A NOTE ON THE POLIGNAC NUMBERS

HAO PAN

(Received 8 August 2013; accepted 13 September 2013; first published online 13 March 2014)

Abstract

Suppose that $k_{0} \geq 3.5 \times 10^{6}$ and $\mathcal{H}=\left\{h_{1}, \ldots, h_{k_{0}}\right\}$ is admissible. Then, for any $m \geq 1$, the set $\left\{m\left(h_{j}-h_{i}\right)\right.$: $h_{i}<h_{j}$ \} contains at least one Polignac number.

2010 Mathematics subject classification: primary 11P32; secondary 11A07.
Keywords and phrases: Polignac number, admissible set.

1. Introduction

A recent huge breakthrough in prime number theory is Zhang's brilliant work (see [4]), which asserts that

$$
\liminf _{n \rightarrow \infty}\left(p_{n+1}-p_{n}\right) \leq 7 \times 10^{7}
$$

where p_{n} denotes the nth prime. For a set $\mathcal{H}=\left\{h_{1}, h_{2}, \ldots, h_{k_{0}}\right\}$ of positive integers, we say that \mathcal{H} is admissible if $v_{p}(\mathcal{H})<p$ for every prime p, where $v_{p}(\mathcal{H})$ denotes the number of distinct residue classes occupied by those h_{i} modulo p. Zhang proved that if $k_{0} \geq 3.5 \times 10^{6}$ and $\mathcal{H}=\left\{h_{1}, \ldots, h_{k_{0}}\right\}$ is admissible, then, for sufficiently large x, there exists $n \in[x, 2 x]$ such that $\left\{n+h_{1}, n+h_{2}, \ldots, n+h_{k_{0}}\right\}$ contains at least two primes. He also constructed an admissible $\mathcal{H}=\left\{h_{1}, \ldots, h_{k_{0}}\right\}$ such that $\max _{i, j}\left|h_{j}-h_{i}\right| \leq 7 \times 10^{7}$.

In fact, one may have the following 'cheap' extension of Zhang's theorem.
Theorem 1.1. Let $k_{0} \geq 3.5 \times 10^{6}$ and $A>0$. Suppose that x is sufficiently large and $1 \leq q \leq(\log x)^{A}$. If $\mathcal{H}=\left\{h_{1}, \ldots, h_{k_{0}}\right\}$ is admissible and $\left(q, h_{1} h_{2} \cdots h_{k_{0}}\right)=1$, there exists $n \in[x, 2 x]$ such that $\left\{q n+h_{1}, q n+h_{2}, \ldots, q n+h_{k_{0}}\right\}$ contains at least two primes.

The proof of Theorem 1.1 is just a copy of Zhang's original one. The only modification is to set

$$
P(n)=\prod_{i=1}^{k_{0}}\left(q n+h_{i}\right) \quad \text { and } \quad \mathbb{S}=\prod_{\substack{p \text { prime } \\ p \nmid q}}\left(1-\frac{v_{p}(\mathcal{H})}{p}\right) \cdot \prod_{p \text { prime }}\left(1-\frac{1}{p}\right)^{-k_{0}} .
$$

The author is supported by the National Natural Science Foundation of China (grant no. 11271185).
(C) 2014 Australian Mathematical Publishing Association Inc. 0004-9727/2014 \$16.00

As an immediate consequence of Theorem 1.1, for $0 \leq b<q$ with $(b, q)=1$,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{p_{n+1}^{(b, q)}-p_{n}^{(b, q)}}{q} \leq 7 \times 10^{7} \tag{1.1}
\end{equation*}
$$

where $p_{n}^{(b, q)}$ denotes the nth prime of the form $q m+b$. In fact, suppose that prime $p \nmid q$ and $\left\{h_{1}, \ldots, h_{k_{0}}\right\}$ does not cover the residue class c modulo p. Then $\left\{b+q h_{1}, \ldots, b+q h_{k_{0}}\right\}$ does not cover $(b+c q)$ modulo p, as well. And if $p \mid q$, then evidently $\left\{b+q h_{1}, \ldots, b+q h_{k_{0}}\right\}$ does not cover 0 modulo p. That is, the admissibility of $\left\{h_{1}, \ldots, h_{k_{0}}\right\}$ always implies that of $\left\{b+q h_{1}, \ldots, b+q h_{k_{0}}\right\}$. Thus (1.1) easily follows from Theorem 1.1.

However, the main purpose of this short note is to give another application of Theorem 1.1, concerning Polignac numbers [3]. A positive even number d is called a Polignac number if there exist infinitely many n such that $p_{n+1}-p_{n}=d$. Of course, it is believed that every positive even number is a Polignac number. And Zhang's theorem shows that the smallest Polignac number is not greater than 7×10^{7}.

Recently, combining Zhang's techniques with some lemmas from [1], Pintz [2] proved that the set of all Polignac numbers has a positive lower density. We shall now show that this lower density is at least 2×10^{-21}. In fact, we have the following theorem.

