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ABSTRACT

We provide a unified analytical treatment of first passage problems under an
affine state-dependent jump-diffusion model (with drift and volatility depending
linearly on the state). Our proposed model, that generalizes several previously
studied cases, may be used for example for obtaining probabilities of ruin in
the presence of interest rates under the rational investement strategies proposed
by Berk & Green (2004).
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1. INTRODUCTION AND MOTIVATION

There has been a considerable interest over the last years in obtaining analytical
results for ruin problems which take into account a realistic economic environ-
ment, including interest rates and investment possibilities.

We consider below a diffusion perturbed risk process

dRt = cdt + sdWt
(1) – dXt

where c is the constant premium rate, Xt is the total claims compound Poisson
process with Lévy measure l f (x)dx, l and f (x) being respectively the inten-
sity and density of the jumps; and sdWt

(1) with Wt
(1), an independent Wiener

processes, introduces a source of volatility in the premiums accrual.
We suppose the reserves process Ut, including investment, is of the form 

dUt = (d + k(Ut)dWt
(2)) Ut + dRt (1)

where the parameter d > 0 and the function k(Ut) model respectively expected
instantaneous financial yields (or interest rates) and volatility per monetary unit,
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and dWt
(2) is a Brownian motion independent of Xt and dWt

(1). The case d # 0
(of less applied interest) will not be considered here.

Let us now define t as the time to ruin

t = inf{t $ 0; Ut < 0}

and 

ut(u) = �{U0 = u}(P(Ut) 1{t $ t} + p(Ut)1{t < t}) (2)

where u := U0 $ 0 are the initial reserves, denote the expected penalty/reward
function. These functions represent respectively:

• The penalty at ruin p(Ut) with deficit Ut, p : �
–
" �

• The reward or pay-off on survival after t years: P(Ut), P : �
+
" �.

In the case t = 3, this becomes the “perpetual/ultimate” penalty/reward:

u(u) = P(3) �{U0 = u} {t = 3} + �{U0 = u} p(Ut) 1{t < 3}

Some particular cases of interest are the survival probability within t years

p(Ut) = 0, P (Ut) = 1{Ut $ 0}

and the ruin probability with deficit larger (absolute value) than y

p(Ut) = 1{Ut < –y}, P (Ut) = 0

Previous literature on the topic has usually considered a constant volatility per
monetary unit k(Ut) = sr $ 0, and focussed mostly on the deterministic case
including the deterministic case sr = 0. The first passage problem for this class
of processes has been treated extensively, for instance, by Segerdahl (1942),
Delbaen and Haezendonck (1987), Garrido (1989), Asmussen and Bladt (1996),
Paulsen (1993), Embrechts and Schmidli (1994), Peters (1994), Sundt and
Teugels (1995), Paulsen and Gjessing (1997a, 1997b), Dickson and Waters (1999),
Norberg (1999), Wang and Wu (2001), Cai and Dickson (2002), Kalashnikov &
Norberg (2002), Göing-Jeaschke & Yor (2003), Novikov (2003), Ma and Sun
(2003), Yuen and Wang (2004, 2005), Cai (2004), Cai & Yang (2005), Gaier &
Grandits (2004), Paulsen, Kasozi & Steigen (2005) and Gerber & Yang (2007).

However, despite of the common previous use of the constant volatility
per unit rule, k(Ut) = sr, this assumption may not be regarded as totally real-
istic in many rational investments. The fact that the volatility per monetary unit
remains constant regardless the size of the fund, Ut, may be viewed as arguable
following financial and insurance markets rationality for several reasons.

The first evidence is a basic lesson from asset allocation strategies. Larger
portfolios can afford designing sophisticated hedging strategies through asset
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allocation diversification in stock, fixed-income securities, commodities, deriv-
atives and real estate, among others. Moreover, the increasing transactional
costs and insurance supervision authorities regulations may also lead the
companies to reduce the actively traded amount, and thus subject to volatility,
of the surplus. These facts suggest that for an eventual fixed expected return
of d, the volatility per unit may be a decreasing function of the total size of
the fund Ut.

