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GAŠPER JAKLIČ and JOLANDA MODIC ˛

(Received 31 January 2012; accepted 18 July 2012)

Abstract

A matrix is a Euclidean distance matrix (EDM) if there exist points such that the matrix elements are
squares of distances between the corresponding points. The inverse eigenvalue problem (IEP) is as
follows: construct (or prove the existence of) a matrix with particular properties and a given spectrum. It
is well known that the IEP for EDMs of size 3 has a solution. In this paper all solutions of the problem
are given and their relation with geometry is studied. A possible extension to larger EDMs is tackled.

2010 Mathematics subject classification: primary 15A18; secondary 15A29.
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1. Introduction

A matrix D ∈ Rn×n is a Euclidean distance matrix (EDM) if there exist points xi ∈ R
r,

i = 1, 2, . . . , n, such that di j = ‖xi − x j‖
2. The minimal r is called an embedding

dimension. EDMs were introduced by Menger in 1928, and later studied by
Schoenberg [11] and other authors. They have many interesting properties, and are
used in various applications in linear algebra, graph theory and bioinformatics, for
example, where frequently the question arises of what can be said about a configuration
of points xi if only distances between them are known.

By their construction EDMs are symmetric, hollow (with zeros on the diagonal)
and nonnegative. A nonzero EDM has only one positive eigenvalue and the sum of its
eigenvalues is zero. More properties can be found in [4, 8, 9]. There are several nice
characterisations of EDMs, see [8], for example. We will need the following result.

T 1.1 [8]. Let D ∈ Rn×n be a nonzero symmetric hollow matrix. The matrix D
is an EDM if and only if it has only one positive eigenvalue and there exists w ∈ Rn

such that Dw = e and wT e ≥ 0. Here e := [1 1 . . . 1]T ∈ Rn.
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An inverse eigenvalue problem (IEP) is as follows. Given numbers λ1, λ2, . . . , λn ∈

C, is it possible to construct (or prove the existence of) a matrix D, satisfying some
prescribed requirements, such that λi are the eigenvalues of D? Such problems are
encountered in various applications, for example in civil engineering when studying
vibrations of buildings: the frequencies (eigenvalues) are prescribed, and one needs to
construct an appropriate matrix.

IEPs are hard when additional requirements are given, such as di j ≥ 0, i, j =

1, 2, . . . , n, D = DT , and dii = 0, i = 1, 2, . . . , n (see [10], for example). The problem
for such a setup was solved by Fiedler (see [6, Theorem 2.2]). More on IEPs in
general can be found in the nice monograph [3], and for some particular problems
see [2, 5, 10].

The IEP for EDMs is as follows: for given real numbers λ1 > 0 ≥ λ2 ≥ · · · ≥ λn

such that
∑

i λi = 0, construct an EDM D which has the spectrum {λ1, λ2, . . . , λn}. For
n = 2, the solution is simply [

0 −λ2

−λ2 0

]
.

For n = 3, it turns out that Fiedler’s solution (see [6]) yields an EDM

0 −λ2

√
(λ2 + λ3)λ3

2

−λ2 0

√
(λ2 + λ3)λ3

2√
(λ2 + λ3)λ3

2

√
(λ2 + λ3)λ3

2
0


, (1.1)

since it corresponds to points

(0, 0),


√
λ2

4
+

√
(λ2 + λ3)λ3

2
, ±

√
−λ2

2

 ,
that form an isosceles triangle (see [8]). This is a cornerstone for the construction of
a solution of the IEP for some larger n [8]. The smallest open problem is n = 7, and
the construction for larger n is related to the well-known problem of the existence of
Hadamard matrices.

Fiedler’s construction, based on bordered matrices, was analysed in [8]. It was
shown that it has considerable limitations for large n.

A natural question arises whether Fiedler’s solution for n = 3 is unique. If not, some
other solution could perhaps have some advantage in solving the IEP for EDMs.

In this paper we show that there are infinitely many solutions of the cubic IEP for
EDMs. A nice interplay between analysis, geometry and linear algebra can be seen.
A relation between eigenvalues of a hollow symmetric matrix and its bordered matrix
suggests that such a construction could be used to find a solution of the IEP for EDMs
for some larger n. The paper is concluded by studying the step from the quadratic to
the cubic case and some remarks on problems encountered for larger n.
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2. Inverse eigenvalue problem for the cubic case

Take λ1 > 0 ≥ λ2 ≥ λ3, such that λ1 + λ2 + λ3 = 0. Without loss of generality we can
assume that the points xi, corresponding to the EDM D that we are looking for, are
(0, 0), (a, 0), (b, c), where a > 0, b > 0, c > 0. This follows from invariance of EDMs
for rotations and reflections. Thus

D =

 0 a2 b2 + c2

a2 0 (a − b)2 + c2

b2 + c2 (a − b)2 + c2 0

 .
Its characteristic polynomial is

p(x) = −x3 + 2x
((

a2 − ab + b2)2
+ ((a − b)2 + b2)c2 + c4)

+ 2a2((a − b)2 + c2)(b2 + c2).

