
2

Discrete Transport Problems

In this chapter we introduce the basic ideas of Kantorovich’s approach to trans-
port problems by working in the discrete setting. From a formal viewpoint, this
is just a particular case of the theory developed in Chapter 3, so its discussion
in a separate chapter is mainly motivated by pedagogical reasons. The notions
of transport plan (Section 2.1) and c-cyclical monotonicity (Section 2.2) arise
effortlessly in this context and without any real technical burden. We then move
to consider c-cyclical monotonicity in the model case of the quadratic transport
cost c(x, y) = |x − y |2, thus establishing its link with convexity and the cor-
responding Kantorovich duality (Sections 2.3 and 2.4). Finally, in Section 2.5,
we consider the discrete Monge problem.

2.1 The Discrete Kantorovich Problem

Discrete transport problems involve origin and final mass distributions μ and ν
that are concentrated at finitely many points; that is to say, we consider

μ =

N∑

i=1

μi δxi , ν =

M∑

j=1

νj δy j , (2.1)

where X = {xi }Ni=1 and Y = {y j }Mj=1 are collections of distinct1 points in Rn ,
and with μi and νj positive numbers such that

μ(Rn ) =
N∑

i=1

μi = 1, ν(Rn ) =
M∑

j=1

νj = 1. (2.2)

The corresponding Monge problem Mc (μ, ν) may be ill-posed (independently
from the choice of a transport cost c) for the basic reason that there may be no
transport maps from μ to ν.

1 By this we mean that X is a family of N distinct points in Rn and that Y is a family of M
distinct points in Rn , although we are not requiring X ∩Y to be empty.
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2.1 The Discrete Kantorovich Problem 15

Remark 2.1 (Nonexistence of transport maps) Consider (2.1) and (2.2) with
N = 1 (hence, μ1 = 1) and M = 2. Since μ is concentrated at x1, every Rn-
valued map T defined at x1 transports μ with T#μ = δT (x1) . Thus, T#μ = ν =

ν1 δy1 + ν2 δy2 cannot hold, as both ν1 and ν2 are positive and y1 � y2. Hence,
Mc (μ, ν) = +∞, with empty competition class.

In the situation of Remark 2.1, one would like to transport a ν1-amount of
the mass sitting at x1 to y1 and a 1 − ν1 = ν2-amount to y2: the only problem
is that these simple “mass splitting instructions” cannot be described by maps.
However, they can be efficiently and naturally described by using matrices,

γ = {γi j } ∈ RN×M ,

so that γi j ∈ [0,1] is the amount of mass sitting at xi to be transported to y j .
Since the partial sum

∑N
i=1 γi j represents the total mass received at the site y j ,

and the partial sum
∑M

j=1 γi j represents the total mass shipped from the site xi ,
the conditions for γ to represent transport instructions from μ to ν are that

μi =

M∑

j=1

γi j , νj =

N∑

i=1

γi j . (2.3)

Any γ ∈ RN×M with nonnegative entries and satisfying (2.3) for μ and ν as in
(2.1) and (2.2) is called a discrete transport plan from μ to ν. The set of all
transport plans from μ to ν is the convex2 set Γ ⊂ RN×M defined by

Γ(μ, ν) =
{
γ ∈ RN×M : γi j ≥ 0, μi =

∑M
k=1 γik , νj =

∑N
k=1 γ j for every i, j

}
.

(2.4)
Given a cost function c : Rn ×Rn → R, the total cost associated to the discrete
transport plan γ is then given by

Cost(γ) =
∑

i, j

c(xi , y j ) γi j , (2.5)

and we obtain the discrete Kantorovich problem,

Kc (μ, ν) = inf

{∑

i, j

c(xi , y j ) γi j : γ ∈ Γ(μ, ν)

}
. (2.6)

In sharp contrast with the case of the Monge problem (see Chapter 1 and
Remark 2.1), establishing the existence of minimizers in (2.6) is actually trivial.
A minimizer γ in Kc (μ, ν) is called an optimal discrete transport plan.

Theorem 2.2 (Optimal discrete transport plans) If μ, ν ∈ P (Rn ) are discrete
(i.e., if (2.1) and (2.2) hold), then for every function c : Rn ×Rn → R there is a

2 A set X ⊂ Rn is convex if t x + (1 − t ) y ∈ X whenever x, y ∈ X and t ∈ (0, 1).
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16 Discrete Transport Problems

minimizer of the discrete Kantorovich problem Kc (μ, ν). Moreover, Mc (μ, ν) ≥
Kc (μ, ν).

Proof The function γ �→ Cost(γ) is linear on RN×M , while Γ(μ, ν) is a non-
empty (γi j = μi νj always belongs to Γ(μ, ν)), convex, compact set in RN×M

(the constraints defining Γ(μ, ν) are clearly convex and closed, and Γ(μ, ν) is
bounded since γ ∈ Γ(μ, ν) implies 0 ≤ γi j ≤ 1 for every i, j). Therefore,
the existence of a minimizer of Kc (μ, ν) is trivially established by the Direct
Method.

The inequality Mc (μ, ν) ≥ Kc (μ, ν) is trivial if there are no transport maps.
Now, if T transports μ into ν, then T : {xi }Ni=1 → R

n is such that T#μ =∑N
i=1 μi δT (xi ) equals ν =

∑M
j=1 νj δy j . This means, necessarily, that N ≥ M

and that there is σ : {1, . . . ,N } → {1, . . . ,M } surjective such that, for every i
and j, respectively,

T (xi ) = yσ (i) , νj =
∑

{i:σ (i)= j }
μi .

Correspondingly, the plan3

γi j = μi δσ (i), j

is such that γ ∈ Γ(μ, ν), with

Cost(γ) =
N∑

i=1

M∑

j=1

c(xi , y j ) μi δσ (i), j (2.7)

=

N∑

i=1

c(xi ,T (xi )) μi =
∫

Rn

c(x,T (x)) dμ(x).

Hence, Kc (μ, ν) ≤ Cost(γ) ≤
∫
Rn

c(x,T (x)) dμ(x) whenever T transports μ
into ν, and Kc (μ, ν) ≤ Mc (μ, ν) follows by arbitrariness of T . �

Two basic features of discrete Kantorovich problems are illustrated in the
following remarks.

