to E(F ) = G̃(F ) induces an iso-
morphism of groups G̃(F )/G̃(R) = Hom(X, F ∗/R∗) ∼−→ X∗. This descends to an isomorphism
G̃(F )/υ(Y ) · G̃(R) ∼−→ X∗/Y . Since, by construction, the retraction map τ : Aan → Σ descends
from trop, we see that τ sends A(F ) onto X∗/Y with kernel G(R). �

Let N be the Néron model of A over S = Spec R, let ΦN be the group of components
of its special fiber and let sp: N (R) → ΦN denote the specialization map. We note that sp
induces a group isomorphism N (R)/G(R) ∼−→ ΦN . As N (R) = A(F ), we immediately deduce
from Lemma 7.1 the following.

Corollary 7.2. The map ΦN → X∗/Y that sends sp(x) for x ∈ N (R) to τ(x) is a group
isomorphism.

Compare with [FC90, Corollary III.8.2].
This has the following consequence. Let V be a projective integral model of A containing

N as an open subscheme. In particular, we have an open immersion N
F̃

↪→ V
F̃

of special fibers.
Let ξ ∈ ΦN and let xξ ∈ Aan denote the Shilov point determined by the generic point of the
irreducible component corresponding to ξ in V

F̃
. Then xξ is an element of the canonical skeleton

Σ of Aan.

7.2 The invariant I(A, λ)
Let λ : A

∼−→ At be a principal polarization of A and let L be any rigidified symmetric ample
line bundle on A determining λ. Let s be a non-zero global section of L. Let ‖ · ‖L denote the
canonical metric on Lan.

We define

I(A, λ) = log‖s‖L,sup −
∫

Aan

log‖s‖L dμH , (7.4)

where

‖s‖L,sup = sup
x∈Aan

‖s(x)‖L (7.5)

is the supremum norm of s and where μH is the pushforward, along the inclusion ι : Σ ↪→ Aan,
of the Haar measure of unit volume on the canonical skeleton Σ of Aan.

Lemma 7.3. The quantity I(A, λ) is independent of the choice of symmetric ample line bundle
L, of section s and of rigidification of L and hence defines an invariant of the principally polarized
abelian variety (A, λ).

Proof. Choose one symmetric ample line bundle L on A determining λ. A change of rigidification
results in a replacement of ‖ · ‖L by a scalar multiple of ‖ · ‖L. Moreover, the space H0(A, L)
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of global sections of L is one-dimensional. It follows immediately that the quantity I(A, λ) as
defined in (7.4) is independent of the choice of rigidification of L and of section s. Now any other
symmetric ample line bundle on A determining λ is given by T ∗

y L for some two-torsion point y of
A. By Lemma 5.1, the pullback T ∗

y ‖ · ‖L of the canonical metric on Lan is a canonical metric on
T ∗

y Lan. As the measure μH is translation-invariant, we obtain that the quantity I(A, λ) is also
independent of the choice of L. �

8. Non-archimedean theta functions

We briefly review the theory of non-archimedean theta functions. A reference for this section is
[FRSS18, §§ 3–4]. We continue with the notation and assumptions from §§ 6 and 7. In particular,
we work with a symmetric rigidified ample line bundle L on the abelian variety A over the
complete discretely valued field F .

Recall that we have a polarized tropical abelian variety (X, Y, Φ, b) associated to the pair
(A, L) by Raynaud’s construction. The bilinear map b gives rise to an inner product [·, ·] on X∗

R
.

In these terms, the identity in (6.9) can be rewritten as

[u′, v′] = ctrop(u′ + v′) − ctrop(u′) − ctrop(v′), u′, v′ ∈ Y. (8.1)

Recall that we have a canonical isomorphism p∗Lan ∼−→ q∗Man of rigidified analytic line bundles
on Ean. Following [FRSS18, Definition 3.14], a theta function for L is any global section f ∈
H0(Ean, q∗Man) that descends to a section of Lan along p.

If L defines a principal polarization, we call f a Riemann theta function for L. A Riemann
theta function is unique up to translations by elements from Y and up to multiplication by
scalars.

Let f be a non-zero theta function for L. For a suitable triple (M, Φ, c) associated to L, we
have a functional equation

f(z) = f(z · u′) ⊗ c(u′) ⊗ eΦ(u′)(z) (8.2)

for z ∈ Ean and u′ ∈ Y ; see [FRSS18, Proposition 3.13]. By (6.8) and (7.2), this yields the
functional equation

− log‖f(z)‖q∗M = − log‖f(z · u′)‖q∗M + ctrop(u′) + 〈Φ(u′), trop(z)〉 (8.3)

for z ∈ Ean and u′ ∈ Y . The function f does not vanish on the image of the section σ : X∗
R
→ Ean.

Following [FRSS18, § 4.3], we define

f̄ : X∗
R → R, ν 
→ − log‖f(σ(ν))‖q∗M . (8.4)

The map f̄ is called the tropicalization of the theta function f . From (8.3), we obtain the relation

f̄(ν) = f̄(ν + u′) + ctrop(u′) + 〈Φ(u′), ν〉 (8.5)

for ν ∈ X∗
R
, u′ ∈ Y .

A tropical cocycle on X∗
R

with respect to the Y -action by translations is any function z : Y ×
X∗

R
→ R that satisfies

z(u′ + v′, ν) = z(u′, v′ + ν) + z(v′, ν), u′, v′ ∈ Y, ν ∈ X∗
R. (8.6)

Let (M, Φ, c) be a triple for L. From (8.1), one deduces that the function ctrop(u′) + 〈Φ(u′), ν〉
that appears in (8.5) is a tropical cocycle on X∗

R
with respect to Y .
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8.1 Tropical Riemann theta function
Following [FRSS18], the tropical Riemann theta function associated to (A, L) is the function
Ψ: X∗

R
→ R given by

Ψ(ν) = min
u′∈Y

{
1
2 [u′, u′] + [u′, ν]

}
= min

u′∈Y

{
1
2 [u′, u′] + 〈Φ(u′), ν〉} (8.7)

for ν ∈ X∗
R
. We note that Ψ = −Θ, where Θ is the theta function considered in [MZ08]. As is

easily checked, we have a functional equation

Ψ(ν) = Ψ(ν + u′) + [u′, ν] + 1
2 [u′, u′] (8.8)

for all ν ∈ X∗
R

and u′ ∈ Y .