Note that the quadratic term is missing, and the coefficients at the linear term and
the constant are positive. Descartes’ rule of signs reveals that there are two negative
eigenvalues and one positive. Since the polynomial p is a depressed cubic, it it easy to
obtain solutions by Cardano’s method.

On the other hand,

p(x) = −(x − λ1)(x − λ2)(x − λ3).

A comparison of coefficients gives the nonlinear system

2 a2((a − b)2 + c2)(b2 + c2) = −λ2λ3(λ2 + λ3),

2
((

a2 − ab + b2)2
+ ((a − b)2 + b2)c2 + c4) = λ2

2 + λ2λ3 + λ2
3. (2.1)

A brief look at the geometry of the problem reveals that there are 24 solutions: there are
triangles with base length equal to a,

√
b2 + c2,

√
(b − a)2 + c2 representing a rotation

or reflection of the original triangle. For each of them, the y-flip b↔ (a − b) gives
two possibilities. Thus there are six solutions, but if we consider the possibilities
±a, ±b, ±c there are four in each case, which altogether gives 24 solutions.

Thus, if a is an admissible solution, then the choices a =
√

b2 + c2 and a =√
(b − a)2 + c2 also give admissible solutions that yield the same triangle, just in a

different position.
By solving the system (2.1) for unknowns b and c, we obtain an appropriate solution

b =
a5 +

√
−a4(a2 + λ1)(a2 + λ2)(a2 + λ3)

2a4
,

c =
1

2a2

√
2a3

√
−(a2 − λ1)(a2 − λ2)(a2 − λ3) + λ1λ2λ3 − a2(λ2

2 + λ2λ3 + λ2
3).

(2.2)
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For the solution at hand,

d12 = d12(a) := a2

d13 = d13(a) := b2 + c2

=

√
−(a2 − λ1)(a2 − λ2)(a2 − λ3) −

√
−(a2 + λ1)(a2 + λ2)(a2 + λ3)

2a
,

d23 = d23(a) := (b − a)2 + c2

=

√
−(a2 − λ1)(a2 − λ2)(a2 − λ3) +

√
−(a2 + λ1)(a2 + λ2)(a2 + λ3)

2a
.

(2.3)

The requirement d13 ≥ 0 yields 2λ1λ2λ3 ≥ 0. The last expression is clearly positive.
This gives the following result.

T 2.1. The matrix

D =

 0 d12 d13

d12 0 d23

d13 d23 0

 ,
defined by (2.3), is nonnegative, hollow, and has prescribed eigenvalues λ1 > 0 ≥ λ2 ≥

λ3 with λ1 + λ2 + λ3 = 0 if and only if its elements are well defined, that is,

−λ2 ≤ a2 ≤ −λ3. (2.4)

Let us denote I := [
√
−λ2,

√
−λ3]. In order for D to be an EDM, we need additional

requirements—the points x1 = (0, 0), x2 = (a, 0), x3 = (b, c) have to exist. Thus we are
looking for parameters a ∈ I such that

f (a) := 2a3
√
−(a2 + λ2 + λ3)(a2 − λ2)(a2 − λ3)

− (λ2 + λ3)λ2λ3 − a2(λ2
2 + λ2λ3 + λ2

3) ≥ 0.
(2.5)

There is at least one admissible a since the choice a =
√
−λ2 yields the well-known

solution (1.1) (with a triangle in a different position). This follows from

f (
√
−λ2) = λ2

2(λ2 + 2
√

2
√
λ3(λ2 + λ3)) ≥ λ2

2(λ2 + 2
√

2
√

2λ2
2) = −3λ3

2 ≥ 0.