Remark 2.3 (Γ(μ, ν) contains open segments if N,M ≥ 2.) Let us notice,
first of all, that Γ(μ, ν) consists of a single element of RM×N unless N ≥ 2 and
M ≥ 2. This is obvious if N = M = 1. If N = 1, M ≥ 1, then (2.3) implies
γ1 j = νj for every j, and similarly if N ≥ 2, M = 1, then (2.3) gives γi1 = μi
for every i. This said, as soon as N,M ≥ 2, for every γ ∈ Γ(μ, ν) such that
γi j > 0 for every i, j (one such element is always given by γi j = μi νj ), there
exists an open segment centered at γ which is entirely contained in Γ(μ, ν).
Indeed, if we define γt = {γti j } by

3 Here δh,k is the Kronecker symbol of h and k , not to be confused with δx , the Dirac mass
concentrated at x ∈ Rn .
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2.2 c-Cyclical Monotonicity with Discrete Measures 17

γt11 = γ11 + t, γt12 = γ12 − t,
γt21 = γ21 − t, γt21 = γ21 + t,

γti j = γi j if either i ≥ 3 or j ≥ 3,

then γt ∈ Γ(μ, ν) for every sufficiently small value of |t |.

Remark 2.4 (Nonuniqueness of minimizers) Kc (μ, ν) may possess multiple
minimizers. This is always the case, for example, if c, X and Y are such that,4

for some λ > 0, c(xi , y j ) = λ for every i, j. Indeed, in that case,

Cost(γ) =
∑

i, j

c(xi , y j ) γi j = λ
N∑

i=1

M∑

j=1

γi j = λ

N∑

i=1

μi = λ,

i.e., cost is constant on Γ(μ, ν), so every discrete transport plan is optimal.

2.2 c-Cyclical Monotonicity with Discrete Measures

We now further develop the remark made in Remark 2.3 to obtain a necessary
optimality condition for minimizers γ in problem Kc (μ, ν). We start by notic-
ing that we could well have γi j = 0 for some pair of indexes (i, j): when this
happens, it means that the optimal plan γ has no convenience in sending any
of the mass stored at xi to the destination y j . We thus look at those pairs (i, j)
such that γi j > 0 and consider the set

S(γ) =
{
(xi , y j ) ∈ Rn × Rn : γi j > 0

}
(2.8)

of those pairs of locations in the supports of μ and ν that are exchanging mass
under the plan γ. We now formulate a necessary condition for the optimality of
γ in terms of a geometric property of S(γ).

Theorem 2.5 If μ, ν ∈ P (Rn ) are discrete (i.e., if (2.1) and (2.2) hold) and
γ is a minimizer in the discrete Kantorovich problem Kc (μ, ν), then for every
finite subset {(z� ,w�)}L�=1 of S(γ) we have

L∑

�=1

c(z� ,w�) ≤
L∑

�=1

c(z�+1,w�), (2.9)

where zL+1 = z1.

Remark 2.6 Based on Theorem 2.5, we introduce the following crucial
notion, to be discussed at length in the sequel: a set S ⊂ Rn ×Rn is c-cyclically
monotone if every finite subset {(z� ,w�)}L�=1 of S satisfies (2.9).

4 This situation can of course be achieved in many different ways: for example, we could work
in R2, with x1 = (0, 0), x2 = (1, 1), y1 = (1, 0), y2 = (0, 1), and with c (x, y) being any
nonnegative function of the Euclidean distance |x − y |; see Figure 2.5.
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18 Discrete Transport Problems

Proof of Theorem 2.5 By construction, z� = xi (�) and w� = y j (�) for suitable
functions i : {1, . . . ,L} → {1, . . . ,N } and j : {1, . . . ,L} → {1, . . . ,M }, and
α� = γi (�) j (�) > 0 for every . Given ε > 0 with ε < min� α� , we construct a
family of transport plans γε by making, first of all, the following changes:

γi (1) j (1) → γεi (1) j (1) = γi (1) j (1) − ε,
γi (2) j (2) → γεi (2) j (2) = γi (2) j (2) − ε,
. . .

γi (L) j (L) → γεi (L) j (L) = γi (L) j (L) − ε.

i.e., we decrease by ε the amount of mass sent by γ from z� = xi (�) to w� =

y j (�) . Without further changes, the resulting plan γε is not admissible: indeed,
we have left unused an ε of mass at each origin site z� , while each of the
destination sites w� is missing an ε of mass. To fix things, we transport the
excess mass ε sitting at z�+1 to w� and thus prescribe the following changes:

γi (2) j (1) → γεi (2) j (1) = γi (2) j (1) + ε,

γi (3) j (2) → γεi (3) j (2) = γi (3) j (2) + ε,

. . .

γi (L+1) j (L) → γεi (L+1) j (L) = γi (1) j (L) + ε,

where i(L + 1) = 1. Notice that, since ε > 0 by assumption, we do not need
γi (�+1) j (�) to be positive to prescribe the second round of changes. Finally, by
setting γεi j = γi j for every (i, j) � {(i(), j ()) : 1 ≤  ≤ L}, we find that
γε ∈ Γ(μ, ν) and therefore that

0 ≤ Cost(γε ) − Cost(γ) =
L∑

�=1

−ε c(z� ,w�) + ε c(z�+1,w�).

Given that ε > 0, we deduce the validity of (2.9). �

When minimizing (as done in Kc (μ, ν)) a linear function f on a compact
convex set K , if f is nonconstant on K , then any minimum point x0 will nec-
essarily lie on ∂K . In particular, given a unit vector τ with x0 + t τ ∈ K for
every sufficiently small and positive t, by differentiating in t the inequality
f (x0 + t τ) ≥ f (x0), we find that ∇ f (x0) · τ ≥ 0. The family of inequalities
∇ f (x0) · τ ≥ 0 indexed over all the admissible directions τ is then a necessary
and sufficient condition for x0 to be a minimum point of f on K .

From this viewpoint, in Theorem 2.5 we have identified a family of “direc-
tions τ” that can be used to take admissible one-sided variations of an optimal
transport plan γ. Understanding if c-cyclical monotonicity is not only a neces-
sary condition for minimality but also a sufficient one is tantamount to prove
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2.2 c-Cyclical Monotonicity with Discrete Measures 19

that such one-sided variations exhaust all the admissible ones. The Kantorovich
duality theorem (Theorem 3.13) provides an elegant way to prove that this is
indeed the case – i.e., that c-cyclical monotonicity fully characterizes optimal-
ity in Kc (μ, ν). The main difficulties related to the Kantorovich duality theorem
are not of a technical character – actually the theorem is deduced by somehow
elementary considerations – but rather conceptual – for example, if one insists
(as it would seem natural when working with transport problems) in having a
clear geometric understanding of things. Indeed, while the combinatorial nature
of c-cyclical monotonicity is evident, its geometric content is definitely less
immediate.