8.2 Translations of line bundles
Let z′ ∈ Et(F ). We denote by Lz′ the rigidified translation-invariant line bundle on B corre-
sponding to q′(z′) ∈ Bt(F ) and let L×

z′ denote the associated Gm-torsor. We may view L×
z′ as an

extension of B by Gm. For u′ ∈ Y , we have canonical identifications of fibers

Lz′,Ωη(u′) = PΩη(u′),q′(z′) = Et
u′,z′ . (8.9)

As is explained in [FRSS18, § 3.5], we can view the assignment u′ 
→ eu′(z′) for u′ ∈ Y naturally
as a homomorphism Y → L×,an

z′ . We denote this homomorphism by cz′ . The rigidified line bundle
Lz′ has a unique rigidified extension over B. We denote by ‖ · ‖Lz′ the associated model metric
on Lan

z′ . We set cz′,trop(u′) = − log‖cz′(u′)‖Lz′ for u′ ∈ Y .

Lemma 8.1. Let z ∈ E(F ) and set z′ = λE,L(z). The equality cz′,trop(u′) = 〈Φ(u′), trop(z)〉
holds.

Proof. Let trop′ : Et,an → Y ∗
R

denote the tropicalization map of Et,an. We compute

cz′,trop(u′) = − log‖cz′(u′)‖Lz′

= − log‖eu′(λE,L(z)‖Et
u′

= 〈u′, trop′(λE,L(z))〉
= 〈u′, Φ∗(trop(z))〉
= 〈Φ(u′), trop(z)〉.

The lemma follows. �
It is straightforward to extend the definitions of cz′ and cz′,trop to the setting that z′ ∈ Et,alg.

For each y ∈ Aalg, we denote by Ty the translation along y.

Lemma 8.2. Assume that (M, Φ, c) is a triple for L. Let z ∈ Ealg and set z′ = λE,L(z). Further,
set y = p(z), w = q(z) and write c′ = c ⊗ cz′ . Then T ∗

wM ∼= M ⊗ Lz′ and (T ∗
wM, Φ, c′) is a triple

for the translated line bundle T ∗
y L.

Proof. This is [FRSS18, Proposition 3.9]. �

8.3 Tropicalization of Riemann theta functions
We assume in this section that L defines a principal polarization. It is shown in [FRSS18] that
the tropicalization of a Riemann theta function associated to L is a translate of the tropical
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Riemann theta function, up to an additive constant. In this section we review this result and
discuss some of the details.

Let f be a non-zero Riemann theta function for L. Let (M, Φ, c) be a triple associated to L
such that the tropical cocycle of f is given by ctrop(u′) + 〈Φ(u′), ν〉.
Proposition 8.3. There exists an element z0 ∈ Ealg such that the following four properties are
satisfied. Let y = p(z0).

(a) Let z′ = λE,L(z0), let w = q(z0) and write c′ = c ⊗ cz′ and M ′ = M ⊗ Lz′ . The line bundle
M ′ is symmetric and, under the canonical identification of line bundles M ′⊗2 = (id, λB,L)∗P
on B derived from (6.6), we have c′(u′)⊗2 = t(u′, Φ(u′)) for u′ ∈ Y , the identity c′trop(u

′) =
1
2 [u′, u′] holds for u′ ∈ Y and (M ′, Φ, c′) is a triple for T ∗

y L.
(b) The line bundle T ∗

y L is symmetric.
(c) The function T ∗

z0
f is a theta function for the line bundle T ∗

y L.

(d) The tropicalization T ∗
z0

f of the theta function T ∗
z0

f is equal to the tropical Riemann theta
function Ψ, up to an additive constant.

Proof. The existence of an element z0 ∈ Ealg such that property (a) holds is guaranteed by
combining Lemma 8.2 and [FRSS18, Proposition 3.18]. Property (b) follows from the symmetry
of M ′ and property (c) is clear. As to property (d), we note that [FRSS18, Theorem 4.9] states
that the tropicalization f̄ of f is equal to a translate of the tropical Riemann theta function Ψ,
up to an additive constant. This means that for suitable κ′ ∈ X∗

R
, we have that T ∗

κ′ f̄ is equal to Ψ,
up to an additive constant. Let κ = trop(z0). We claim that κ′ = κ. By Lemma 8.1, we have that
cz′,trop(u′) = 〈Φ(u′), κ〉 = [u′, κ] for u′ ∈ Y . Since, for c′ = c ⊗ cz′ , we have c′trop(u

′) = 1
2 [u′, u′] by

(a), we deduce that ctrop(u′) = c′trop(u
′) − cz′,trop(u′) = 1

2 [u′, u′] − [u′, κ] for u′ ∈ Y . We see that
f̄ has tropical cocycle 1

2 [u′, u′] + [u′,−κ + ν]. As is easily verified, this is the tropical cocycle of
the translated tropical Riemann theta function T ∗−κΨ. Reasoning as in the proof of [FRSS18,
Theorem 4.9], we may conclude that f̄ = T ∗−κΨ, up to an additive constant. This gives that
T ∗

z0
f = T ∗

κ f̄ is equal to Ψ, up to an additive constant, and we see that property (d) holds. �

9. Canonical metrics and theta functions

Let L be a rigidified symmetric ample line bundle on A defining a principal polarization of A.
In this section we make the following assumption.

The rigidified line bundle L has an associated triple (M, Φ, c) with M a symmetric rigidified
ample line bundle on B such that under the identification of rigidified line bundles M⊗2 =
(id, λB,L)∗P on B derived from (6.6), we have c(u′)⊗2 = t(u′, Φ(u′)) for u′ ∈ Y .

Proposition 8.3 shows that this assumption is verified upon replacing L by a suitable translate.

Proposition 9.1. Let s be a non-zero global section of Lan and let f be a theta function of L
corresponding to s. Let x ∈ Aan, choose z ∈ Ean such that p(z) = x and assume that s does not
vanish at x. The equality

− log ‖s(x)‖L = 1
2 [trop(z), trop(z)] − log‖f(z)‖q∗M (9.1)

holds.

Proof. Our assumption implies that ctrop(u′) = 1
2 [u′, u′] for u′ ∈ Y . We have 〈Φ(u′), trop(z)〉 =

[trop(z), u′] for z ∈ Ean and u′ ∈ Y . The functional equation (8.3) therefore translates into

− log‖f(z)‖q∗M = − log‖f(z · u′)‖q∗M + 1
2 [u′, u′] + [trop(z), u′] (9.2)
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for z ∈ Ean and u′ ∈ Y . It follows that the right-hand side of (9.1) is independent of the choice
of z ∈ Ean such that p(z) = x. As Aalg is dense in Aan, it suffices by continuity to verify equality
(9.1) for x ∈ Aalg.

Write D = divL s. We have seen in § 5.3 that the restriction of − log ‖s(x)‖L to Aalg defines
a Néron function for D. Also, a Néron function for D is unique up to an additive constant.

Let Λ(x) denote the restriction of the right-hand side of (9.1) to Aalg. The compatibility of
the rigidifications of p∗L and q∗M at the origin along the isomorphism p∗L ∼−→ q∗M implies that
the continuous function − log‖s(p(z))‖L + log‖f(z)‖q∗M evaluates as zero when z = 0. Hence, in
order to prove (9.1) for x ∈ Aalg, it suffices to show that Λ(x) is a Néron function for D.