A brief analysis of
f
(√
−λ3

)
= λ2

3
(
λ3 + 2

√
2
√
λ2(λ2 + λ3)

)
reveals that it is nonnegative for λ3 ∈ [2(2 +

√
6)λ2, λ2]. For such a λ3 each a ∈ I leads

to a solution of the IEP for EDMs.
If λ3 < 2(2 +

√
6)λ2, the analysis is more complex. For λ3 = 2(2 +

√
6)λ2,

f (
√
−λ3) = 0, but there is another interesting zero,

az :=

√
−λ3

2
=

√
1 +

√
3
2

√
−λ2,
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F 1. Shape of the function f for small t := λ3/λ2 (top left), t = 2(2 +
√

6) (top right), and for large t
(bottom) on interval I. Here λ2 = −1.

in I which is also a local minimum of f (see Figure 1). Thus this is a limit case: for λ3 ∈

[2(2 +
√

6)λ2, λ2] and a ∈ I, f (a) ≥ 0. In fact, it is positive for λ3 ∈ (2(2 +
√

6)λ2, λ2].
At the limit case there appear a zero at the endpoint

√
−λ3 and the double zero az in

the admissible interval I. All a ∈ I yield admissible solution of the IEP for EDMs.
For λ3 < 2(2 +

√
6)λ2 the double zero turns into two zeros z1 and z2, and there is

another zero z3 <
√
−λ3 in I. The function f is nonnegative in [

√
−λ2, z1] ∪ [z2, z3] and

solutions of the IEP for EDMs exist only for parameters a in this set.
Let us summarise the results.

T 2.2. Let I := [
√
−λ2,

√
−λ3] and let the function f be defined by (2.5). If:

(1) λ2 ≥ λ3 ≥ 2(2 +
√

6)λ2 and a ∈ I; or
(2) λ3 < 2(2 +

√
6)λ2 and a ∈ [

√
−λ2, z1] ∪ [z2, z3], where z1, z2, z3 are the zeros of

the function f in I,

then the matrix D is an EDM.

The admissible region for the parameter a is large, since it covers all possibilities,
and thus the same triangle is described three times (for a equal to each of the lengths
of the triangle edges). In order to give a more precise result, let us consider some
properties of the function f .
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L 2.3. A local maximum of f in I (for λ3 < 2(2 +
√

6)λ2) is reached at

`M =
1
3
√

6

√
3
√

6(λ2
2 + λ2λ3 + λ2

3)

Z(λ2, λ3)
+ Z(λ2, λ3) (2.6)

with
Z(λ2, λ3) := 3

√
−9λ2λ3(λ2 + λ3) + W(λ2, λ3)

and

W(λ2, λ3) :=
√

3
√
−(λ2

2 − 2λ2λ3 − 2λ2
3)(2λ2

2 + 2λ2λ3 − λ
2
3)(λ2

2 + 4λ2λ3 + λ2
3).

Its local minimum in I is obtained at

`m =

√√√√√√√
−
λ2

6
√

2


√

k
3
√

r
−

√√√√
−

3
√

r +
54
√

2t(1 + t)√
k
3√r

+ 20(1 + t + t2) −
49(1 + t + t2)2

3
√

r


with t = λ3/λ2,

s =
√

578 + 1734t + 4197t2 + 5504t3 + 4197t4 + 1734t5 + 578t6,

p = 235 + 705t + 2139t2 + 3103t3 + 2139t4 + 705t5 + 235t6,

r = p + i 3
√

3s(−2 − 3t + 3t2 + 2t3),

k =
3
√

r2 + 10 3
√

r(1 + t + t2) + 49(1 + t + t2)2.

L 2.4. The function f reaches its local maximum (2.6) in I at parameter a for
which generating points form a perpendicular triangle (with perpendicular angle at
(b, c)).

P. The generating points form a perpendicular angle at (b, c) if and only if
d12 = d13 + d23 for the squared distances in (2.3). This simplifies into the relation

a3 =
√
−(a2 − λ1)(a2 − λ2)(a2 − λ3). (2.7)

Derivation of f leads to

f ′(a) = 2a

3a
√
−(a2 − λ1)(a2 − λ2)(a2 − λ3)

−
a3(3a4 + λ2λ3 + λ1λ3 + λ1λ2

)√
−(a2 − λ1)(a2 − λ2)(a2 − λ3)

−
(
λ2

2 + λ2λ3 + λ2
3
) .

By using the relation (2.7), the derivative vanishes. A solution of the equation f ′(a) = 0
gives the local maximum (2.6). �
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L 2.5. The generating points form an isosceles triangle for

a =
√
−λ2, b =

a
2

=
1
2

√
−λ2, c =

1
2

√
λ2 + 2

√
2
√
λ3(λ2 + λ3).

The lengths of the triangle edges are

√
−λ2,

4

√
λ3(λ2 + λ3)

2
,

4

√
λ3(λ2 + λ3)

2
,

and this gives the solution of the IEP for the EDM in (1.1).