Theorem 1.2. Suppose that $k_{0} \geq 3.5 \times 10^{6}$ and $\mathcal{H}=\left\{h_{1}, \ldots, h_{k_{0}}\right\}$ is admissible. Let $\sigma(\mathcal{H})=\left\{h_{j}-h_{i}: h_{i}\left\langle h_{j}\right\}\right.$. Then, for any $m \geq 1$, the set $m \cdot \sigma(\mathcal{H})=\{m d: d \in \sigma(\mathcal{H})\}$ contains at least one Polignac number.

Evidently, by taking $k_{0}=3.5 \times 10^{6}$ and $\max _{i, j}\left|h_{i}-h_{j}\right| \leq 7 \times 10^{7}$ in Theorem 1.2, we can get that the lower density of all Polignac numbers is at least

$$
\frac{2}{k_{0}^{2} \cdot \max _{i, j}\left|h_{j}-h_{i}\right|} \geq 2 \times 10^{-21}
$$

2. Proof of Theorem 1.2

Without loss of generality, assume that $h_{1}<h_{2}<\cdots<h_{k_{0}}$. Let

$$
X=\left\{a \in\left[m h_{1}, m h_{k_{0}}\right]: a \equiv m h_{1}(\bmod 2), a \notin\left\{m h_{1}, \ldots, m h_{k_{0}}\right\}\right\} .
$$

Assume that $X=\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}$. Arbitrarily choose distinct primes $p_{1}, p_{2}, \ldots, p_{l}>$ $m h_{k_{0}}$. Let $b>0$ be an integer such that $b \equiv 1(\bmod m)$ and $b \equiv-a_{j}\left(\bmod p_{j}\right)$ for $1 \leq j \leq l$. Let $q=m p_{1} p_{2} \cdots p_{l}$. Since $(b, m)=1,\left\{b+m h_{1}, \ldots, b+m h_{k_{0}}\right\}$ is admissible. And for each j, noting that $p_{j} \mid b+a_{j}$ and $p_{j}>m h_{k_{0}}$, we must have

$$
\prod_{i=1}^{k_{0}}\left(b+m h_{i}\right) \not \equiv 0\left(\bmod p_{j}\right)
$$

That is, q is coprime to $\left(b+m h_{1}\right)\left(b+m h_{2}\right) \cdots\left(b+m h_{k_{0}}\right)$. By Theorem 1.1, there exist infinitely many n such that $\left\{q n+b+m h_{1}, q n+b+m h_{2}, \ldots, q n+b+m h_{k_{0}}\right\}$ contains at least two primes.

Let $n_{1}, n_{2}, n_{3}, \ldots$ be all such positive integers n. For each $s \geq 1$, noting that $\left\{q n_{s}+b+m h_{1}, \ldots, q n_{s}+b+m h_{k_{0}}\right\}$ contains at least two primes, we may choose a pair $\left(i_{s}, j_{s}\right)$ with $i_{s}<j_{s}$ such that both $q n_{s}+b+m h_{i_{s}}$ and $q n_{s}+b+m h_{j_{s}}$ are prime, but $q n_{s}+b+m h_{k}$ is composite for all $i_{s}<k<j_{s}$. Since $1 \leq i_{s}<j_{s} \leq k_{0}$, clearly there exists a pair $\left(i_{*}, j_{*}\right)$ such that the set $\left\{s:\left(i_{s}, j_{s}\right)=\left(i_{*}, j_{*}\right)\right\}$ is infinite. That is, $q n+b+m h_{i_{*}}$ and $q n+b+m h_{j_{*}}$ are prime for infinitely many n. But according to the definition of q, for any $a_{j} \in\left(m h_{i_{*}}, m h_{j_{*}}\right), q n+b+a_{j} \equiv 0\left(\bmod p_{j}\right)$, that is, $q n+b+a_{j}$ cannot be prime. So $q n+b+m h_{i_{*}}$ and $q n+b+m h_{j_{*}}$ must be two consecutive primes, that is, $m\left(h_{j_{*}}-h_{i_{*}}\right)$ is a Polignac number. We are done.

Acknowledgements

I am grateful to the anonymous referee for his/her useful suggestions on this paper. I also thank Professor Zhi-Wei Sun for his helpful discussions on Zhang's theorem.

References

[1] Y. Motohashi and J. Pintz, 'A smoothed GPY sieve', Bull. Lond. Math. Soc. 40 (2008), 298-310.
[2] J. Pintz, 'Polignac numbers, conjectures of Erdős on gaps between primes, arithmetic progressions in primes, and the bounded gap conjecture', Preprint, arXiv:1305.6289.
[3] A. de Polignac, 'Six propositions arithmologiques déduites du crible d'Ératosthène', Nouv. Ann. Math. 8 (1849), 423-429.
[4] Y. Zhang, 'Bounded gaps between primes', Ann. of Math. (2), to appear.

HAO PAN, Department of Mathematics, Nanjing University, Nanjing 210093, PR China
e-mail: haopan1979@gmail.com