First of all, we have that Λ(x) defines a Weil function for D on Aalg \ Supp(D). It is therefore
left to show that there is a rational function h on A with div h = −[2]∗D + 4D such that

4 Λ(x) − Λ(2x) = − log |h(x)| (9.3)

for x ∈ Aalg away from the support of −[2]∗D + 4D. We note that

4 Λ(x) − Λ(2x) = −4 log‖f(z)‖q∗M + log‖f(2z)‖q∗M . (9.4)

Let M denote the unique cubical extension of the rigidified line bundle M over the abelian
scheme B. Then M is symmetric and it follows that there is a unique isomorphism of rigidified
line bundles [2]∗M ∼−→ M⊗4 on B. The restriction of this isomorphism to Ban is by construction
an isometry for the model metric ‖ · ‖M associated to M on Man on Ban. We also note that the
model metric ‖ · ‖M equals the canonical metric on Man. Let g(z) = f(z)4 · f(2z)−1, viewed as
a meromorphic function on E. We conclude that

−4 log‖f(z)‖q∗M + log‖f(2z)‖q∗M = − log |g(z)|. (9.5)

We claim that the function g(z) is Y -invariant. Indeed, by the functional equation (8.2), we have

f(z)4 · f(2z)−1 = f(z + u′)4 · c(u′)⊗4 · eΦ(u′)(z)⊗4 · f(2z + 2u′)−1 · c(2u′)⊗−1 · eΦ(2u′)(2z)⊗−1

for u′ ∈ Y and z ∈ Ean. As eu(z) is bilinear, we have eΦ(u′)(z)⊗4 = eΦ(2u′)(2z) and the condition
c(u′)⊗2 = t(u′, Φ(u′)) for u′ ∈ Y implies that c(u′)⊗4 = c(2u′), up to canonical identifications.
The claim follows. As a result, we may identify g with p∗h. Combining (9.4) and (9.5), we obtain
(9.3). �
Remark 9.1. The formula in Proposition 9.1 may be compared with the formulas for Néron
functions associated to L given in [Hin93, Théorème D], and in [Hin93, Théorème C] and [Wer97,
Corollary 3.6] in the situation that A has toric reduction.

10. Semistable models and canonical metric

Recall that we assume that A has semistable reduction over F . Let N denote the Néron model
of A over R. Then N is a semistable model of A over R. When D is a prime divisor on A, we
denote by D̄ its Zariski closure on N . This is a prime divisor on N . We extend the assignment
D 
→ D̄ by linearity to the set of all divisors on A. Following [Lan83, § 11.5], if D is a divisor on
A, we call the associated divisor D̄ on N the thickening of D on N .

For each w ∈ A(F ), we write w̄ for the section of N corresponding to w. Let ΦN denote the
group of connected components of the special fiber of N . Let n ∈ Z>0 be such that n · ΦN = 0 and
write M = L⊗2n. By Lemma 2.1, the cubical line bundle M admits a unique cubical extension
M over N .

The next result is essentially a classical result due to Néron (see, for example, [Lan83, § 11.5]
or [Mor85, § III.1.3]).
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Proposition 10.1. Let s be a non-zero rational section of L. Write t = s⊗2n and view t as a
rational section of the cubical line bundle M over N . Write D = divL s and let D̄ denote the
thickening of D in N . Let x ∈ A(F ) and let x̄ denote the closure of x in N . Let ξ ∈ ΦN be such
that x specializes to ξ. Assume that x /∈ Supp(D). Then the equality

−2n log‖s(x)‖L = 2n (x̄ · D̄) + ordξ,M(t) (10.1)

holds. Here (x̄ · D̄) denotes the intersection multiplicity of the 1-cycle x̄ with the divisor D̄ on
the regular scheme N .

Proof. Write E = divM(t), viewed as a Cartier divisor on N . Following [Mor85, §§ III.1.2–4],
we consider the map 〈t, ·〉 : A(F ) \ Supp(D) → R given by setting 〈t, w〉 = (w̄ · E), where (w̄ · E)
denotes the intersection multiplicity of the 1-cycle w̄ with the divisor E on N . The discussion in
[Mor85, §§ III.1.2–4] shows that 〈t, ·〉 extends uniquely as a Weil function on Aalg with respect to
the divisor 2nD. We claim that 〈t, w〉 is actually a Néron function with respect to 2nD. Let h as
in § 5.3 be the rational function on A corresponding to the rational section s⊗4 ⊗ [2]∗s⊗−1 of the
rigidified trivial line bundle L⊗4 ⊗ [2]∗L⊗−1. Let w ∈ A(F ) and assume that w is not contained
in the support of div h. Observe that [2] : A → A extends as the multiplication-by-two map of
the commutative group scheme N . We compute

4〈t, w〉 − 〈t, 2w〉 = 4(w̄ · E) − ([2](w) · E)

= 4(w̄ · E) − (([2] ◦ w̄) · E)

= 4(w̄ · E) − (w̄ · [2]∗E)

= (w̄ · (4E − [2]∗E)).

Now, as M is a cubical extension of L⊗2n, we have that the (2n)th tensor power of the iso-
morphism ϕ : L⊗4 ∼−→ [2]∗L extends into an isomorphism of line bundles M⊗4 ∼−→ [2]∗M over N .
It follows that 4E − [2]∗E coincides with 2n div h, where h is now viewed as a rational function
on the integral scheme N . We find that

(w̄ · (4E − [2]∗E)) = 2n (w̄ · div h)

and, since (w̄ · div h) = − log |h(w)|, we conclude that

4〈t, w〉 − 〈t, 2w〉 = −2n log |h(w)|.
This shows that 〈t, w〉 is a Néron function with respect to the divisor 2nD. Comparison with (5.2)
and the uniqueness of Néron functions up to additive constants yield that 〈t, ·〉 = −2n log‖s‖L

as functions on Aalg \ Supp(D). Explicitly, we have E = 2nD̄ +
∑

ζ∈ΦN ordζ,M(t) · ζ̄. For x ∈
A(F ) and ξ ∈ ΦN as in the proposition, this gives 〈t, x〉 = (x̄ · E) = 2n (x̄ · D̄) + ordξ,M(t). The
equality in (10.1) follows. �

Now let A be any semistable model of A over R. Let N be the Néron model of A. As both A
and N are semistable models of A over R, the natural map A → N given by the Néron mapping
property is an open immersion.

Assume that L has a cubical extension L over A. Let s be a non-zero rational section of
L and view s as a rational section of the cubical line bundle L over A. We have the following
variant of Proposition 10.1. Note that we similarly have a notion of thickening of divisors on A
in A.