This intuitive argument is not new, and is supported for example by Berk &
Green (2004). Their model, based on the rationality presented in the former
paragraph, successfully explained many salient features of the Mutual Funds
flows and performance, previously unexplained in literature. In expression (36)
of the cited paper, under the rational model considered, a decreasing volatility
per unit of the financial yields with size is proved

k(Ut) =
t

rs
U

(3)

(see the original work for details). Note that when sr = 0 is assumed, the con-
stant volatility and Berk & Green’s model for k(Ut) coincide.

Under this model and expanding (1), an affine process is obtained

dUt = (c + dUt)dt + r ts s2 2
+ U dWt – dXt (4)

Affine processes have been also recently used in many financial application
due to their computational tractability and flexibility in capturing many of the
empirical features of financial time series; see the comprehensive work by
Duffie, Filipovic and Schachermayer (2003) and references therein. The solution
of the first-passage problem presented here seems however new.

The affine process Ut is Markovian, with infinitesimal generator G

ru c u u
u u

u
u

u x u f x dx

d
s s

l

Gu
u u

u u

2t
t t

t t

2 2

2

2

0

2
2

2

2
= + +

+

+ - -
3#

J

L

K
K] ] ] ]

] ] ]

N

P

O
Og g g g

g g g6 @
The Feymann-Kac formula identifies the expectations of the form (2) with the
solutions of the Fokker-Planck equation:

Gut(u) – u
uut

2
2 ] g

= 0 for u > 0 and t > 0

ut(u) = p(u) for u < 0 and t $ 0 (5)

u0(u) = P(u) for u > 0
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One should notice that ut(u) is not usually continuous at u = 0 and henceforth
ut(0) =

def
lim u " 0+ ut(u). In our paper, ut(u) serves only as motivation. Our results

concern a smoothed version of ut(u), its Laplace-Carson transform in time,
defined as 

�a(u) = �u(P(UHa
) 1{t $Ha} + p(Ut) 1{t < Ha}) = ae at

0

3 -# ut(u)dt (6)

where Ha is an exponentially distributed random variable with parameter a.
Taking a transform in t of (5), and putting R(u) = l p

0

3# (u – x) f(x)dx, we find
that the Laplace-Carson transform in time of the expected reward satisfies the
integro-differential equation

(c + du) ��a (u) + r us s
2

2 2
+

J

L

K
K

N

P

O
O ��a (u) +

l a
u

0
�# (u – x) f(x)dx – (l + a) �a(u) + R (u) + aP(u) = 0 (7)

�a(0) = p(0–) if s > 0

where the latter formula is implied by the presence of Brownian motion, which
together with u = 0 ensure the immediate crossing of 0 – see for example the
proof of Theorem 2.1. in Paulsen and Gjessing (1997). The object of our study
will be the (7).

Contents: We provide below a unified self-contained treatment of first passage
problems under the general affine rational model (4). As mentioned earlier,
the result applies to all previously considered cases in literature where the par-
ticular case sr = 0 is assumed.

Section 2 presents the solution existence theorem for the main equation (7)
and some useful lemmas. The main theoretical result is contained in section 3,
namely a closed formula for the Laplace transform of the exponentially killed
expected penalty-reward function in Theorem 2. Finally, some examples and
previously obtained cases in literature are revisited in section 4.

2. PRELIMINARY RESULTS

We start with the existence theorem of equation (7). The proof is contained
in the Appendix.

Theorem 1. Let F ! C2[0,3), P(u) and R(u) are bounded for u $ 0 and contin-
uously differentiable on [0,u0) for u0 small enough. Then equation (7) has a solu-
tion �a ! C 2 [0,3).
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Our first result yields an equation for the Laplace transform of the solutions
of (7)

�*
a (s) = e su

0

3 -# du �a(u) (8)

Lemma 1. The Laplace transform of a solution of (7) satisfies for s > 0 the linear
ODE:

r

s sd
s2

- +

J

L

K
K

N

P

O
O �*

a�(s) + r /F ac s s ss s
l2 2

2 2

+ - - -*
J

L

K
K ] N

P

O
Og �*

a (s)

(9)
–�a(0) /F as sl

s
2

2

- -*]` g j ��a(0) + R*(s) + aP*(s) = 0

where R*(s) = e su

0

3 -# R(u)du and P*(s) = e su

0

3 -# P(u)du.

