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UNICITY THEOREMS FOR MEROMORPHIC
OR ENTIRE FUNCTIONS III

HONG-XUN Yi

This paper studies the unique range set of meromorphic functions and shows that
the set S — {w | tu13 + w11 + 1 = 0} is unique range set of meromorphic functions
with 13 elements.

1. INTRODUCTION

By a meromorphic function we shall always mean a meromorphic function in the
complex plane. We use the usual notations of Nevanlinna theory of meromorphic func-
tions as explained in [4]. We use E to denote any set of positive real numbers of finite
linear measure, not necessarily the same at each occurrence. We denote by S[r, / ) any
quantity satisfying S{r, f) = o{T(r, /)) (r -> co, r g E).

Let / be a nonconstant meromorphic function and let S be a subset of distinct
elements in the complex plane. Define

E,{S)=\J{z\f(z)-a = 0},
o€S

where each zero of f(z) — a with multiplicity m is repeated m times in Ef(S) (see

[iD-
In 1976, Gross [2] proved that there exist three finite sets Sj (j = 1, 2, 3) such

that any two entire functions / and g satisfying Ef(Sj) = Eg(Sj) for j — 1, 2, 3 must
be identical, and asked the following question (see [2, Question 6]):

QUESTION 1. Can one find two (or possible even one) finite sets Sj (j'< = 1, 2) such
that any two nonconstant entire functions / and g satisfying Ef(Sj) — Eg(Sj) for
j — 1,2 must be identical?

Now it is natrual to ask the following question:
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QUESTION 2. Can one find two (or possible even one) finite sets Sj (j — 1, 2) such
that any two nonconstant meromorphic functions / and g satisfying E/(Sj) = Eg(Sj)
for j = 1, 2 must be identical?

Recently, the present author proved the following results which provide positive
answers to Question 1.

THEOREM A. (See [7, Theorem 3].) Let Si = {w \ wn - 1 = 0}, S2 = {a, b},
where n > 6 is a positive integer, a and b are constants such that ab ̂  0, an ^ bn,
a2n ^ 1, b2n ^ 1 and anbn ^ 1. Suppose that f and g are nonconstant entire functions
satisfying Ef(Sj) = Eg(Sj) for j = 1,2. Then f =g.

THEOREM B. (See [8, Theorem 1].) Let S = {w \ wn + awn~m + 6 = 0}, where
n and m axe two positive integers such that n and m have no common factors and
n ^ 1m + 5, a and b are two nonzero constants such that the algebraic equation
wn + awn~m + b = 0 has no multiple roots. If f and g are nonconstant entire functions
satisfying Ef(S) = Eg(S), then f ~g.

Recently, the present author proved the following result which is a partial answer
of Question 2.

THEOREM C. (See [8, Theorem 2].) Let S = {w \ wn + awn~m + 6 = 0}, where
n and m are two positive integers such that m ^ 2, n ^ 1m + 7 with n and m having
no common factors, a and 6 are two nonzero constants such that the algebraic equation
wn + awn~m +6 = 0 has no multiple roots. Suppose that f and g are nonconstant
meromorphic functions satisfying Ef(S) = ES(S) and Ej({oo}) = Eg({oo}). Then

f = g-

The set S such that for any two nonconstant meromorphic functions / and g the
condition E/(S) — Eg(S) implies / = g is called a unique range set (URS in brief)
of meromorphic functions. A similar definition for entire functions can be given. From
Theorem B we immediately obtain the following result.

THEOREM B' . Let S be defined as in Theorem B. Then S is a URS of entire
functions.

As a special case of Theorem B' , we deduce that the set S = {w \ w1 + w6 +1 = 0}
in a URS of entire functions with 7 elements. In this paper, we shall exhibit a URS of
meromorphic functions with 13 elements. In fact, we prove more generally the following
theorem, which provides a positive answer to Question 2.