Proposition 10.2. Write D = divL s and let D̄ denote the thickening of D in A. Let ξ ∈ ΦA
and let x ∈ A(F ) be such that its Zariski closure x̄ in A intersects the irreducible component
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corresponding to ξ. Assume that x /∈ Supp(D). Then the equality

− log‖s(x)‖L = (x̄ · D̄) + ordξ,L(s) (10.2)

holds. Here (x̄ · D̄) denotes the intersection multiplicity of the 1-cycle x̄ with the divisor D̄ on
the regular scheme A.

Proof. Let n ∈ Z>0 be such that n · ΦN = 0 and let M denote the cubical extension of the line
bundle M = L⊗2n over N whose existence is guaranteed by Lemma 2.1. Then M|A = L⊗2n by
uniqueness of cubical extensions. Noting that ordξ,M(s⊗2n) = 2n ordξ,L(s), we find the required
equality by applying Proposition 10.1. �

10.1 Evaluations at Shilov points
Let Aan denote the Berkovich analytification of A. Let V be a projective integral model of A
containing N and hence A as an open subscheme. Let ξ ∈ ΦA. It follows from what we have said
at the end of § 7.1 that the Shilov point xξ of Aan determined by the generic point of ξ in the
special fiber V

F̃
is an element of the canonical skeleton Σ of Aan.

Let τ : Aan → Σ be the reduction map onto Σ.

Proposition 10.3. The equalities

− log‖s(xξ)‖L = ordξ,L(s) = inf
x∈Aan : τ(x)=xξ

(− log‖s(x)‖L) (10.3)

hold.

Proof. Write D = divL s and let D̄ denote the thickening of D in A. Let x be any closed point
of A with x /∈ Supp(D) such that its Zariski closure x̄ in A intersects the irreducible component
X corresponding to ξ. From Proposition 10.2, we readily obtain the equality

− log‖s(x)‖L =
1

deg(x)
(x̄ · D̄) + ordξ,L(s). (10.4)

This can be seen by taking a finite extension F ′ of F such that x extends as a section over the
valuation ring of F ′.

Denote by Ω (respectively, Ω′) the inverse image of X (respectively, X \ Supp(D̄)) under the
reduction map redV : Aan → V

F̃
. We note that X \ Supp(D̄) ⊂ X ⊂ A

F̃
⊂ V

F̃
are open immer-

sions, that Ω (respectively, Ω′) is the Raynaud generic fiber of the formal completion of A along
X (respectively, X \ Supp(D̄)), that both Ω and Ω′ contain the Shilov point xξ corresponding
to X and that Ω is exactly the set of x ∈ Aan such that τ(x) = xξ.

Denote by Ω0 (respectively, Ω′
0) the set of algebraic points of Ω (respectively, Ω′). Then Ω0

(respectively, Ω′
0) is dense in Ω (respectively, Ω′). Equation (10.4) gives

inf
x∈Ω0

(− log ‖s(x)‖L) � ordξ,L(s).

As Ω0 is dense in Ω, this implies that

inf
x∈Ω

(− log ‖s(x)‖L) � ordξ,L(s). (10.5)

Equation (10.4) also gives

− log‖s(x)‖L = ordξ,L(s), x ∈ Ω′
0. (10.6)

On the one hand, the combination of (10.5) and (10.6) gives

inf
x∈Aan : τ(x)=xξ

(− log‖s(x)‖L) = ordξ,L(s).
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Faltings height and Néron–Tate height of a theta divisor

On the other hand, as Ω′
0 is dense in Ω′, and Ω′ contains xξ, (10.6) implies by continuity that

− log‖s(xξ)‖L = ordξ,L(s).

This proves the proposition. �
Corollary 10.4. For all y ∈ Σ, one has the equality

‖s(y)‖L = sup
x∈Aan : τ(x)=y

‖s(x)‖L. (10.7)

In particular, the equality

sup
x∈Σ

‖s(x)‖L = sup
x∈Aan

‖s(x)‖L (10.8)

holds.

Proof. For each torsion point x ∈ Σ, there exist a finite extension F ′ of F and a semistable model
A′ of A over the valuation ring of F ′ such that x = xξ′ for some ξ′ ∈ ΦA′ . By Lemma 2.2, upon a
further base change, we may assume that A′ admits a cubical extension L′ of L. Proposition 10.3
therefore gives

‖s(y)‖L = sup
x∈Aan : τ(x)=y

‖s(x)‖L

for all y ∈ Σtor. We obtain (10.7) by density of Σtor and by continuity. Equation (10.8) is
immediate from (10.7). �

Assume that L defines a principal polarization λ : A
∼−→ At. Consider the invariant I(A, λ)

as in (7.4).

Corollary 10.5. The formula

I(A, λ) = sup
x∈Σ

log‖s(x)‖L −
∫

Σ
log‖s‖L dμH

holds. In particular, I(A, λ) vanishes if A has good reduction.

10.2 Direct images
Let π : A → S = Spec R denote the structure morphism of the semistable model A. The sheaf
π∗L is coherent, by [Mor85, Lemme VI.1.4.2], and torsion-free and, hence, locally free. We assume
from now on that π∗L is in fact a line bundle on S, that is, the generic fiber L of L determines a
principal polarization of A. We may view s also as a non-zero rational section of the sheaf π∗L.

Proposition 10.6. Assume that π∗L is a line bundle. Let v denote the closed point of S. Then
ordv(s) = minξ∈ΦA ordξ,L(s).

Proof. Let a = ordv(s) and set s′ = 
−as. Let M = H0(S, π∗L). By assumption, M is a free
rank-one R-module and s′ is a generator of M . Let ξ ∈ ΦA. The R-module M is canonically
identified with the R-module H0(A,L) and this gives ordξ(s′) � 0. Since ordξ(s′) = −a + ordξ(s),
we conclude that ordξ(s) � a. We are left to prove that there exists a ξ ∈ ΦA such that ordξ(s) =
a. Suppose that for all ξ ∈ ΦA, we have ordξ(s) > a. Then ordξ(
−1s′) � 0 for all ξ and hence

−1s′ ∈ H0(A,L) = M . It follows that M = mR · M . This contradicts Nakayama’s lemma. �

Define ‖s‖π∗L via the formula ordv(s) = − log‖s‖π∗L.

Corollary 10.7. The equality

‖s‖π∗L = sup
x∈Σ

‖s(x)‖L

holds.
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Proof. By Proposition 10.6, we have

ordv(s) = min
ξ∈ΦA

ordξ,L(s).

