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Abstract. We study the secular dynamics of extrasolar planetary systems by extending the
Lagrange-Laplace theory to high order and by including the relativistic effects. We investigate
the long-term evolution of the planetary eccentricities via normal form and we find an excellent
agreement with direct numerical integrations. Finally we set up a simple analytic criterion that
allows to evaluate the impact of the relativistic effects in the long-time evolution.
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1. Introduction
The study of the secular evolution of planetary systems is a long standing and chal-

lenging problem. The discoveries of hundreds of extrasolar planetary systems raised many
interesting problems concerning their long-term evolution. In the present paper, we study
the secular dynamics of two non-resonant coplanar planets in an extrasolar system. We
extend the Lagrange-Laplace theory to high order and include the main relativistic ef-
fects.

The study of extrasolar system raised two particularly relevant problems, namely:
(i) most exoplanets have highly eccentric orbits, in contrast with the almost circular
orbits of the Solar System; (ii) there are many giant planets orbiting at a low distance
from the central star, with periods of a few months or even a few days. In the latter
case relativistic effects could have a significant impact and should be taken into account.
The General Theory of Relativity, despite having been widely used in astrophysics, is
not commonly adopted in the study of planetary system dynamics.

The generalization of the Lagrange-Laplace secular theory to high order in the ec-
centricities has been exploited so as to obtain an analytic model that gives an accurate
description of the behavior of planetary systems, up to surprisingly high eccentricities
(see, Libert & Henrard (2005, 2006)). The results appear to be quite good for systems
which are not close to a mean-motion resonance. In Libert & Sansottera (2013) the
secular theory has also been extended to order two in the masses, by using a first-order
approximation of an elliptic lower dimensional torus in place of the usual circular approx-
imation. In particular this allows to deal with systems close to a mean-motion resonance.
The relevance of the relativistic corrections and tidal effects on the long-term evolution
of extrasolar planetary systems has been studied, e.g., in Adams & Laughlin (2006) and
Migaszewski & Goździewski (2008).

On the other hand, the application of Kolmogorov and Nekhoroshev theorems, allowed
to make substantial progress for the problem of stability of the Solar System. Indeed,
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in recent years, the estimates for the applicability of both theorems to realistic models
of some part of the Solar System have been improved by some authors (e.g., Robutel
(1995), Celletti & Chierchia (2005), Locatelli & Giorgilli (2007), Giorgilli et al. (2009,
2014) and Sansottera et al. (2011, 2013)).

In the present paper we exploit the idea of extending the Lagrange-Laplace theory,
already used in the above-cited papers, to the case of high eccentricities. The technical
tool is the construction of a suitable normal form which allows us to investigate the long-
time evolution of the planetary eccentricities. In this contribution we neglect the tidal
effects, although we know that for many system they can be relevant. We decided to just
consider the relativistic correction in order to keep the discussion at a simple level and
to show that the extension of the Lagrange-Laplace theory, including relativistic effects,
produces accurate results. We plan to further investigate the problem in a forthcoming
work.

2. Classical expansion of the Hamiltonian
We consider a system of three coplanar point bodies, mutually interacting according

to Newton’s gravitational law: a central star P0 of mass m0 and two planets P1 and P2
of mass m1 and m2 and semi-major axis a1 and a2 , respectively.

We refer to Libert & Sansottera (2013) for a detailed exposition concerning the ex-
pansion of the Hamiltonian in the Poincaré canonical variables, that reads

H(Λ,λ, ξ,η) = H0(Λ) + εH1(Λ,λ, ξ,η), (2.1)

where H0 is the Keplerian part and εH1 the perturbation due to the mutual attraction
between the planets. Using the standard notation, we will refer to (Λ,λ) as the fast
variables and to (ξ,η) as the secular variables.

3. Relativistic corrections
Starting from the Hamiltonian of the Newton model, we add the relativistic corrections

due to the mutual interaction between the star and each of the two planets. That is, we
consider the correction included in the relativistic Hamiltonian of the problem of two-
body in heliocentric coordinates (r,p). The relativistic Hamiltonian takes the form

H = H0 + εH1 +
1
c2 H2 , (3.1)

with H0 and εH1 as in the Newtonian model, while 1
c2 H2 is

1
c2 H2 =

1
c2

2∑
i=1

[
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with
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and Pi = pi + μi

m 0
p3−i + O(c−2) for i = 1, 2.
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(a) HD 169830, inner planet
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(b) HD 169830, outer planet
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(c) HD 11964, inner planet
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(d) HD 11964, outer planet

Figure 1. Long-term evolution of the eccentricities for the HD 169830 and HD 11964 plane-
tary systems. Comparison of the results obtained via direct numerical integration (green-black)
against normal form (blue-red), for the Newtonian approximation (green-blue) and the model
including the relativistic effects (black-red).

4. Long-term evolution
As we are interested in the long-term dynamics, we remove the dependency of the

Hamiltonian from the fast angles. The classical approach consists in replacing the Hamil-
tonian with its average, the so-called approximation at order one in the masses. We re-
place this procedure by a Kolmogorov-like step, that allows us to include in the secular
model the effects of the main near-resonances effects (see Libert & Sansottera (2013)
for a detailed exposition). This is the secular Hamiltonian at order two in the masses.

After averaging, the secular Hamiltonian has two degrees of freedom and its quadratic
part differs from the one considered in the Lagrange-Laplace theory by relativistic cor-
rections and contributions of order two in the masses, which however are small.

As in Libert & Sansottera (2013), we introduce the action-angle variables via normal
form. In the normalized coordinates, the equations of motion take a simple form that can
be analytically integrated. We validate the results by comparing the analytic integration
with the direct numerical integration of the full three-body system.

In Figure 1a–1b we report the results for the HD 169830 system. In this case the rela-
tivistic effects are negligible and the Newtonian approximation allows to accurately de-
scribe the long-term evolution for a time interval of 105 years. Instead, for the HD 11964,
the relativistic corrections play a major role, as it is clearly shown in Figure 1c–1d. In
this case the calculations cover 5× 105 years. In all cases, the evolutions via normal and
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via numerical integration are in excellent agreement. We emphasize that the use of nor-
mal form provides us with a natural criterion for deciding whether or not the relativistic
corrections are relevant. Indeed the difference is seen in the precession frequencies: if the
relativistic corrections are relevant then so is the difference, as the figures clearly show.

5. Relevance of the relativistic corrections
In order to evaluate the impact of the relativistic corrections, we look at the quadratic

parts of the secular Hamiltonians, namely

H(New)
q (η, ξ) = η · Aη + ξ · Aξ and H(Rel)

q (η, ξ) = η · Bη + ξ · Bξ,

where A and B are real symmetric 2 × 2 with

B = A − 3
2
G3/2
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⎣
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a
5 / 2
1

0

0 (m 0 +m 2 )3 / 2

a
5 / 2
2

⎤
⎦ .

Clearly, the relativistic effects are more important if

Aii ∼ −3
2
G3/2

c2

(m0 + mi)3/2

a
5/2
i

, i.e. if Πi ≡
4Ga3

2m0(m0 + mi)
c2a2

i a
2
1m3−i

∼ 1. (5.1)

In the following table we report the dimensionless quantities Πi for the extrasolar systems
considered above.

HD 169830 Π1: 0.0021779 Π2: 0.0001547
HD 11964 Π1: 0.9651708 Π2: 0.0399271

We observed that for the majority of the extrasolar systems taken into consideration,
the relevance of relativistic corrections may be inferred from the difference between the
matrices. This provides us with a rough criterion based on the first order approximation.
Normal form provides a more refined criterion.
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