Luckily, in the case of the quadratic cost c(x, y) = |x − y |2, c-cyclical
monotonicity is immediately related to convexity. By examining this relation
in detail, and by moving in analogy with it in the case of general costs, we will
develop geometric and analytical ways to approach c-cyclical monotonicity, as
well as develop the Kantorovich duality theory. To explain the relation with
convexity, it is sufficient to look at (2.9), with c(x, y) = |x − y |2, to expand
the squares |z� − w� |2 and |z�+1 − w� |2, to cancel out the sums over  of |z� |2,
|w� |2 and |z�+1 |2 (as we can thanks to zL+1 = z1), and, finally, to obtain the
equivalent condition

L∑

�=1

w� · (z�+1 − z�) ≤ 0, for all {(z� ,w�)}L�=1 ⊂ S. (2.10)

This condition is (very well) known in convex geometry as cyclical monotonic-
ity (of S). As proved in the next section, (2.10) is equivalent to require that S
lies in the graph of the gradient of a convex function on Rn . We can quickly
anticipate this result by looking at the simple case when n = 1 and L = 2, and
(2.10) just says

0 ≤ w2(z2 − z1) − w1(z2 − z1) = (w2 − w1)(z2 − z1),

that is,

⎧⎪⎨⎪
⎩

(z1,w1), (z2,w2) ∈ S,

z1 ≤ z2,
⇒ w1 ≤ w2. (2.11)

The geometric meaning of (2.11) is absolutely clear (see Figure 2.1): S must
be contained in the extended graph of a monotone increasing function from R
to R (where the term “extended” indicates that vertical segments correspond-
ing to jump points are included in the graph). Since monotone functions are
the gradients of convex functions, the connection between convexity and OMT
problems with quadratic transport cost is drawn.
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20 Discrete Transport Problems

x0

(b)(a)

Figure 2.1 (a) The graph of an increasing function f : R→ R with a discontinuity
at a point x0. The black dot indicates that the function takes the lowest possible
value compatible with being increasing; (b) The extended graph of f is a subset of
R

2 which contains the graph of f and the whole vertical segment of values that f
may take at x0 without ceasing to be increasing. The property of being contained
into the extended graph of an increasing function is easily seen to be equivalent to
(2.11).

2.3 Basics about Convex Functions on Rn

We now review some key concepts concerning convex functions on Rn that
play a central role in our discussion. In OMT it is both natural and convenient to
consider convex functions taking values in R∪ {+∞}. Since this setting may be
unfamiliar to some readers, we offer here a review of the main results, including
proofs of the less obvious ones.

Convex sets: A convex set in Rn is a set K ⊂ Rn such that t x + (1 − t) y ∈ K
whenever t ∈ (0,1) and x, y ∈ K . If K � ∅, the (affine) dimension of K is
defined as the dimension of the smallest affine space containing K . The relative
interior Ri(K ) of a convex set K is its interior as a subset of the smallest
affine space containing it; of course Ri(K ) = Int(K ), where Int(K ) is the set of
interior points of K as a subset of Rn , whenever K has dimension n. Given E ⊂
R
n we say that z ∈ Rn is a convex combination in E if z =

∑N
i=1 ti xi for some

coefficients ti ∈ [0,1] such that
∑N

i=1 ti = 1 and some {xi }Ni=1 ⊂ E. The convex
envelope conv(E) of E ⊂ Rn is the collection of all the convex combinations
in E. The convex envelope can be characterized as the intersection of all the
convex sets containing E. Of course, K is convex if and only if K = conv(K ).

Convex functions: A function f : Rn → R ∪ {+∞} is a convex function if

f (t x + (1 − t) y) ≤ t f (x) + (1 − t) f (y), ∀t ∈ [0,1], x, y ∈ Rn , (2.12)

or, equivalently, if the epigraph of f , Epi( f ) = {(x, t) : t ≥ f (x)} ⊂ Rn+1, is
a convex set in Rn+1. The domain of f , Dom( f ) = {x ∈ Rn : f (x) < ∞} =
{ f < ∞}, is a convex set in Rn . Notice that, with this definition, whenever f
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2.3 Basics about Convex Functions on Rn 21

is not identically equal to +∞, the dimension of Dom( f ) could be any integer
between 0 and n. Given a convex set K in Rn and a function f : K → R satis-
fying (2.12) for x, y ∈ K , by extending f = +∞ on Rn \ K , we obtain a convex
function with K = Dom( f ); therefore, the point of view adopted here includes
what is probably the more standard notion of “finite-valued, convex function
defined on a convex set” that readers may be familiar with. The indicator func-
tion IK of a convex set K ⊂ Rn , defined by setting IK (x) = 0 if x ∈ K and
IK (x) = +∞ if x � K , is a convex function. In particular, the basic optimization
problem “minimize a finite-valued convex function g over a convex set K” can
be simply recast as the minimization over Rn of the R ∪ {+∞}-valued function
f = g + IK , that is

inf
K

g = inf
Rn

{
g + IK

}
. (2.13)

Finally, a more practical reason for considering R∪ {+∞}-valued convex func-
tions is that, as well shall see subsequently, many natural convex functions arise
by taking suprema of families of affine functions, and thus they may very well
take the value +∞ outside of a convex set.

Lipschitz continuity and a.e. differentiability: We prove that convex func-
tions are always locally Lipschitz5 in the relative interiors of their domains.
We give details in the case when Dom( f ) has affine dimension n, since the
general case is proved similarly. Let Ω = IntDom( f ), and let us first prove that
f is locally bounded in Ω. To this end, given Br (x) ⊂⊂ Ω we notice that,
for every z ∈ Br (x), y = 2x − z ∈ Br (x) is such that x = (y + z)/2. Hence,
f (x) ≤ ( f (y) + f (z))/2, which gives

inf
Br (x)

f ≥ 2 f (x) − sup
Br (x)

f ,

i.e., f is locally bounded in Ω if it is locally bounded from above in Ω. To show
boundedness from above, let us fix n + 1 unit vectors {vi }n+1

i=1 in Rn so that the
simplex Σ with vertexes vi – defined as the set of all the convex combinations∑n+1

i=1 tivi corresponding to 0 < ti < 1 with
∑n+1

i=1 ti = 1 – is an open set in Rn

containing the origin in its interior. Now, for each x ∈ Ω, we can find r > 0
such that Σx,r = x + r Σ is contained in Ω, and since the convexity of f implies
that

f

( N∑

i=1

ti xi

)
≤

N∑

i=1

ti f (xi ),
⎧⎪⎨⎪
⎩

∀N ∈ N, ∀{ti }Ni=1 ∈ [0,1] s.t.
∑N

i=1 ti = 1,

∀{xi }Ni=1 ⊂ R
n ,

(2.14)

5 See Appendix A.10 for the basics on Lipschitz functions.
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22 Discrete Transport Problems

we conclude that

sup
Σx,r

f ≤ max
1≤i≤n+1

f (x + r vi ) < ∞.