By Proposition 10.3, this can be rewritten as

‖s‖π∗L = max
ξ∈ΦA

‖s(xξ)‖L. (10.9)

As the left-hand side is independent of the choice of semistable model of A with cubical extension
of L, we find that for any semistable model A′ of A with cubical extension L′ of L over the
valuation ring of any finite extension F ′ of F that

‖s‖π∗L = max
ξ′∈ΦA′

‖s(xξ′)‖L. (10.10)

For each torsion point x ∈ Σ, there exist a finite extension F ′ of F and a semistable model A′

of A over the valuation ring of F ′ such that x = xξ′ for some ξ′ ∈ ΦA′ . By Lemma 2.2, upon a
further base change, we may assume that A′ admits a cubical extension L′ of L. We thus actually
find that

‖s‖π∗L = sup
x∈Σtor

‖s(x)‖L. (10.11)

By continuity and the density of Σtor in Σ, we deduce that

‖s‖π∗L = sup
x∈Σ

‖s(x)‖L. (10.12)

This finishes the proof of the corollary. �

11. Proof of Theorem B

We continue to assume that the rigidified symmetric ample line bundle L defines a principal
polarization λ on A. Let (X, Y, Φ, b) be the principally polarized tropical abelian variety associ-
ated to (A, L) by Raynaud’s uniformization theory and let Σ = X∗

R
/Y be the associated polarized

real torus as at the end of § 6. Let [·, ·] denote the induced inner product on X∗
R
.

We recall from § 8.1 that the tropical Riemann theta function associated to (A, L) is the
function Ψ: X∗

R
→ R given by

Ψ(ν) = min
u′∈Y

{
1
2 [u′, u′] + [u′, ν]

}
(11.1)

for ν ∈ X∗
R
. Let ‖ · ‖ denote the norm associated to [·, ·] on X∗

R
. The modified tropical Riemann

theta function is defined to be the function

‖Ψ‖(ν) = Ψ(ν) + 1
2‖ν‖2, ν ∈ X∗

R. (11.2)

The function ‖Ψ‖ is Y -invariant and hence descends to Σ. Explicitly, we have

‖Ψ‖(ν) = 1
2 min

u′∈Y
‖ν + u′‖2 (11.3)

for all ν ∈ X∗
R
.

We have the following result about the invariant I(A, λ) as defined in (7.4).

Theorem 11.1. The formula

I(A, λ) =
∫

Σ
‖Ψ‖ dμH

holds. Here μH is the Haar measure of unit volume on the real torus Σ.
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It is not hard to see that the integral
∫
Σ ‖Ψ‖ dμH equals half the tropical moment of Σ. Thus,

Theorem 11.1 implies part (a) of Theorem B.

Proof of Theorem 11.1. Let s be a non-zero global section of L and let f be a theta function
corresponding to s. By Proposition 8.3, there exists an element z0 ∈ Ealg such that the following
four properties hold. Let y = p(z0) and put L′ = T ∗

y L.

(a) The line bundle L′ has an associated triple (M ′, Φ, c′) with M ′ a symmetric rigidified line
bundle that as a line bundle is isomorphic with T ∗

wM , where w = q(z0), such that under the
canonical identification of line bundles M ′⊗2 = (id, λB,L)∗P on B derived from (6.6) and
the symmetry of M ′, we have c′(u′)⊗2 = t(u′, Φ(u′)) for u′ ∈ Y .

(b) The line bundle L′ is symmetric.
(c) The function T ∗

z0
f is a theta function for the symmetric line bundle L′ corresponding to the

section T ∗
y s.

(d) The tropicalization T ∗
z0

f of the theta function T ∗
z0

f is equal to the tropical Riemann theta
function Ψ, up to an additive constant.

By the invariance property expressed in Lemma 7.3, in order to compute I(A, λ) we may replace
the line bundle L by the line bundle L′ = T ∗

y L. We may therefore assume that the following is
verified for L and f : there exists a triple (M, Φ, c) for L such that:

(i) under the identification of rigidified line bundles M⊗2 = (id, λB,L)∗P on B derived from
(6.6), we have c(u′)⊗2 = t(u′, Φ(u′)) for u′ ∈ Y ;

(ii) the tropicalization f̄ is equal to the tropical Riemann theta function Ψ, up to an additive
constant.

Write f̄ = Ψ + γ, where γ ∈ R. Let x ∈ Σ and let z ∈ X∗
R

be such that p(z) = x. By condition
(i), we may apply Proposition 9.1 and conclude that

− log‖s(x)‖L = 1
2 [z, z] + f̄(z)

= 1
2 [z, z] + Ψ(z) + γ

= ‖Ψ‖(x) + γ. (11.4)

As infy∈Σ ‖Ψ‖(y) = ‖Ψ‖(0) = 0, we deduce that

− log‖s(x)‖L = ‖Ψ‖(x) − log sup
y∈Σ

‖s(y)‖L. (11.5)

Using Corollary 10.5, we find that

I(A, λ) = log sup
y∈Σ

‖s(y)‖L −
∫

Σ
log‖s‖L dμH

=
∫

Σ
‖Ψ‖ dμH , (11.6)

which proves the theorem. �

12. Complex abelian varieties

The purpose of this section is to discuss several intrinsic hermitian metrics associated to line
bundles on complex abelian varieties. Let A be an abelian variety over C of dimension g.
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12.1 Faltings metric and L2-metric
Let α be an element of the fiber 0∗Ωg

A/C
of the canonical line bundle Ωg

A/C
at the origin. Evaluation

at the origin gives an isomorphism H0(A, Ωg
A/C

) ∼−→ 0∗Ωg
A/C

of C-vector spaces and this allows
us to view α as an element of H0(A, Ωg

A/C
). We define the Faltings norm of α by the equation

‖α‖2
Fa =

√−1g2

2g

∫
A(C)

α ∧ ᾱ. (12.1)

Remark 12.1. We warn the reader that in the literature there appear several variants of the
normalization factor

√−1g2

2−g in front of the integral in (12.1). Our normalization is compatible
with the original source [Fal83], and with [Aut06], but unfortunately not with [Bos96b], where

the normalization factor is
√−1g2

(2π)−g.
Let L be an ample line bundle on A. Let ‖ · ‖ be a smooth hermitian metric on Lan. The

associated L2-metric on H0(Aan, Lan) is defined as follows: let s be a global section of Lan. We
put

‖s‖2
L2 =

∫
Aan

‖s‖2 dμH , (12.2)

where μH denotes the Haar measure on Aan, normalized to give Aan total mass equal to one.

12.2 Canonical metrics
Assume now that L is ample and rigidified. By [Mor85, § II.2], there exists a unique smooth
hermitian metric ‖ · ‖L on Lan such that the canonical cubical structure on L provided by the
theorem of the cube is an isometry. The metric ‖ · ‖L is called the canonical metric on Lan.
Equivalently, the metric ‖ · ‖L can be characterized as the unique smooth hermitian metric on
Lan such that (a) the given rigidification at the origin is an isometry and (b) the curvature form
of ‖ · ‖L is translation-invariant. See [Mor85, Proposition II.2.1].