THEOREM 1. Let S = {w | wn + aton~m + 6 = 0}, where n and m are two
positive integers such that n and m have no common factors, m ^ 1 and n > 1m + 8,
a and 6 are two nonzero constants such that the algebraic equation wn + awn~m + b = 0
has no multiple roots. Then S is a URS of meromorphic functions.
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From Theorem 1 we immediately obtain that the set S = {w \ w13 + w11 + 1 = 0 }
provides a URS of meromorphic functions with 13 elements, which provides a positive
answer to Question 2.

2. SOME LEMMAS

LEMMA 1. (See [5].) Let f be a nonconstant meromorphic function, and let P(f)
be a polynomial in f of the form

P(f) = aofn + a i / " " 1 + • • • + a n _i / + an,

wiere ao (^ 0), ai, . . . , an are constants. Then

T(r, P(f)) = nT(r, f) + S{r, f).

In order to state the second lemma, we introduce the following notation.
Let F be a meromorphic function. We denote by ni(r, 1/(JF — a)) the num-

ber of simple a-points of F in \z\ ^ r. N\{r, 1/(F — a)) is defined in terms of
ni(r, l/(F — a)) in the usual way (see [6]).

Let F and G be two nonconstant meromorphic functions. If F and G have the
same a-points with the same multiplicities, we say F and G share the value a CM (see
[3])-

LEMMA 2 . Let

(F" 2F' \ (G" 2G' \

wiere F and G are two nonconstant meromorphic functions. If F and G share 1 CM,
and H ^ 0, then

PROOF: Suppose that ZQ is a simple 1-point of F. Let

F{z) = 1 + Ol(* - *0) + oa(z - *o f +0({z- 20)3),

G(x) = 1 + 61(2 - 20) + b2{z - 20)
2 + O((* - 20)3),

where aj ^ 0 and 61 ̂  0. Then an elementary calculation gives that

H{z) = 0{z - 20),

which proves that ZQ is a zero of H. Thus,
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3. P R O O F OF THEOREM 1

Suppose that / and g are two nonconstant meromorphic functions satisfying

Ef(S) = Eg(S). We proceed to prove / = g.

Let

(2) F =-\r-m(fm + o) and G =-pn~m(gm + a).

From Lemma 1, we have

(3) T(r, F) = nT(r, f) + S(r, f)

and

(4) T(r, G) = nT(r, g) + S(r, g).

Let

T(r) = max{T(r, / ) , T(r, g)}

and

S(r) = o(T(r)) (r -> oo, r £ E).

Noting 5 = {w | wn + awn~m + 6 = 0}, from Ef{S) = Eg{S) we get that F and G

share the value 1 CM.

Let H be given by (1). If H ^ 0, from Lemma 2 we have

(5) Nt (r, j ^ j < N (r, 1 ) < T(r, H) + 0(1).

From (1) we obtain

(6) m(r, H) = 5(r).

From (2) we have

(7) F' = -!/»—-\nfm + a(n - m))f

and

(8) G' = -I^»-»-i(n,»» + a(n - m))g'.

https://doi.org/10.1017/S0004972700016737 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700016737


[5] Unicity theorems 75

Since F and G share 1 CM, from (1), (7) and (8),

(9)

N(r, H) < *"(,, /) + N(r, g) + N(T, I ) + *(r, nfm ^ _ n)) + * . (r, 1

+ W(r, -) +W(r, \ -) +N0(r, I

(m + 2)T(r, /) + (m + 2)T(r, </) + iV0 (r, i ) + 7V0 (r, ^j + 0(1),

where No(r, 1//') denotes the counting function corresponding to the zeros of / ' that
are not zeros of / and F — 1, No(r, 1/g') denotes the counting function corresponding
to the zeros of g' that are not zeros of g and G — 1. It follows from (5), (6) and (9)
that

(10) Ni (r, j ^ j ^ (m + 2)T(r, f) + (m + 2)T(r, g)

Suppose that u;i, 102, . . . , wn are the distinct roots of the equation wn + awn~m +

6 = 0. From (2) we have

(11) F - 1 = - ± ( f - W l ) { f - V * ) - - - i f - > » n )

a n d

(12) G - 1 = - i ( f f - toOfo - w 2 ) . . . ( < / - w B ) .