P. In order for the triangle to be isosceles, the following relation needs to be
satisfied

√
b2 + c2 =

√
(b − a)2 + c2.

This yields b = a/2. By using (2.2), it can be seen that the only admissible
solution is a =

√
−λ2. Computation of c and the triangle edges lengths concludes the

proof. �

Recall that if a is an admissible solution, then the choices a =
√

b2 + c2 and
a =

√
(b − a)2 + c2 also give admissible solutions. It is enough just to study the case

a ∈ [
√
−λ2, z1], since the other two solutions lie in [z2, z3].

Since f (z1) = f (z2) = f (z3) = 0, the corresponding solutions give collinear points
(0, 0), (b, 0), (a, 0), where a = zi, b = b(a) = b(zi), i = 1, 2, 3 (see (2.2)). The triangle
edge lengths a,

√
b2 + c2 and

√
(b − a)2 + c2 are continuous functions of a in I. Thus

the shape of triangle changes from the degenerate triangle (the case f (z1) = f (z2) =

f (z3) = 0) up to the isosceles triangle (Lemma 2.5) when a goes from z1 down to
√
−λ2. (The other two edge lengths converge from z2 and z3 into 4

√
λ3(λ2 + λ3)/2.)

We can now give a precise version of Theorem 2.2.

T 2.6. Let I := [
√
−λ2,

√
−λ3] and let the function f be defined by (2.5). If

(1) λ2 ≥ λ3 ≥ 2(2 +
√

6)λ2 and a ∈ I, or
(2) λ3 < 2(2 +

√
6)λ2 and a ∈ [

√
−λ2, z1], where z1 is the first zero of the function f

in I,

then the matrix D is an EDM. This covers all possible distinct geometric configurations
of generating points.

Note that for λ3 = λ2 from (2.4) it follows that there is only one admissible solution
a =
√
−λ2.

Zeros of f are continuous functions of λ2 and λ3. We can give good bounds on the
zero z1, and show that the admissible interval for a tends to {

√
−λ2} for λ2 and λ3 far

apart.
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T 2.7. Let t := λ3/λ2. Good lower and upper bounds for z1 (a1 < z1 < a2 and
f (a1) > 0, f (a2) < 0) are

a1 =
t −
√

2

t − 2
√

2

√
−λ2, a2 =

5t − 11
5t − 22

√
−λ2, t ≥ 2(2 +

√
6).

As t→∞, the admissible interval [
√
−λ2, z1] shrinks to {

√
−λ2}.

P. The upper and lower bounds were obtained as

a1 =
1

2 −
1

1 −

√
2
t

, a2 =
1

2 −
1

1 −
22
10t

.

As t→∞, both a1 and a2 converge to
√
−λ2. Furthermore,

a2 − a1 =

√
5 (5
√

2 − 11)t

(t − 2
√

2)(5t − 22)

√
−λ2

tends to 0 for large t. Note that for 2(2 +
√

6) � 8.89898 ≤ t < 8.89907, f (a2) > 0, so
here a2 does not give an upper bound for z1. A better upper bound in this case can be
obtained, but then it is not as good for larger t. �

3. Inverse eigenvalue problem and bordered matrices

First let us give a relation between eigenvalues of a symmetric hollow matrix and
its bordered matrix.

T 3.1. Let λ1, λ2, . . . , λn+1 be given real numbers with
∑

i λi = 0. Let M ∈ Rn×n

be a symmetric hollow matrix, and let M = UDUT be its eigendecomposition with
D = diag(d1, . . . , dn), UT U = I. Let

ai :=

√√
−

∏n+1
j=1(di − λ j)∏n

j=1 j,i(di − d j)
, i = 1, 2, . . . , n, (3.1)

and b := Ua. Then the matrices[
M b
bT 0

]
and

[
D a
aT 0

]
are similar and have eigenvalues λ1, λ2, . . . , λn+1.

P. Since [
UT 0
0 1

] [
M b
bT 0

] [
U 0
0 1

]
=

[
D a
aT 0

]
,
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the matrices are orthogonally similar. The right-hand-side matrix is an arrow matrix.
Its characteristic polynomial is (see, for example, [7])

f (λ) = (λ − λ1)(λ − λ2) · · · (λ − λn+1) = λ +

n∑
k=1

a2
k

dk − λ
.

A simplification of the right-hand side and comparison of coefficients of the
polynomials obtained gives a polynomial system that needs to be studied. Its solution
is (3.1). �

C 3.2. Let the assumptions of Theorem 3.1 be satisfied. Let di = λi+1,
i = 2, 3, . . . , n in (3.1). Then a = βe1, β > 0 and b = βu1. This gives Fiedler’s
construction of a larger EDM from a given one by using Perron’s theorem and
properties of a specific bordered matrix (see [5]).