As can be verified immediately, if the given rigidification of L is multiplied by a scalar λ ∈ C×,
then the canonical metric on L associated to the new rigidification is obtained by multiplying
‖ · ‖L by |λ|. Further, let s be a non-zero rational section of L and write D = divL s. We note
that the map − log ‖s‖L : Aan \ Supp(Dan) → R is a Néron function on A with respect to D in
the sense of [Lan83, § 11.1].

Assume now that L is moreover symmetric. We have a unique isomorphism [−1]∗L ∼−→ L of
rigidified line bundles and, further, by applying the theorem of the cube, a unique isomorphism
of rigidified line bundles ϕ2 : [2]∗L ∼−→ L⊗4. The fact that the canonical cubical structure on L is
an isometry for ‖ · ‖L implies that ϕ2 is an isometry for the metrics induced by ‖ · ‖L on [2]∗L
and L⊗4.

12.3 Translation by a two-torsion point
We continue to assume that L is symmetric, rigidified and ample. Let y ∈ A[2] be a two-torsion
point and write Ty : A → A for translation along y. We have that T ∗

y L is a symmetric ample line
bundle.

Lemma 12.1. Let ‖ · ‖L be the canonical metric on Lan. Then the pullback metric T ∗
y ‖ · ‖L is a

canonical metric on T ∗
y Lan.

Proof. This can be shown exactly analogously to Lemma 5.1. Alternatively, it is clear that
T ∗

y ‖ · ‖L is a smooth hermitian metric on T ∗
y L whose curvature form is translation-invariant.

This also proves the lemma. �
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12.4 The invariant I(A, λ)
Let λ : A

∼−→ At be a principal polarization of A and let L be any symmetric ample line bundle
on A determining λ. Let s be a non-zero global section of L and fix a rigidification of L. Let
‖ · ‖L denote the associated canonical metric on Lan.

We define

I(A, λ) = log‖s‖L2 −
∫

Aan

log‖s‖L dμH , (12.3)

where μH denotes the Haar measure on Aan, normalized to give Aan total mass equal to one.

Lemma 12.2. The quantity I(A, λ) is independent of the choice of line bundle L, of section s
and of rigidification of L and hence defines an invariant of the principally polarized complex
abelian variety (A, λ).

Proof. Choose one symmetric ample line bundle L on A determining λ. A change of rigidification
results in a replacement of ‖ · ‖L by a scalar multiple of ‖ · ‖L. Moreover, the space H0(A, L)
of global sections of L is one-dimensional. It follows immediately that the quantity I(A, λ) as
defined in (12.3) is independent of the choice of rigidification of L and of section s. Now any
other symmetric ample line bundle on A determining λ is given by T ∗

y L for some two-torsion
point y of A. By Lemma 12.1 and the translation-invariance of μH , we find that the quantity
I(A, λ) is also independent of the choice of L. �

13. Stable Faltings height and key formula

The purpose of this section is to review the definition of the stable Faltings height of an abelian
variety defined over the field Q̄ of algebraic numbers and to state Bost’s formula [Bos96b] for it.
We start by recalling the general notion of Arakelov degree.

13.1 Arakelov degree
Let k be a number field. Let S denote the spectrum of the ring of integers Ok of k. Let V → S
be a flat morphism of finite type with smooth generic fiber. A hermitian line bundle on V
is the data of a line bundle L on V together with smooth hermitian metrics on the Lv for
v ∈ M(k)∞. A hermitian line bundle on S can be identified with a projective rank-one Ok-
module M together with hermitian metrics ‖ · ‖v on the k̄v-vector spaces Mv for all v ∈ M(k)∞.
Let M̄ = (M, (‖ · ‖v)v∈M(k)∞) be a hermitian line bundle on S. Its Arakelov degree is given by
choosing a non-zero element s of M and by setting

d̂eg M̄ =
∑

v∈M(k)0

ordv(s) log Nv −
∑

v∈M(k)∞

log‖s‖v. (13.1)

Here Nv denotes the cardinality of the residue field at v. The Arakelov degree d̂eg M̄ is
independent of the choice of the section s, by the product formula.

13.2 Stable Faltings height
Let A be an abelian variety of dimension g over the number field k. Let G be the identity
component of the Néron model of A over S = SpecOk, let e : S → G denote the zero section of
G and set ωG/S = e∗Ωg

G/S . Then ωG/S is a line bundle on S. We endow ωG/S canonically with
the structure of a hermitian line bundle ωG/S on S by using the metrics (12.1) on all v ∈ M(k)∞.
The Faltings height hF (A) of A over k is given by the Arakelov degree

[k : Q] hF (A) = d̂eg ωG/S . (13.2)
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Finally, let A be an abelian variety over Q̄ and let k ⊂ Q̄ be a number field such that A has
semistable reduction over k. We let the stable Faltings height of A be the Faltings height of A
over k given by (13.2). The stable Faltings height is independent of the choice of the number
field k ⊂ Q̄.

13.3 Moret-Bailly models
We make a slight variation upon [Bos96b, § 4.3]. Let S be a connected Dedekind scheme and
let π : A → S be a semistable group scheme. Let L be a line bundle on A. Let A be the generic
fiber of A and L the generic fiber of L. Assume that A is an abelian variety and assume that L
is a rigidified symmetric and ample line bundle on A. We denote by K(L⊗2) the kernel of the
polarization λL⊗2 : A → At associated to L⊗2. We call (A,L) a Moret-Bailly model of (A, L) if
the line bundle L is a cubical extension of L and the group scheme K(L⊗2) extends as a finite
flat subgroup scheme of A over S. Denote by F the function field of S. Starting from the Néron
model of A over S, and using Lemma 2.2, one may readily construct Moret-Bailly models, at
the cost of replacing F by a suitable finite field extension. See, for instance, [Bos96b, Theorem
4.10(i)] and its proof.

13.4 Bost’s formula for the stable Faltings height
The aim of this section is to display Bost’s formula [Bos96b, Theorem 4.10(v)] for the stable
Faltings height of a principally polarized abelian variety, based on Moret-Bailly’s key formula.
We refer to [Mor85, Chapitre VIII] for the original key formula. We restrict ourselves to the
principally polarized case but mention that the results of [Bos96b] pertain to polarizations of
arbitrary degree.