By a covering argument, we conclude that f is locally bounded (from above
and, thus, also from below) in Ω. We next exploit local boundedness to show
that f is locally Lipschitz in Ω. Indeed, if B2r is a ball of radius 2r compactly
contained in Ω, and if Br is concentric to B2r with radius r , then

Lip( f ; Br ) ≤ 1
r

(
sup
B2r

f − inf
B2r

f
)
.

To show this, pick x, y ∈ Br and write y = t x + (1 − t) z for some z ∈ ∂B2r .
Then, |x − y | = |1 − t | |x − z | ≥ r |1 − t | so that

f (y) − f (x) ≤ t f (x) + (1 − t) f (z) − f (x) ≤ |1 − t | | f (x) − f (z) |

≤ |x − y |
r

(
sup
B2r

f − inf
B2r

f
)
.

In particular, by Rademacher’s theorem, f is a.e. differentiable in Ω, and a
simple consequence of (2.12) shows that

f (y) ≥ f (x) + ∇ f (x) · (y − x), ∀y ∈ Rn , (2.15)

whenever f is differentiable at x with gradient ∇ f (x). Condition (2.15)
expresses the familiar property that convex functions lie above the tangent
hyperplanes to their graphs whenever the latter are defined. In fact, inequal-
ity (2.15) points at a very fruitful way to think about convex functions, which
we are now going to discuss.

Convex functions as suprema of affine functions: IfA is any family of affine
functions on Rn (i.e., if α ∈ A, then α(x) = a + y · x for some a ∈ R and
y ∈ Rn), then it is trivial to check that

f = sup
α∈A

α (2.16)

defines a convex function on Rn with values in R ∪ {+∞}. A convex function
defined in this way is automatically lower semicontinuous on Rn , as it is the
supremum of continuous functions. Of course, not every convex function is
going to be lower semicontinuous on Rn (e.g., f (x) = I[0,1) (x) is not lower
semicontinuous at x = 1), so not every convex function will satisfy an identity
like (2.16) on the whole Rn . However, it is not hard to deduce from (2.15) that

f (z) = sup
{

f (x)+∇ f (x) ·(z−x) : f is differentiable at x
}
∀z ∈ IntDom( f ),

(2.17)
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2.3 Basics about Convex Functions on Rn 23

so that (2.16) always holds on IntDom( f ) if A = {αx }x for x ranging among
the points of differentiability of f , αx (z) = ax + yx · z, ax = f (x) −∇ f (x) · x,
and yx = ∇ f (x). We now introduce the concepts of subdifferential and
Fenchel–Legendre transform of a convex function. These concepts lead to
a representation formula for convex functions similar to (but more robust
than) (2.17).

Subdifferential at a point: Given a convex function f , a point x ∈ Dom( f ),
and a hyperplane L in Rn+1, we say that L is a supporting hyperplane of f at
x if L is the graph of an affine function α on Rn such that α ≤ f on Rn and
α(x) = f (x). If a ∈ R and y ∈ Rn are such that α(z) = a + y · z for all z ∈ Rn ,
then y is called the slope of L. The subdifferential ∂ f (x) of f at x is defined
as follows: if x ∈ Dom( f ), then we set

∂ f (x) =
{
slopes of all the supporting hyperplanes of f at x

}

=

{
y ∈ Rn : ∃ a ∈ R s.t.

a + y · z ≤ f (z) ∀z ∈ Rn

a + y · x = f (x).

}
,

=
{
y ∈ Rn : f (z) ≥ f (x) + y · (z − x) ∀z ∈ Rn

}
; (2.18)

otherwise, i.e., if f (x) = +∞, we set ∂ f (x) = ∅. If f is differentiable at some
x ∈ Dom( f ), then x ∈ IntDom( f ) (because f is finite in a neighborhood of x)
and

∂ f (x) = {∇ f (x)} (2.19)

(see Proposition 2.7 for the proof). At a generic point x ∈ Dom( f ), where f
may not be differentiable, we always have that ∂ f (x) is a closed convex set
in Rn . For example, if f (x) = |x |, then ∂ f (0) is the closed unit ball in Rn

centered at the origin (see Figure 2.2); if f is the maximum of finitely many
affine functions αi , with slope yi , then ∂ f (x) is the convex envelope of those yi
such that x belongs to { f = αi }. In the following proposition we prove (2.19)
together with a sort of continuity property of subdifferentials.

Proposition 2.7 (Continuity of subdifferentials) If f is differentiable at x,
then ∂ f (x) = {∇ f (x)}. Moreover, for every ε > 0 there exists δ > 0 such that

∂ f (Bδ (x)) ⊂ Bε (∇ f (x)). (2.20)

Proof Step one: We prove (2.19). Given y ∈ ∂ f (x), set

Fx,y (z) = f (z) − f (x) − y · (z − x), z ∈ Rn .

Notice that Fx,y has a minimum at x, since Fx,y (z) ≥ 0 = Fx,y (x) for every
z ∈ Rn . In particular, if f is differentiable at x, then Fx,y is differentiable at x
with 0 = ∇Fx,y (x) = ∇ f (x) − y so that (2.19) is proved.
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24 Discrete Transport Problems

f (x) = |x|

−1

1 ∂ f

Figure 2.2 The subdifferential of f (x) = |x | when n = 1.

Step two: If (2.20) fails, then there exist ε > 0 and x j → x as j → ∞ such that
|y j − ∇ f (x) | ≥ ε for every j and y j ∈ ∂ f (x j ). It is easily seen that since f
is bounded in a neighborhood of x, the sequence {y j } j must be bounded in Rn

and thus up to extracting subsequences, that y j → y as j → ∞. By taking limits
as j → ∞ in “ f (z) ≥ f (x j ) + y j · (z − x j ) for every z ∈ Rn ,” we deduce that
y ∈ ∂ f (x) = {∇ f (x)}, in contradiction with |y j − ∇ f (x) | ≥ ε for every j. �

Fundamental theorem of (convex) Calculus: It is well-known that a smooth
function g : R→ R is the derivative f ′ of a smooth convex function f : R→ R
if and only if g is increasing on R. The notion of subdifferential and a proper
generalization of monotonicity to Rn allow to extend this theorem to R∪{+∞}-
valued convex functions on Rn . First of all, let us introduce the notion of (total)
subdifferential of f , defined as

∂ f =
⋃

x∈Rn
{x} × ∂ f (x) ; (2.21)

see Figure 2.2. Notice that ∂ f is a subset of Rn × Rn , which is closed as soon
as f is lower semicontinuous. Recalling that, as set in (2.10), S ⊂ Rn × Rn is
cyclically monotone if for every finite set {(xi , yi )}Ni=1 ⊂ S one has

N∑

i=1

yi · (xi+1 − xi ) ≤ 0, where xN+1 = x1. (2.22)

Thus, we have the following theorem.