Proof: Taking the Laplace transform in u of the IDE (7) and using 

e su

0

3 -# �a(u)du = a a( ) ( )� �

s
s 0+*

we obtain for s > 0:

c�*
a (s) – d �*

a�(s) + s
2

2

(s�*
a (s) – ��a(0))

rs
2

2

- (�*
a (s) + s�*

a�(s)) + ls –1 f *(s) (�*
a (s) + �a(0))

– (l + a)
a a� �

s
s 0+*J

L

K
K

] ] N

P

O
O

g g
+ R*(s) + aP*(s)

= 0

which yields the result ¬
Let now 

B (s) = d + r s
s
2

2

, A(s) = c + r as
s

s s
2 2

2 2

- -

so that the ODE (9) becomes:

– B (s) �*
a�(s) + Fs sA l- *] ]` g gj �*

a (s) – �a(0) /F as sl +*]` g j
– s

2

2

��a(0) + R*(s) + aP*(s) = 0

Recall that the general solution of the equation �*
a (s)�– C1(s) �*

a (s) + C2(s) = 0

is �*
a (s) = sx e ( )C z dz

2
0

1
3 - x

C# #] g . Since we must solve:
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we find for d > 0 and s > 0 that:

�*
a (s) =

aa
,

F� � a
B x

x R x P x
s x dx

l0 0a
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s

s
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+ + - -3
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] ]` ] ] ] ]g
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(10)

where

Ea(s,x) = s s
dz( ) ( )

( )

F

F a

B z

z A zx
B z

z c z r
z

xl

l s
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2

2
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- + - -

e e

s

=

*

*

2

# #
] ] eg g o

(11)

Before simplifying further this solution, we analyze the behavior of the inte-
grating factor Ea(s,x). We note by using the decomposition

r

r

/a

a

z

c
z

z

c

z
z

d s
s

d
d

d s s

s
s

d
d

r

1

1

a a

a

z
z r

s
d

d

2

2 2
2

2

2

2
2

2

2

2

2

2

-

+

+ - -
= - + +

+

- + + -
=

- + +

+

+ -

s

s

s

s

s

s

2

2

2

2

2

2

r

r

r

r

r

r

^ `

`

h j

j

where r
cds2 2

=
- s

s

2

4
r

r_ i
, that 

s ,m s
m x

a

ac z dzdaz
z

x s
2

2

2 2

1

=
+ - - +

-
s s

e

22
r r

# e e ]]o o gg x > s

and

r

r

r1 + -
s >

m x
e B x x

x e

for

for

s

s

0

0

a

x

x cx

a a

a

s
d d

d d
s1
4

2

=

=

-

- +

2

2

2

2

2
r] e ]

bg o g
l; E

Z

[

\

]
]

]
]

(12)

In conclusion, the integrating factor Ea(s,x) may be written as

Ea(s,x) = m s
m x

a

a dz( )
( )F

B z
zx

e
*

sl #]] gg (13)
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Lemma 2. For a > 0 and d > 0, it holds that:

ma(0) = 0,

in both cases described in (12) and 

m0(0) = lim
s 0"

+
m0(s) =

r

r

>for

for

d s

s

0

1 0

r 1

=

+ 2

2
*

Note: This obvious result will be important later since ma(s) appears in the
denominator of the Laplace transform then, ensuring the analyticity of our
Laplace transform at s = 0 despite the pole introduced by ma(s), will provide
us with a second equation necessary to determine the usual extra boundary
unknowns appearing in the equation determining the Laplace transform.

Lemma 3. Suppose that s > 0, c > 0, s $ 0, sr $ 0, and assume also that c > 2
s 2

r

when s = 0 and sr > 0. Then, the integrating factor Ea(s,x) defined in (11) has
for any e the order of magnitude Ea(s,x) = o(H(x)) when x "3, with H(x)
given by:
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and limx "3 Ea(s,x) = 0.