Let A be an abelian variety with semistable reduction over the number field k. Let L be a
rigidified symmetric ample line bundle on A. Let S be the spectrum of the ring of integers of
k and let π : A → S be a semistable group scheme with generic fiber A and equipped with a
line bundle L extending the line bundle L on A. We note that L is canonically endowed with a
structure of a hermitian line bundle L̄, by taking the canonical metrics ‖ · ‖L,v from § 12.1 on Lv

at all v ∈ M(k)∞.
Assume that (A,L) is a Moret-Bailly model of (A, L) as in § 13.3 and assume further that L

defines a principal polarization. Then the sheaf π∗L is invertible [Mor85, Chapitre VI]. Further,
the line bundle π∗L on S has a canonical structure of a hermitian line bundle π∗L, as follows:
for each v ∈ M(k)∞, one chooses the L2-metric (12.2) derived from the canonical metric ‖ · ‖L,v.
Write κ0 = log(π

√
2) as before. The following is a special case of Bost’s formula from [Bos96b,

Theorem 4.10(v)].

Theorem 13.1. Let A be an abelian variety over k and let L be a symmetric rigidified ample
line bundle on A. Assume that L determines a principal polarization of A. Assume that (A, L)
extends into a Moret-Bailly model (A,L) over S. Then the equality

[k : Q] hF (A) = −2 d̂eg π∗L − [k : Q] κ0 g

holds in R. Here g denotes the dimension of A.

Remark 13.1. The formula in Theorem 13.1 is slightly different from the one in [Bos96b,
Theorem 4.10(v)]. This is due to a difference in normalization of the Faltings metric (12.1):
see Remark 12.1.
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Faltings height and Néron–Tate height of a theta divisor

14. Néron–Tate heights

The purpose of this section is to review the notion of Néron–Tate heights of cycles on a polarized
abelian variety over a number field. The main references for this section are [CT09, Gub10,
Zha95].

14.1 Adelic absolute values
Let k be a number field and let S be the spectrum of the ring of integers Ok of k. For each
v ∈ M(k)∞, we choose the standard euclidean metrics | · |v on all k̄v

∼= C. For each v ∈ M(k)0,
we let kv denote the completion of k at v, choose a uniformizer 
v, fix the completion Cv of
an algebraic closure of kv and fix on Cv a corresponding absolute value | · |v such that |
v|v =
(Nv)−1 with Nv the cardinality of the residue field at v. These normalizations ensure that the
resulting collection of absolute values (| · |v)v∈M(k) on k satisfies the product formula.

14.2 Adelic line bundles
Let V be a geometrically integral normal projective variety over k and let L be a line bundle on
V . We refer to [Cha11, Zha95] for a general discussion of how suitable collections of admissible
metrics on Lan

v on V an
v for all v ∈ M(k) (we call the resulting data an admissible adelic line

bundle on V ) give rise to a notion of height of integral cycles on V with respect to L. We discuss
the case of abelian varieties in some detail, referring to [Zha95] for proofs.

14.3 Adelic intersections
Let A be an abelian variety over k. Let L be a rigidified symmetric ample line bundle on A. Given
our choices of absolute values in § 14.1, we obtain, at each v ∈ M(k), a canonical metric ‖ · ‖L,v on
Lan

v on Aan
v . We refer to § 12.2 for the complex embeddings and to § 5.1 for the non-archimedean

places.
The resulting adelic line bundle L̂ = (L, (‖ · ‖L,v)v∈M(k)) is admissible. In particular, for each

integral cycle Z on A, the self-intersection number 〈L̂ · · · L̂|Z〉 is well defined. The Néron–Tate
height of Z with respect to L is defined to be the normalized intersection number

h′
L(Z) =

1
[k : Q]

1
(d + 1) degL Z

〈L̂ · · · L̂|Z〉, (14.1)

where d = dim Z. One can use formula (14.1) to define the Néron–Tate height of any effective
cycle Z of pure dimension d on A. We have the following properties: h′

L(Z) � 0 and, for all
n ∈ Z>0, we have h′

L([n]∗Z) = n2 h′
L(Z). In particular, if Z is an abelian subvariety of A, then

h′
L(Z) = 0. The real number h′

L(Z) is independent of the chosen rigidification of L. This is
verified in § 14.5 below.

14.4 Chambert-Loir measure
Let Z be an integral cycle on A and let v ∈ M(k). Associated to L̂, Z and v, one has a canonical
measure c1(L̂)d

v ∧ δZ on Aan
v introduced by Chambert-Loir [Cha11, Cha06]. For v ∈ M(k)∞, the

measure c1(L̂)d
v ∧ δZ is just obtained, as the notation suggests, by taking the d-fold wedge of

the first Chern form of (Lv, ‖ · ‖L,v) and wedging the result with the Dirac current δZv at Zv.
For v ∈ M(k)0, the measure c1(L̂)d

v ∧ δZ is defined in terms of intersection theory. The measure
c1(L̂)d

v ∧ δZ is independent of the choice of rigidification on L. We refer to c1(L̂)d
v ∧ δZ as the

Chambert-Loir measure associated to L̂, Z and v.
As follows from [CT09, Théorème 4.1], the Chambert-Loir measure satisfies the following

property. Let s be a non-zero rational section of L such that Z is not contained in the support of
divL s. Then, for each v ∈ M(k), the Green’s function log‖s‖L,v is integrable against the measure
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c1(L̂)d
v ∧ δZ . Moreover, one has the recursive formula

〈L̂ · · · L̂ |Z〉 = 〈L̂ · · · L̂ | divZ(s)〉 −
∑

v∈M(k)

∫
Aan

v

log‖s‖L,v c1(L̂)d
v ∧ δZ . (14.2)

14.5 Independence of rigidification
At this point we may verify that h′

L(Z) or equivalently 〈L̂ · · · L̂ |Z〉 is independent of the choice
of rigidification of L. We note that if we change the given rigidification of L by multiplying it
by a scalar λ ∈ k×, we have that at each v ∈ M(k) the new canonical metric is obtained by
multiplying the given canonical metric ‖ · ‖L,v by |λ|v. It follows by the product formula that
the term ∑

v∈M(k)

∫
Aan

v

log‖s‖L,v c1(L̂)d
v ∧ δZ (14.3)

from (14.2) is independent of the choice of rigidification of L. By (14.2), we are then reduced,
using induction on dim(Z), to the case that Z = P ∈ A(k) is a rational point of A. Let s be a
non-zero rational section of L such that P does not lie on the support of divL s. In this case,
(14.2) becomes

[k : Q] h′
L(P ) = −

∑
v∈M(k)

log‖s(P )‖L,v, (14.4)

expressing the Néron–Tate height with respect to L of the point P as a sum of evaluations of the
local Néron functions − log ‖s‖L,v. The product formula then shows that h′

L(P ) is independent
of the chosen rigidification of L.