Theorem 2.8 (Rockafellar theorem) Let S ⊂ Rn × Rn be a non-empty
set: S is cyclically monotone if and only if there exists a convex and lower
semicontinuous function f : Rn → R ∪ {+∞} such that

S ⊂ ∂ f . (2.23)

Remark 2.9 Notice that S � ∅ and S ⊂ ∂ f imply Dom( f ) � ∅.

https://doi.org/10.1017/9781009179713.003 Published online by Cambridge University Pressuse, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009179713.003
Downloaded from https://www.cambridge.org/core. IP address: 3.142.252.175, on 16 Jul 2024 at 20:51:12, subject to the Cambridge Core terms of

https://doi.org/10.1017/9781009179713.003
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009179713.003
https://www.cambridge.org/core


2.3 Basics about Convex Functions on Rn 25

Proof Proof that (2.23) implies cyclical monotonicity: Let us consider a finite
subset {(xi , yi )}Ni=1 of S. Then, yi ∈ ∂ f (xi ) implies ∂ f (xi ) � ∅, and thus
f (xi ) < ∞. For every i = 1, . . . ,N , we know that

f (x) ≥ f (xi ) + yi · (x − xi ), ∀x ∈ Rn ,

so that testing the i-th inequality at x = xi+1 and summing up over i = 1, . . . ,N
gives

N∑

i=1

f (xi+1) ≥
N∑

i=1

f (xi ) + yi · (xi+1 − xi ).

We find (2.22) since
∑N

i=1 f (xi+1) =
∑N

i=1 f (xi ) by the convention xN+1 = x1.

Proof that cyclical monotonicity implies (2.23): We need to define a convex
function f which contains S in its subdifferential. To this end, we fix6 (x0, y0) ∈
S and define

f (z) = sup
{
yN · (z−xN )+

N−1∑

i=1

yi · (xi+1−xi )+y0 · (x1−x0) : {(xi , yi )}Ni=1 ⊂ S
}

(2.24)
for z ∈ Rn . Clearly, f is a convex and lower semicontinuous function on Rn

with values in R ∪ {+∞}. We also notice that f (x0) ∈ R. Indeed, by applying
(2.22) to {(xi , yi )}Ni=0 ⊂ S we find

yN · (x0 − xN ) +
N−1∑

i=1

yi · (xi+1 − xi ) + y0 · (x1 − x0) ≤ 0 ∀{(xi , yi )}Ni=1 ⊂ S,

(2.25)
so that f (x0) ≤ 0. (Actually, we can even say that f (x0) = 0, since f (x0) ≥ 0
by testing (2.24) with {(x1, y1)} = {(x0, y0)} at z = x0.) Interestingly, the proof
that f (x0) < ∞ is the only point of this argument where cyclical monotonicity
plays a role.

We now prove that S ⊂ ∂ f . Indeed, let (x∗, y∗) ∈ S and let t ∈ R be such
that t < f (x∗). By definition of f (x∗), we can find {(xi , yi )}Ni=1 ⊂ S such that

yN · (x∗ − xN ) +
N−1∑

i=0

yi · (xi+1 − xi ) ≥ t. (2.26)

If we now define {(xi , yi )}N+1
i=1 ⊂ S by setting xN+1 = x∗ and yN+1 = y∗, then,

by testing the definition of f with {(xi , yi )}N+1
i=1 ⊂ S, we find that, for every

z ∈ Rn ,

6 The choice of (x0, y0) is analogous to the choice of an arbitrary additive constant in the classical
fundamental theorem of Calculus.

https://doi.org/10.1017/9781009179713.003 Published online by Cambridge University Pressuse, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009179713.003
Downloaded from https://www.cambridge.org/core. IP address: 3.142.252.175, on 16 Jul 2024 at 20:51:12, subject to the Cambridge Core terms of

https://doi.org/10.1017/9781009179713.003
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009179713.003
https://www.cambridge.org/core


26 Discrete Transport Problems

f (z) ≥ yN+1 · (z − xN+1) +
N∑

i=0

yi · (xi+1 − xi )

= y∗ · (z − x∗) + yN · (x∗ − xN ) +
N−1∑

i=0

yi · (xi+1 − xi )

≥ t + y∗ · (z − x∗), (2.27)

where in the last inequality we have used (2.26). Since f (z) is finite at z = x0,
by letting t → f (x∗)− in (2.27) first with z = x0, we see that x∗ ∈ Dom( f ), and
then, by taking the same limit for an arbitrary z, we see that y∗ ∈ ∂ f (x∗). �

Fenchel–Legendre transform: Given a convex function f , and the slope y of
a supporting hyperplane to f , we know that there exists a ∈ R such that

a + y · x ≤ f (x), ∀x ∈ Rn .

The largest value of a ∈ R such that this condition holds can be obviously
characterized as a = − f ∗(y), where

f ∗(y) = sup
{
y · x − f (x) : x ∈ Rn

}
. (2.28)

The function f ∗ is called the Fenchel–Legendre transform of f . It is a convex
function, and it is automatically lower semicontinuous on Rn . Moreover, as it
is easily seen, f ∗∗ is the lower semicontinuous envelope of f – i.e., the largest
lower semicontinuous function lying below f : in particular, if f is convex and
lower semicontinuous, then f = f ∗∗, i.e.,

f (x) = sup
{
x · y − f ∗(y) : y ∈ Rn

}
∀x ∈ Rn . (2.29)

This is the “more robust” reformulation of (2.17). The last basic fact about
convex functions that will be needed in the sequel is contained in the following
two assertions:

f (x) + f ∗(y) ≥ x · y, ∀x, y ∈ Rn , (2.30)

f (x) + f ∗(y) = x · y, iff x ∈ Dom( f ) and y ∈ ∂ f (x). (2.31)

Notice that (2.30) is immediate from the definition (2.28). If f (x) + f ∗(y) =
x · y, then x · y − f (x) = f ∗(y) ≥ y · z − f (z), i.e., f (z) ≥ f (x) + y · (z − x) for
every z ∈ Rn , i.e., y ∈ ∂ f (x); and, vice versa, if y ∈ ∂ f (x), then x · y − f (x) ≥
y · z − f (z) for every z ∈ Rn so that f ∗(y) ≤ x · y − f (x) – which combined
with (2.30) gives f ∗(y) = x · y − f (x).