Proof: We note first that dz( )
( )F
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e
*

sl # is bounded above by a power. Indeed, since
F(x) is a non-increasing function and F(0) = 1, we have F*(z) = e zx3 -

0
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Plugging this in (13), we find the bounds 
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which yield the order of magnitude. The limit follows since the function Ea(s,x)
is positive; the presence of the exponential damping implies that limit is always

zero for s2 > 0, and the same holds when s2 = 0, if r < –1 + c > 2
s 2

r
¬

Notes:

1) The previous work by Sundt & Teugels (1995) (who assumed s = sr = 0)
also made use of the assumption c > 0 (see the end of section 2).

2) In the model without jumps (s = l = 0), the condition c > 2
s 2

r makes the
boundary u = 0 unattainable.

3. THE MAIN RESULT

Theorem 2. a) For any a $ 0, d > 0, c > 0, s > 0 and assuming c > 2
s 2

r in the par-
ticular case s = 0, sr > 0, the Laplace transform �*
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0
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and ma(x) is given by (12).
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b) For s > 0, �a(0) = p(0–) and
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Proof: Simplifying further the equation (10)
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since limx "3 Ea(s,x) = 0 (see Lemma 3 and (13)), we find
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Note that the integrals above are well defined by the bounds obtained in
Lemma 3. For example, when s = 0, sr > 0, the convergence is assured by the
fact that Ea(s,x) may be bounded by a power with exponent which may be
made smaller than –1 for e small enough, and that the remaining fraction
which multiplies it may be bounded by a constant.

Recall now that 
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and finally 
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This yields respectively the two expressions b) and c).
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Using the last expression, clearly
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and (14) can be given by

a

a

�

�

as m s
e

R x P x x e B x
m x

dxv b b

0

a

a
dz

dzs

1 2

( )
( )

( )
( )

F
FB z

zs

B z
zx

= + + - -

-

* * *

*
*0

0
0

-l
l#

#
#] ] ] ]a ]]f

]
g g g g k gg p

g
¬

4. EXAMPLES

Some previous results in literature are now revisited.

4.1. The Gerber-Shiu penalty function

With surplus u = 0, the Laplace transform in time has been called sometimes
the Gerber-Shiu penalty function, see Gerber and Shiu (1998) and Willmot and
Dickson (2003)

a� ae dtu0 0at
t=

3 -

0
#] ]g g

4.2. The expected penalty at ruin

Note that the expected deficit at ruin is also an easy corollary, the penalty at
ruin being p(–u) = u thus

fR u u x x dx x u e dx e

R x
z

l p l m m
l

m m
l

uu

x xm m
= - = - =

=
+

33 - -

*

##] ] ] ]
] ^
g g g g
g h

When a deterministic rate of interest is assumed, sr
2 = 0, and s2 = 0, Cai

and Dickson (2002) obtained the expected penalty at ruin for an infinite time
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horizon. Their expression 3.8 (mind the change in the notation) coincides with
our Theorem 2.c)

v
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4.3. The survival probability

The survival probability, Fa(0), with zero initial reserves can be obtained using
Theorem 2 where P(u) = 1 and p(–u) = 0, u > 0. Since when s2 > 0 the presence
of brownian motion implies trivially F(0) = 0, thus we assume s2 = 0. For a > 0
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In the ultimate case, we find
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The last expression coincides with equation 14 in Sundt and Teugels (1995).
We further consider the ultimate case when sr

2 = 0 using the expression for
F*(s) = e su3 -

0
# duF(u) provided in Theorem 2, we find
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a result previously offered by expression (12) in Sund and Teugels (1995).
The Segerdahl’s formula follows easily from the previous result as proved in the
mentioned reference.
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4.4. The ruin probability for exponential claims

Let us now assume that the claims are exponential

f (z) = me– mz z > 0

F*(x) = ( m + x)–1

and

r1- s2
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where b = l m d2

1

-
-

s 2
re o . We will provide below the probabilities of killed ruin 

(P(u) = 0 and p(–u) = 1, u > 0)