By the second fundamental theorem, we deduce

nT(r, f) < N(r, f) + N(T, 7 ) + E ^ > 7 ^ — ) ~ ^0 (r, 1 ) + 5(r)
(13) V ^ ^ V S i} V ^

^ 2T(r, /) + N (r, ^1^-) - tfo (r, 1 ) + 5(r).

In the same manner as above, we have

(14) nT(r, 5) < 2T(r, 5) + N(T, ^L^j - No (T, ^ + S(r).
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It is obvious that

and

(16) N(T, j ^ j + N(T, -^-^j ^ N, (r, j ^ j + nT(r, g) + S(r).

From (10), (13), (14) and (15) we obtain

nT(r, g)^(m + 4)T(r, /) + (m + 4)T(r, g) + S(r).

From (10), (13), (14) and (16) we obtain

nT(r, / ) < (m + 4)T(r, /) + (m + 4)T(r, <?) + 5(r).

Thus,

(17) nT{r) ^ (m + 4)T(r, f) + {m + 4)T(r, g) + S{r)

^ (2m + 8)r(r) + S(r).

Since n > 2m + 8, (17) is a contradiction. From this we derive H = 0. By integration
we have from (1),

1
 = A

G - 1 F-l '

where A (^ 0) and B are constants. Thus,

( 1 8 ) G = BF + (A-B) '

From (18),
T(r, G) = T(r, F) + 0(1)

and

(19) T(r) = T(r, f) + S(r, /) .
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From (2) we have

(20) N(r, F) = N(T, f) ^ T(r),

(21) N(r, G) = N(r, g) < T(r),

(22) N (r, i ) = N(V, i ) + N (r, ^ ^ ) ^ (m + l)T(r) + 0(1),

(23) If(r, 1 ) = J7(r, i ) + JV (r, ^ J ^ ) < (m + l)T(r) + O(l).

We discuss the following three cases.

CASE I. Suppose that B ̂  0, - 1 .

I f A - B - 1 ^ 0 , from (18) we have

From this and the second fundamental theorem, we have

T(r, F) < N(r, F) + N(T, i ) +N\r, p | ] _ B . t j + 5(r, F)

;^)+S{r,F).

Combining this with (3), (19), (20), (22) and (23), we obtain

nT{r) < (2m + 3)T(r) + S(r),

which contradicts the assumption n > 2m + 8. Thus A - B — 1 = 0. From (18),

G= BF + l •

From this we have

Again from the second fundamental theorem, we obtain

T(r, F) < N(r, F) + AT r̂, 1 ) +7V^, ^ i ^ - ) + 5(r, F)

5(r, F).

Combining this with (3), (19), (20), (21) and (22), we obtain

nT(r)

which is impossible.
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C A S E II. Suppose that B = - 1 .

From (18) we have

(24) G= _F+
A

{A + i y

If A + 1 ^ 0, from (24) we obtain

Thus, in the same manner as above, we have a contradiction. From this we obtain
A + l = 0. Again from (24) we derive F• G = 1. This and (2) yield

(25) / » - • » ( / _ O l ) ( / - o2) . . . ( / - am)gn~™(gm + a) = b2,

where 0,1,0,2,..., am are the distinct roots of the equation u)m + a = 0.

Suppose that ZQ is a zero of / of order p. From (25) we know that zo is a pole of

g. Suppose that Zo is a pole of g of order q. From (25) we obtain

(26) (n - m)p = nq.

Noting that n and 771 have no common factors, from (26) we get n ^ p. Thus,

(27) jv(r, i ) < ±N(T, 1) < ±T(r, f)

Suppose that ZJ (j = 1, 2, . . . , m) is a zero of / — a,j of order pj. From (25) we know
that Zj is a pole of g. Suppose that Zj is a pole of g of order qj . From (25) we obtain

Pj =nq,.

Thus n ^ pj and hence

(28) "(r> l h ) * HT' 7^) < lT^ f) + °(1)-
By the second fundamental theorem, from (27) and (28) we have

(m-l)T(r, f) < Tffr, )) +f^'N(r' T T " ) + 5(r- /)
\ J/ j = 1 \ J JS

^ !!1^nTt f) + S(r, f),

which is impossible.
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CASE III. Suppose that B = 0.