14.6 Connection with the Néron model
Assume that A has semistable reduction over k and let N be the Néron model of A over S.
Let n ∈ Z>0 be such that for each v ∈ M(k)0, the group of connected components of N at v is
annihilated by n. Let M = L⊗2n. By Lemma 2.1, the cubical line bundle M admits a cubical
extension M over N . We obtain a hermitian line bundle M̄ on N by endowing M at each
complex embedding with the canonical metric (cf. § 12.2). Let P ∈ A(k) and denote by P̄ the
section of N over S induced by P . Proposition 10.1 readily gives that

−2n
∑

v∈M(k)

log‖s‖L,v(P ) = d̂eg P̄ ∗M̄. (14.5)

Combining with (14.4), we obtain

2n [k : Q] h′
L(P ) = d̂eg P̄ ∗M̄. (14.6)

Compare with [Bos96b, Theorem 4.10(ii)] and [Mor85, § III.4.4].

14.7 Néron–Tate height of a theta divisor
Let v ∈ M(k)0. In [Gub10], Gubler calculated the Chambert-Loir measures c1(L̂)d

v ∧ δZ on Aan
v

explicitly, using tropical geometry. We need the following special case, where we take Z to be
A itself. Let ιv : Σv ↪→ Aan

v denote the inclusion of the canonical skeleton into Aan
v ; cf. § 7. Let

g = dim(A) and let μH,v be the Haar measure of Σv, normalized to give Σv total mass equal to
one. Then, by [Gub10, Corollary 7.3], we have the identity

c1(L̂)g
v = degL(A) ιv,∗(μH,v) (14.7)
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of measures on Aan
v . For v ∈ M(k)∞, a very similar identity holds, namely

c1(L̂)g
v = degL(A)μH,v, (14.8)

where now μH,v is the Haar measure on the complex torus Aan
v , normalized to give Aan

v total
mass equal to one. These identities lead to the following expression for the Néron–Tate height
of a theta divisor.

Theorem 14.1. Let s be a non-zero global section of L. Write Θ = div s. Then the identity

g [k : Q] h′
L(Θ) =

∑
v∈M(k)0

∫
Aan

v

log‖s‖L,v dμH,v +
∑

v∈M(k)∞

∫
Aan

v

log‖s‖L,v dμH,v

holds.

Proof. As the Néron–Tate height of A vanishes, we have 〈L̂ · · · L̂ |A〉 = 0. By (14.2) applied to
Z = A and the global section s, we find that

〈L̂ · · · L̂ |Θ〉 =
∑

v∈M(k)

∫
Aan

v

log‖s‖L,v c1(L̂)g
v.

We also have 〈L̂ · · · L̂ |Θ〉 = [k : Q] h′
L(Θ) · g · degL(A). Using (14.7) and (14.8), we find the

required identity. �

15. Proof of Theorem A

In this section we prove Theorem A. We repeat the statement for convenience. Let k be a number
field. Let (A, λ) be a principally polarized abelian variety of positive dimension with semistable
reduction over k. Let L be a symmetric ample line bundle on A that determines the principal
polarization λ, let s be a non-zero global section of L and write Θ = div s.

Let h′
L(Θ) be the Néron–Tate height (14.1) of Θ and let hF (A) be the stable Faltings height

(13.2) of A. For v ∈ M(k)∞, let I(Av, λv) be the invariant defined in (1.1) and, for v ∈ M(k)0,
let I(Av, λv) be the invariant defined in (1.5).

Write κ0 = log(π
√

2) and set g = dim(A).

Theorem 15.1. The equality

hF (A) = 2g h′
L(Θ) − κ0 g +

2
[k : Q]

( ∑
v∈M(k)0

I(Av, λv) log Nv +
∑

v∈M(k)∞

I(Av, λv)
)

holds in R.

Proof. We are allowed to replace k by a finite field extension. Hence, we may assume that (A, L)
has a Moret-Bailly model (A,L) over the ring of integers of k.

For each v ∈ M(k)0, we let kv denote the completion of k at v, choose a uniformizer 
v, fix
the completion Cv of an algebraic closure of kv and fix on Cv a corresponding absolute value
| · |v such that |
v|v = (Nv)−1 with Nv the cardinality of the residue field at v.

For each v ∈ M(k)∞, we choose the standard euclidean metrics | · |v on all k̄v
∼= C.

We fix a rigidification on L. For each v ∈ M(k), we let ‖ · ‖L,v denote the canonical metric
on Lan

v on Aan
v determined by the absolute value | · |v.

Let S be the spectrum of the ring of integers of k and let π : A → S denote the structure
morphism. Set h∗

F (A) = hF (A) + κ0g. By Theorem 13.1 (the key formula), we find that

[k : Q] h∗
F (A) = −2 d̂egS π∗L. (15.1)
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Here the Arakelov degree is taken over S and the metrics at the complex embeddings are the
L2-metrics (12.2).

We are going to calculate the Arakelov degree in the right-hand side of (15.1) explicitly. View
s as a rational section of the invertible sheaf π∗L on S. By (13.1), we have

d̂egS π∗L =
∑

v∈M(k)0

ordv(s) log Nv −
∑

v∈M(k)∞

log‖s‖v. (15.2)

Let v ∈ M(k)0. Let Σv be the canonical skeleton of Aan
v and let μH,v denote the Haar measure

of unit volume on Σv. By Corollary 10.7, we have, taking care of the identity |
v|v = (Nv)−1

for the absolute value at v,

ordv(s) log Nv = − log
(

sup
x∈Σv

‖s(x)‖L,v

)

= −
(∫

Aan
v

log‖s‖L,v dμH,v + I(Av, λv) log Nv

)
. (15.3)

Now let v ∈ M(k)∞. From (1.1) and (12.2), we obtain

log‖s‖v =
1
2

log
∫

Aan
v

‖s‖2
L,v dμH,v

=
∫

Aan
v

log‖s‖L,v dμH,v + I(Av, λv). (15.4)

Combining (15.1)–(15.4), we find that

[k : Q] h∗
F (A) = 2

∑
v∈M(k)0

(∫
Aan

v

log‖s‖L,v dμH,v + I(Av, λv) log Nv

)

+ 2
∑

v∈M(k)∞

(∫
Aan

v

log‖s‖L,v dμH,v + I(Av, λv)
)

.

Using Theorem 14.1, we obtain

[k : Q] h∗
F (A) = 2g [k : Q] h′

L(Θ) + 2
∑

v∈M(k)0

I(Av, λv) log Nv + 2
∑

v∈M(k)∞

I(Av, λv).

This proves Theorem A. �
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Paz19 F. Pazuki, Décompositions en hauteurs locales, in Arithmetic geometry: computation and

applications (American Mathematical Society, Providence, RI, 2019), 121–140; MR 3896852.
Phi91 P. Philippon, Sur des hauteurs alternatives. I, Math. Ann. 289 (1991), 255–283; MR 1092175.
Sil84 J. H. Silverman, Heights and elliptic curves, in Arithmetic geometry (Springer, New York, 1986),

253–265; MR 861979.
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