Many common inequalities in analysis can be interpreted as instances of
the Fenchel–Legendre inequality (2.30): for example, if 1 < p < ∞ and
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2.4 The Discrete Kantorovich Problem with Quadratic Cost 27

f (x) = |x |p/p, one computes that f ∗(y) = |y |p′/p′ for p′ = p/(p − 1), and
thus finds7 that (2.30) boils down to the classical Young’s inequality.

Extremal points and the Choquet theorem:8 Given a convex set K , we say
that x0 is an extremal point of K if x0 = (1 − t) y + t z with t ∈ [0,1] and
y, z ∈ K implies that either t = 0 or t = 1. We claim that

if K � Rn is non-empty, closed, and convex,

then K has at least one extremal point.
(2.32)

To this end, we argue by induction on n, with the case n = 1 being trivial. If
n ≥ 2, since K is not empty and not equal to Rn , there is a closed half-space
H such that K ⊂ H and ∂H ∩ ∂K � ∅. In particular, J = K ∩ ∂H is a convex
set with affine dimension (n − 1), and, by inductive hypothesis, there is an
extremal point x0 of J. We conclude by showing that x0 is also an extremal
point of K . Should this not be the case, we could find t ∈ (0,1) and x, y ∈ K
such that x0 = (1− t) x + t y. On the one hand, it must be x, y ∈ ∂H: otherwise,
assuming, for example, that x ∈ Int(H), by x0 ∈ ∂H and t ∈ (0,1) we would
then find y � H , against y ∈ K ; on the other hand, x, y ∈ ∂H implies x, y ∈ J,
and thus x0 = (1 − t) x + t y with t ∈ (0,1) would contradict the fact that x0 is
an extremal point of J. Having proved (2.32), we deduce from it the following
statement (known as the Choquet theorem):

if K ⊂ Rn is convex and compact,

and f : Rn → R ∪ {+∞} is convex and lower semicontinuous,

then there is an extremal point x0 of K such that f (x0) = infK f .

(2.33)

This is trivially true by (2.32) if Dom( f ) = ∅. Otherwise, since f is lower
semicontinuous and K is compact, we can apply the Direct Method to show
that the set J of the minimum points of f over K is non-empty and compact.
Since f is convex, J is also convex. Hence, by (2.32), J admits an extremal
point, and (2.33) is proved.

2.4 The Discrete Kantorovich Problem with Quadratic Cost

We now use the fundamental theorem of Calculus for convex functions proved
in Section 2.3 to give a complete discussion of the discrete transport problem

7 Of course, we have not just discovered an incredibly short proof of Young’s inequality: indeed,
showing that f ∗ (y) = |y |p′/p′ is equivalent to prove Young’s inequality! From this viewpoint,
the importance of the Fenchel’s inequality is more conceptual than practical.

8 These results are only used in Section 2.5 and can be omitted on a first reading.
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28 Discrete Transport Problems

with quadratic transport cost c(x, y) = |x − y |2. In particular, we make our
first encounter with the Kantorovich duality formula; see (2.36), which comes
into play as our means for proving that cyclical monotonicity is a sufficient
condition for minimality in the transport problem.

Theorem 2.10 If μ, ν ∈ P (Rn ) are discrete (i.e., if (2.1) and (2.2) hold) and
c(x, y) = |x − y |2, then, for every discrete transport plan γ ∈ Γ(μ, ν), the
following three statements are equivalent: (i) γ is a minimizer of Kc (μ, ν); (ii)
S(γ) = {(xi , y j ) : γi j > 0} ⊂ Rn × Rn is cyclically monotone; (iii) there exists
a convex function f such that S(γ) ⊂ ∂ f . Moreover, denoting H as the family
of pairs (α, β) such that α, β : Rn → R satisfy

α(x) + β(y) ≤ −x · y ∀x, y ∈ Rn (2.34)

and defining H : H → R by setting

H (α, β) =
N∑

i=1

α(xi ) μi +
M∑

j=1

β(y j ) νj ,

we have, for every γ ∈ Γ(μ, ν) and (α, β) ∈ H ,

∑

i, j

|xi − y j |2 γi j ≥
N∑

i=1

|xi |2μi +
M∑

j=1

|y j |2νj + 2 H (α, β). (2.35)

Finally, if γ satisfies (iii), then (2.35) holds as an identity with (α, β) =
(− f ,− f ∗). In particular,

Kc (μ, ν) =
N∑

i=1

|xi |2μi +
M∑

j=1

|y j |2νj + 2 sup
(α,β)∈H

H (α, β). (2.36)

Remark 2.11 Theorem 2.10 is, of course, a particular case of Theorem 3.20,
in which the same assertions are proved without the discreteness assumption
on μ and ν.

Proof of Theorem 2.10 Step one: We prove that (i) implies (ii) and that (ii)
implies (iii). If (i) holds, then, by Theorem 2.5, we have

L∑

�=1

|z� − w� |2 ≤
L∑

�=1

|z�+1 − w� |2, (2.37)

whenever {(z� ,w�)}L�=1 ⊂ S(γ) and zL+1 = z1. By expanding the squares in
(2.37),

L∑

�=1

w� · (z�+1 − z�) ≤ 0, ∀{(z� ,w�)}L�=1 ⊂ S(γ), (2.38)

so that S(γ) is cyclically monotone. In turn, if (ii) holds, then (iii) follows
immediately by Rockafellar’s theorem (Theorem 2.8).
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2.4 The Discrete Kantorovich Problem with Quadratic Cost 29

Step two: For every γ ∈ Γ(μ, ν) we have

Cost(γ) =
∑

i, j

|xi − y j |2 γi j =
N∑

i=1

|xi |2μi +
M∑

j=1

|y j |2νj + 2
∑

i, j

(−xi · y j ) γi j ,

so that (2.34) gives

Cost(γ) −
N∑

i=1

|xi |2μi −
M∑

j=1

|y j |2νj = −2
∑

i, j

xi · y j γi j ≥ 2 H (α, β),

that is (2.35). Now, if γ satisfies (iii), then, by the Fenchel–Legendre inequality
(2.30), we have (− f ,− f ∗) ∈ H , while (2.31) and S(γ) ⊂ ∂ f give

f (xi ) + f ∗(y j ) = xi · y j , if γi j > 0, (2.39)

which in turn implies that (2.35) holds as an identity if we choose (α, β) =
(− f ,− f ∗). This shows at once that (2.36) holds and that γ is a minimizer of
Kc (μ, ν). �

The following three remarks concern the lack of uniqueness in the discrete
Kantorovich problem.

