THE FRATTINI SUBGROUP OF A p-GROUP

P.L. Manley

We prove that the Frattini subgroups are trivial for finite groups whose orders are not divisible by squares of a prime.

If G is a group, we define its <u>Frattini subgroup</u> $\phi(G)$ as the intersection of all the maximal subgroups of G. An element $x \in G$ is a nongenerator of G if whenever $G = \langle X, x \rangle$, where $X \subseteq G$, then $G = \langle X \rangle$.

PROPOSITION 1. $\varphi(G)$ is the set of nongenerators of G, and is a characteristic subgroup of G.

 $\begin{array}{c} \text{COROLLARY 2. If } \varphi(G) \text{ is a finite subgroup of } G \text{, then every set} \\ \hline \\ \underline{\text{that, in conjunction with }} \varphi(G) \text{, generates } G \text{ is itself a generating set for} \\ \hline \\ \hline \\ G \text{.} \end{array}$

If Π is a set of prime numbers, we say that a group is a Π -group if |G| is divisible only by primes in Π . A subgroup H of a group G is a <u>Hall subgroup</u> of G provided that H is a Π -group and |G:H| is divisible by no primes in Π .

PROPOSITION 3. (Schur-Zassenhaus Theorem). If H is a normal Hall Π -subgroup of a group G then G has a Hall Π '-subgroup K which is a complement to H in G.

We state our theorem.

THEOREM 4. If G is a finite group of order $|G| = p_1 \dots p_n$ where p_i are prime numbers such that $p_i \neq p_j$ (i, j = 1, ..., n) then $\phi(G)$ is the identity subgroup.

<u>Proof</u>. Since G is a finite group it follows that $\phi(G)$ is a proper subgroup. We proceed by contradiction. Suppose that $\phi(G)$ is not the identity subgroup. We may assume without loss of generality that $|\phi(G)| = p_1 \dots p_m$ ($1 \leq m < n$). The exponent of $\phi(G)$ in G is $p_{m+1} \dots p_n$ and is relatively prime with its order. Since $\phi(G)$ is a characteristic subgroup of G then $\phi(G)$ is a normal subgroup of G. Now by the Schur-Zassenhaus Theorem there exists a subgroup H of G with $|H| = p_{m+1} \dots p_n$ such that $G = \phi(G)$ H. But by Corollary 2 we have that $G = \phi(G)$ H implies that G = H which is impossible so that $\phi(G)$ is the identity subgroup.

511

REFERENCE

1. D. Gorenstein, Finite groups. (Harper and Row, New York, 1968).

University of Windsor