R*(x) = ,xm
l
+ P*(x) = 0

when s2 = 0.
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see expression 3.197.1 in Gradshteyn & Ryzhik (1994) where F(·) is the Gauss’s
hypergeometric function. The Laplace transform is also available, in terms of
Appell hypergeometric functions.
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see expression 13.4.7 in Abramowitz and Stegun (1970).
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APPENDIX

The same thread of Theorem 5 in Gaier & Grandits (2005) shall be followed
in order to prove the existence of a solution of (7). Thus defining y(u) := ��a(u)
we will prove that y ! C 1 [0,3) + L1 + L3 and thus �a ! C2 [0,3). Assuming
F(0) = 1 we can write
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Let us now define

f(y)(u) := �a(0)(lF(u) + a) + y u x
u

0
-# ] g (lF(x) + a) dx + R(u) + aP(u)

where
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where for convenience
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Let us start proving the following lemma,

Lemma 4. For a function h(z) ! C [0,u0] for small u0
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Proof: Let us define
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The result for s > 0 is straightforward. ¬

Step 1. The integral equation above has a solution y ! C [0,u0] for u0 small
enough, using Banach’s Fixed Point Theorem. The operator

zm m um m ,Ty u z e D z dz e D u y uf 1 0 0>
yu

s
1

0
0

1 2 1 2 $= +- - -#] ] ] ]^ ]c ]^ ]g g g gh g m gh g! +

is a selfmapping contraction on the Banach space

x := {y ! C [0,u0 ], y(0)}

for u0 small enough. Using the lemma above for h(u) := f(y)(u)
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the selfmapping proof unfolds. Now for y1, y2 ! x
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and using the previous Lemma for h(z) := z
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is of order O(u) around zero. Thus T is a contraction on x for small enough u0.

Step 2. Let us now prove that the continuous solution y on [0,u0] is continu-
ously differentiable on [0,u0). Notice that the function f(y) is continuously dif-
ferentiable when 

• F ! C 2[0,3)

• P(u) is continuously differentiable on [0,u0)

• R�(u) = l xp
0

3# ] g f (x + u) dx < 3 on [0,u0)
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The following expansion for small u is obtained

f(y)(u) = a0 + a1u + o(u), u # u0

where 
a0 = �a(0) (lF(0) + a) + R(0) + aP(0)

now using the latter in (16) along with the results of Lemma 4 yields
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and y is differentiable and it can also be proved that
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for small valued u. And notice that for s > 0
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Step 3. Differentiating (16), a C1-solution also solves (7).

Step 4. The extension of this local solution to y ! C1 [0,3) is now introduced.
Let us define z(u) := y(u)D(u) and write (16) as a linear Volterra equation of
the second kind
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f1!C [0,3), and f2 is also continuous, assuming that P(u) and R(u) are bounded
on [0,3). Thus

2 2

2

, ,

,

u u f u z z dz f u z z dz
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z z z

z
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u

u

u
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1
0
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0
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f # #

#

] ] ] ] ] ]
] ] ]

g g g g g g
g g g

where g1 and g2 are continuous. The extension is proved using the same argu-
ment presented in Gaier & Grandits (2005) on page 276.

Step 5. The solution y is in L1 + L3. The original function, using (6), can be
given by

H

H
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t

a� �
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u P

P z f z dz
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1 1
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u H H

u H H
U

t t

t t

a a a
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+ -=
3

$

$
-

-

U U

U U#

] _ ^`
_ ^ ]d

g i h j
i h g n

! !
! !

+ +
+ +

(17)

where Ut– is the so-called surplus previous to ruin. Assuming again R(u) and
P(u) are bounded, �a(u) is bounded. Thus the integral �a(u) = y z

u

0
# ] gdz is

bounded and since y ! C1[0,3) the integrand function is also bounded.
The integrability at infinity issue is now addressed. It suffices to prove

limu "3 y(u) = 0
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using integration by parts. Finally we may assume for u large enough �a(u) +
P(u) and
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for two scalars a and b.
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