Remark 2.12 We already know that uniqueness does not hold in problem
Kc (μ, ν) for arbitrary data; recall Remark 2.4. However, the following state-
ment (which will be proved in full generality in Theorem 3.15) provides a
“uniqueness statement of sorts” for the quadratic transport cost: If S =

⋃
γ S(γ),

where γ ranges over all the optimal plans in the quadratic-cost transport prob-
lem defined by two discrete measures μ and ν, then S is cyclically monotone; in
particular, there exists a convex function f such that S(γ) ⊂ ∂ f for every such
optimal plan γ. We interpret this as a uniqueness statement since the subdiffer-
ential ∂ f appearing in it has the property of “bundling together” all the optimal
transport plans of problem Kc (μ, ν). As done in Remark 2.13, this property
can be indeed exploited to prove uniqueness in special situations. Notice that
the cyclical monotonicity of S =

⋃
γ S(γ) is not obvious, since, in general,

the union of cyclically monotone sets is not cyclically monotone; see Figure
2.3. The reason why S =

⋃
γ S(γ) is, nevertheless, cyclically monotone lies in

the linearity of Cost combined with the convexity of Γ(μ, ν). Together, these
two properties imply that the set Γopt(μ, ν) of all optimal transport plans for
Kc (μ, ν) is convex: in particular, if γ1 and γ2 are optimal in Kc (μ, ν), then
(γ1+γ2)/2 is an optimal plan, and thus S((γ1+γ2)/2) is cyclically monotone,
and since

S

(
γ1 + γ2

2

)
= S(γ1) ∪ S(γ2).

we conclude that S(γ1) ∪ S(γ2) is also cyclically monotone.
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30 Discrete Transport Problems

(x2, y2)

(x1, y1)

S 1

S 2

Figure 2.3 Two sets S1 and S2 that are cyclically monotone in R×R, whose union
S1 ∪ S2 is not cyclically monotone. Indeed, by suitably picking points (x1, y1) ∈
S1 and (x2, y2) ∈ S2, we see that (y2 − y1)(x2 − x1) < 0, thus violating the
cyclical monotonicity inequality on {(xi, yi ) }2i=1.

Remark 2.13 (Uniqueness in dimension one) When n = 1, the statement
in Remark 2.12 can be used to prove the uniqueness of minimizers for the
discrete Kantorovich problem with quadratic cost. We only discuss this result
informally. First of all, we construct a monotone discrete transport plan γ∗

from μ to ν. Assuming without loss of generality that {xi }Ni=1 and {y j }Mj=1 are
indexed so that xi < xi+1 and y j < y j+1, we define γ∗i j as follows: if μ1 ≤ ν1,
then set γ∗11 = μ1, and γ∗1 j = 0 for j ≥ 2; otherwise, we let j (1) be the largest
index j such that μ1 > ν1 + . . . + νj and set

γ∗1 j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪
⎩

νj , if 1 ≤ j ≤ j (1),

μ1 − (ν1 + . . . + νj (1) ), if j = j (1) + 1,

0, if j (1) + 1 < j ≤ M .

In this way we have allocated all the mass μ1 sitting at x1 among the first
j (1)+1 receiving sites, with the first j (1) receiving sites completely filled. Next,
we start distributing the mass μ2 at site x2, start moving the largest possible
fraction of it to y j (1)+1 (which can now receive a νj (1)+1−[μ1− (ν1+ . . .+νj (1) )]
amount of mass), and keep moving any excess mass to the subsequent sites
y j (1)+k , k ≥ 2, if needed. Evidently, the resulting transport plan γ∗ is such
that S(γ∗) is contained in the extended graph of an increasing function so that
γ∗ is indeed optimal in Kc (μ, ν). A heuristic explanation of why this is the
unique optimal transport plan is given in Figure 2.4a. For a proof, see Theorem
16.1-(i,ii).

Remark 2.14 We review Remark 2.4 in light of the results of this chapter.
Denoting with superscripts the coordinates of points, so that p = (p1, p2) is the
generic point of R2, we take

x1 = (0,1), x2 = (0,−1), y1 = (−1,0), y2 = (1,0).
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2.4 The Discrete Kantorovich Problem with Quadratic Cost 31

x3

y1

y2

y3

y4

∂ f
y5(a) (b)

y1

y2

y5

y4

y3

x1 x3 x4x2

f

x1 x2 x4

Figure 2.4 (a): A discrete transport problem with quadratic cost and n = 1. The
black squares indicates all the possible interaction pairs (xi, y j ). Weights μi and
ν j are such that S (γ∗) consists of the circled black squares. If γ is another optimal
transport plan, then, by the statement in Remark 2.12, S (γ) ∪ S (γ∗) is contained
in the subdifferential of a convex function. This implies that S (γ) \S (γ∗) can only
contain either (x2, y3) or (x3, y2). However, given the construction of γ∗, the fact
that S (γ∗) is “jumping diagonally” from (x2, y2) to (x3, y3) means that μ1+μ2 =

ν1 + ν2. So there is no mass left for γ to try something different: if γ activates
(x2, y3) (i.e., if γ sends a fraction of μ2 to y3), then γ must activate (x3, y2)
(sending a corresponding fraction of μ3 to y2 to compensate the first modification),
and this violates cyclical monotonicity. Therefore, γ∗ is a unique optimal plan for
Kc (μ, ν). (b): A geometric representation of a potential f such that S (γ∗) ⊂ ∂ f .
Notice that ∂ f (x1) = [y1, y2] (with y1 = f ′(x−1 ) and y2 = f ′(x+1 )), ∂ f (x2) =
{ f ′(x2) = y2 }, ∂ f (x3) = [y3, y5] (with y3 = f ′(x−3 ), y5 = f ′(x+3 ) and y4 in
the interior of ∂ f (x3)), and ∂ f (x4) = { f ′(x4) = y5 }. Notice that we have large
freedom in accommodating the y j s as elements of the subdifferentials ∂ f (xi ); in
particular, we can find other convex functions g with S (γ∗) ⊂ ∂g and such that
f − g is not constant.

No matter what values of μi and νj are chosen, all the admissible transport
plans will have the same cost. If, say, μi = νj = 1/2 for all i and j, then all the
plans

γt11 = t, γt12 =
1
2
− t, γt21 =

1
2
− t, γt22 = t,

corresponding to t ∈ [0,1/2] are optimal. If t ∈ (0,1/2), then S(γt ) contains all
the four possible pairs S = {(xi , y j )}i, j . How many convex functions (modulo
additive constants) can contain S in their subdifferential? Just one. Indeed, the
slopes y1 = (−1,0) and y2 = (1,0) correspond to the affine functions (p) =
a−p1 and m(p) = b+p1 for a,b ∈ R. The only way for y1, y2 ∈ ∂ f (x1)∩∂ f (x2)
is that the set { = m} contains both x1 = (0,1) and x2 = (0,−1). Hence, we
must have a = b and, modulo additive constants, there exists a unique convex
potential; see Figure 2.5.
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x1

x2

1 − t f (p) = |p1|

p2

y2y1

x1

x2

t

t

1 − t

Figure 2.5 An example of discrete transport problem with quadratic cost where
we have nonuniqueness of optimal transport plans, but where there is a unique
(up to additive constants) convex potential such that the statement in Remark 2.12
holds.