From (18) we have

(29) G =

If A - 1 ̂  0, from (29) we obtain

Thus, in the same manner as above, we have a contradiction. From this we obtain
A - 1 = 0. Again from (29) we derive F = G. This and (2) yield

(30) / " - gn = - a ( / " - r o - gn-m).

If fn^gn, from (30) we obtain

a[h — v)\h — v ) ... [h — v )

* (h-u){h-u2)...(h-un-1) '

where h = f/g, u = exp((27ri)/n) and v = exp ((27ri)/(ra — m)). From (31) we know
that h is a nonconstant meromorphic function. Since n and m have no common
factors, we have u*'^ vk (j = 1, 2, . . . , n — 1; k = 1, 2, . . . , n — m — 1). Suppose that
zy (j = 1, 2, . . . , n — 1) is a zero of h — u; of order pj. From (31) we have pj ^ m.
Thus

By the second fundamental theorem, from (32) we obtain

(n-3)T(r, h) < £ i v ( r , —^-j) + 5(r, ft)

^ ^ T ( r , h) + S(r, h),

which is impossible. Thus fn = gn and fn~m = gn~m. However, since n and m have
no common factors, we get f = g •

This completes the proof of Theorem 1. U
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4. SUPPLEMENT OF THEOREM 1

It is reasonable to ask: What can be said if m = 1 in Theorem 1? In this section,
we prove the following theorem, which is a supplement of Theorem 1.

THEOREM 2 . Let S - {w | wn + aw""1 + 6 = 0}, where n > 10 is a pos-
itive integer, a and b are two nonzero constants such that the algebraic equation
wn + aw"'1 + b — 0 has no multiple roots. If f and g are two distinct nonconstant
meromorphic functions satisfying Ef(S) — Eg(S), then

9 —y1 hn-l y hn -1 '

wAere h is a nonconstant meromorphic function.

PROOF: Let

(33) F=-\r~\f + a) and G =-\gn-\g + a).

P r o c e e d i n g a s in t h e p r o o f of T h e o r e m 1, we h a v e F-G = loiF = G. W e d i s t i ngu i sh
t h e fo l lowing t w o cases .

C A S E I . A s s u m e F • G = 1 .

F r o m (33) we h a v e

( 3 4 ) /»-*(/ + a)gn-\g + a) = b\

Suppose that ZQ is a zero of / of order p. From (34) we know that ZQ is a pole of g.
Suppose that ZQ is a pole of g of order q. From (34) we obtain (n — l)p = nq. From
this we get n ^ p. Thus

(35) N(r, j^j < ±N(T, i ) ^ ir(r, /) + 0(1).

Suppose that z\ is a zero of / + a of order p\. From (34) we know that z\ is a pole
of g. Suppose that z± is a pole of g of order q\. From (34) we obtain p\ = nq%. Thus
n ^ pi and hence

( 3 6 ) 3

In the same manner as above, we have

(37)

(38)
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From (34) one sees easily that the poles of / can only be from the zeros of g and g + a.

Consequently,

N(r, f) ^ N(T, -) +N(T, -L-).

From this, (37) and (38) we obtain

(39) N{r, f) < -T(r, g) + 0(1).
71

By the first fundamental theorem and Lemma 1, from (34) we have

T(r, g) = T(r, f) + 5(r, /) .

From this and (39) we obtain

(40) N(r, f) < ^T(r, f) + S(r, / ) .

By the second fundamental theorem, from (35), (36) and (40) we get

T(r, f) < W(r, I ) +N(T, J~-^ +N(r, f) + S(r, f)

<^T(r,f) + S{r,f),

which is impossible.

CASE II. Assume F ~ G.

From (33) we have

(41) / » _ 0 » = _ o ( /» - i_ f f » - i ) .

Noting / ^ g, from (41) we obtain

(42) g =
 a ( f e n - 1 - 1 >y hn-l '

where h = f/g. From (42) we know that h is a nonconstant meromorphic function.
Thus, from (42) we have

ahfi*1-1 - 1)
' = hn - 1 '

This completes the proof of Theorem 2. U
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