In order to construct an EDM with given eigenvalues λ1 ≥ 0 ≥ λ2 ≥ · · · ≥ λn+1 with∑
i λi = 0, we need to find d1, d2, . . . , dn such that λi+1 ≤ di ≤ λi, i = 1, 2, . . . , n, and

that the matrix obtained is an EDM. The first relation gives us a lot of freedom, but the
second one is a hard nut to crack.

Assume that the matrices M ∈ Rn×n and

C :=
[
M b
bT 0

]
∈ R(n+1)×(n+1) (3.2)

are nonsingular. The eigendecomposition M = UDUT , with UT U = I, D =

diag(d1, d2, . . . , dn) and b = Ua, together with[
D a
aT 0

]−1

=

[
D−1 0

0 0

]
−

1
aT D−1a

[
D−1a
−1

] [
aT D−1 −1

]
,

yield the solution

w = UD−1UT e −
1

aT D−1a
UD−1aaT D−1UT e +

1
aT D−1a

UD−1a,

α =
1

aT D−1a
(
aT D−1UT e − 1

)
of the system [

M b
bT 0

] [
w
α

]
=

[
e
1

]
.

The matrix C is an EDM if and only if〈[
w
α

]
,

[
e
1

]〉
≥ 0.
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A short computation simplifies this relation to

eT UD−1UT e −
1

aT D−1a
(
aT D−1UT e − 1

)2
. (3.3)

Since M−1 = UD−1UT and since the matrix M is an EDM, there exists w̃ such that
Mw̃ = e, w̃T e ≥ 0. Thus the first term in (3.3) is nonnegative. The following lemma
implies that the last one is nonnegative too.

L 3.3. For D nonsingular,

aT D−1a > 0.

P. Let us define matrices

A1 :=
[

D−1 0
aT D−1 −1

]
, D̂ :=

[
D a
aT 0

]
, A2 :=

[
I D−1a
0 aT D−1a

]
.

Clearly A1D̂ = A2. Thus det A1 det D̂ = det A2. Since det A1 = − det D−1, det D̂ =∏n+1
i=1 λi and det A2 = aT D−1a,

aT D−1a = −

∏n+1
i=1 λi∏n
i=1 di

> 0.

This concludes the proof. �

As an example, let us consider the step from n = 2 to n = 3.

L 3.4. Let n = 2. There exists d2 such that the second term in (3.3) vanishes, and
wT e = w̃T e = −2/d2. This solution does not give the maximal possible value wT e.

P. For n = 2,

D =

[
−d2 0

0 d2

]
, U =

1
√

2

[
1 −1
1 1

]
,

and

a =

[√
−

(d1 − λ1)(d1 − λ2)(d1 − λ3)
d1 − d2

,

√
−

(d2 − λ1)(d2 − λ2)(d2 − λ3)
d2 − d1

]T

.

With b = Ua and M = UDUT , we can construct the matrix C in (3.2). If C is
nonsingular, we can apply the previous computation, and obtain

wT e =
2d2

2

√
−

(d2+λ1)(d2+λ2)(d2+λ3)
d2

− λ2λ3(λ2 + λ3) + d2
(
λ2

2 + λ2λ3 + λ2
3

)
d2λ2λ3(λ2 + λ3)

.
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F 2. The value d2 which gives unchanged wT e = −2/d2 is obtained as the intersection of curves.
Here λ2 = −2, λ3 = −16.

For n = 2, w̃T e = −2/d2. The solution of the system wT e = −2/d2 is

d2 = −λ2
2 3
√

6(1 + t + t2) + i(i +
√

3)T 2

2 3
√

6T
∈ R

with

T :=
3
√

9t + 9t2 − i
√

3
√

2 + 6t − 15t2 − 40t3 − 15t4 + 6t5 + 2t6.

The solution is obtained as the curve −1/d2 touches the curve wT e (see Figure 2). For
data in Figure 2, the solution d2 = −12.9694 yields wT e = −2/d2 = 0.154 209. But the
values d2 = −12 and d2 = −2 give a larger wT e = 0.159 722. �

The study of the general case is more complex. We need to find d1, d2, . . . , dn

such that λi+1 ≤ di ≤ λi, i = 1, 2, . . . , n, and that expression (3.3) is nonnegative.
Furthermore, the matrix M has to be hollow (mii = 0, i = 1, 2, . . . , n) and an orthogonal
matrix U is required such that M and b are nonnegative.
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