2.5 The Discrete Monge Problem

We close this chapter with a brief discussion of the discrete Monge problem.
The following theorem is our main result in this direction.

Theorem 2.15 If {xi }Li=1 and {y j }Lj=1 are families of L distinct points, and μ

and ν denote the discrete measures

μ =

L∑

i=1

δxi
L
, ν =

L∑

j=1

δy j

L
, (2.40)

then for every optimal transport plan γ in Kc (μ, ν) there is a transport map
T from μ to ν with the same transport cost as γ; in particular, T is optimal in
Mc (μ, ν) and Mc (μ, ν) = Kc (μ, ν).

Remark 2.16 It is interesting to notice that, by a perturbation argument, given
an arbitrary pair of discrete probability measures (μ, ν) (i.e., μ and ν satisfy
(2.1) and (2.2)), we can find a sequence {(μ� , ν�)}� of discrete probability mea-

sures such that μ�
∗
⇀ μ and ν�

∗
⇀ ν as  → ∞, and each (μ� , ν� ) satisfies the

assumptions of Theorem 2.15 (with some L = L� in (2.40)). In a first approx-
imation step, we can reduce to the case when all the weights μi and νj are
rational numbers. Writing these weights with a common denominator L, we
find mi ,n j ∈ {1, . . . ,L} such that

μi =
mi

L
, νj =

n j

L
, L =

N∑

i=1

mi =

M∑

j=1

n j .
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2.5 The Discrete Monge Problem 33

x2

x1
t τ1

t τ2
t τ3(a)

= 1/4 = 3/4= 1/2

y1

y2

y3

t τ2

t τ1

x1

X1

X3X2

Y4

Y3

(b)
Y1 = y1

Y2 = y2

y3

X4 = x2

Figure 2.6 The second step in the approximation procedure of Remark 2.16: (a)
The starting measures μ = (3/4)δx1 + (1/4)δx2 and ν = (1/4)(δy1 + δy2 ) +
(1/2) δy3; notice that there is no transport map between these two measures; (b)
The measures μ t = (1/4)

∑4
h=1 δXh

and ν t = (1/4)
∑4

h=1 δYh
resulting from

the approximation by splitting with t > 0. As t → 0+, these measure weak-star
converge to μ and ν respectively. Notice that there is a transport map from μt to
ν t corresponding to every permutation of {1, . . . , 4}. One of them is optimal for
the Monge problem with quadratic cost from μt to ν t .

Then, in a second approximation step, we consider a set of L-distinct unit
vectors {τk }Lk=1 in Rn and notice that, on the one hand,

mi∑

k=1

1
L
δxi+t τk

∗
⇀

mi

L
δxi as t → 0+,

while, on the other hand, for every sufficiently small but positive t, both

{Xh }Lh=1 =
{
xi + t τk : 1 ≤ i ≤ N,1 ≤ k ≤ mi

}
,

{Yh }Lh=1 =
{
y j + t τk : 1 ≤ j ≤ M,1 ≤ k ≤ n j

}
,

consist of L-many distinct points. By combining these two approximation
steps, we find a sequence {(μ j , νj )} j with the required properties; see Figure
2.6.

Proof of Theorem 2.15 We notice that, by (2.40),

Γ(μ, ν) =
{
{γi j } : γi j =

bi j
L
, b = {bi j } ∈ BL

}
, (2.41)

where BL ⊂ RL×L is the set of the L × L-bistochastic matrices b = {bi j }, i.e.,
for every i, j, bi j ∈ [0,1] and

∑
i bi j =

∑
j bi j = 1. Therefore, by the Choquet

theorem (2.33), if γ is an optimal plan in Kc (μ, ν), then b = {bi j = L γi j } is an
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34 Discrete Transport Problems

extremal point of BL . The latter are characterized as follows (a result known as
the Birkhoff theorem):

permutation matrices are the extremal points of BL , (2.42)

where b = {bi j } is a L × L-permutation matrix if bi j = δ j,σ (i) for a permu-
tation σ of {1, . . . ,L}. The proof of Birkhoff’s theorem is very similar to the
proof of Theorem 2.5 and goes as follows. It is enough to prove that if b ∈ BL

and bi (1) j (1) ∈ (0,1) for some pair (i(1), j (1)), then b is not an extremal point
of BL . Indeed, by

∑
j bi (1) j = 1 we can find, on the i(1)-row of b, an entry

bi (1) j (2) ∈ (0,1) with j (2) � j (1). We can then find, in the j (2)-column of b,
an entry bi (2) j (2) ∈ (0,1) with i(2) � i(1). If we iterate this procedure, there is
a first step k ≥ 3 such that either j (k) = j (1) or i(k) = i(1). In the first case
we have identified an even number of entries bi j of b; in the second case, dis-
carding the entry bi (1) j (1) , we have also identified an even number of entries bi j
of b; in both cases, these entries are arranged into a closed loop in the matrix
representation of b, and belong to (0,1). We can exploit this cyclical structure
to define a family of variations bt of b: considering, for notational simplicity,
the case when j (3) = j (1), these variations take the form

bti (1) j (1) = bi (1) j (1) + t, bti (1) j (2) = bi (1) j (2) − t,

bti (2) j (1) = bi (2) j (1) − t, bti (2) j (2) = bi (2) j (2) + t,

and bti j = bi j otherwise. In this way there is t0 ∈ (0,1) such that bt = {bti j } ∈
BL whenever |t | ≤ t0. In particular, by b = (bt0 + b−t0 )/2, we see that b is not
an extremal point of BL and conclude the proof of (2.42).

Having proved that for every discrete optimal transport plan γ in Kc (μ, ν)
there is a permutation σ of {1, . . . ,L} such that γi j = δσ (i), j/L, we can define
a map T : {xi }Li=1 → R

n by setting T (xi ) = yσ (i) . By construction, T#μ = ν,
with

Mc (μ, ν) ≤
∫

Rn

c(x,T (x)) dμ(x) = Cost(γ) = Kc (μ, ν) ≤ Mc (μ, ν),

where we have used (2.7) and the general inequality Kc (μ, ν) ≤ Mc (μ, ν). �
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