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THE PENTAGON AS A SUBSTRUCTURE LATTICE OF MODELS
OF PEANO ARITHMETIC

JAMES H. SCHMERL

Abstract. Wilkie proved in 1977 that every countable model M of Peano Arithmetic has an elementary
end extension N such that the interstructure lattice Lt(N/M) is the pentagon lattice N5. This theorem
implies that every countable nonstandardMhas an elementary cofinal extensionN such that Lt(N/M) ∼=
N5. It is proved here that whenever M ≺ N |= PA and Lt(N/M) ∼= N5, then N must be either an end
or a cofinal extension of M. In contrast, there are M∗ ≺ N∗ |= PA∗ such that Lt(N∗/M∗) ∼= N5 and
N∗ is neither an end nor a cofinal extension of M∗.

Throughout, the (possibly adorned) script letters M,N ,K denote models of Peano
Arithmetic (PA) having universes denoted by the (similarly adorned) roman letters
M,N,K , respectively. When we writeM ≺ N , we allow the possibility thatM = N .
As usual, we write M ≺end N if N is an end elementary extension of M (that is,
a < b whenever a ∈M and b ∈ N\M ), and we write M ≺cf N if N is a cofinal
(necessarily elementary) extension of M (that is, for every b ∈ N there is a ∈M
such that b < a). If the elementary extension is neither end nor cofinal, then we say
that it is mixed and write M ≺mix N .

For a model N , its substructure lattice Lt(N ) is the lattice of all those K ≺ N
ordered by ≺. More generally, if M ≺ N , then the interstructure lattice Lt(N/M)
is the sublattice of Lt(N ) consisting of those K in Lt(N ) such that M ≺ K. The
question of which finite lattices can be substructure (or, equivalently, interstructure,
by Corollary 1.2) lattices is discussed in [1, Chapter 4]. It is still unknown whether
there are any finite lattices that are not substructure lattices; however, many lattices
are known to be, among which are all the finite distributive lattices. In fact [1,
Corollary 4.3.8], for any M and any finite distributive lattice D, there is N �end M
such that Lt(N/M) ∼= D.

Recall that a lattice is distributive iff it embeds neither the pentagon lattice N5 nor
the diamond lattice M3, both of which are depicted in Figure 1. A lattice is modular
iff it does not embed N5.

Paris [2] gave, historically, the first example of a substructure lattice that is
not distributive. The following theorem of Wilkie [4] gives the first example of a
substructure lattice that is not modular.
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Figure 1. Lattices N5 and M3.

Theorem 1. For every countableM there isN �end M such that Lt(N/M) ∼= N5.

Incidentally, as proved in [1, Theorem 4.6.5], for every M0 there is M �end M0

for which no N �end M is such that Lt(N/M) ∼= N5. Theorem 1 has the following
corollary. (See Theorem 1.1 for the reason.)

Corollary 2. For every countable and nonstandard M there is N �cf M such
that Lt(N/M) ∼= N5.

It is still unresolved if, for every nonstandard M, there is N �cf M such that
Lt(N/M) ∼= N5. A positive answer would immediately yield a positive answer to
the question [1, Question 2, Chapter 12] if every uncountable model has a minimal
cofinal extension.

Theorem 1 and Corollary 2 together suggest the question of whether the pentagon
lattice can be realized by an elementary mixed extension. It was impetuously stated
in [1, p. 123] that N5 does have such a representation. There was no published proof
at that time, but there was an outline of a proof that later was seen to be flawed.1

Mea culpa! In fact, there are no such extensions. That is the content of the next
theorem, which is our first main result.

Theorem 3. If M ≺mix N , then Lt(N/M) �∼= N5.

Despite Theorem 3, there is a sliver of truth to the claim in [1], as will now be
explained. Let L be one of the usual finite languages in which PA is formulated; to
be definitive, let L = {+,×,≤, 0, 1}. If M is a model and X ⊆M , then L(X ) is
the language that, in addition to L, has constant symbols denoting elements of X ;
in particular, L = L(∅). Let L∗ be the language obtained from L by adjoining to
it the denumerably many new and distinct unary relation symbols U0, U1, U2, ....
Thus, L∗ = L ∪ {Ui : i < �}. Let PA∗ be the L∗-theory of those structures
M∗ = (M, U0, U1, U2, ...), where M |= PA and M∗ satisfies the induction scheme
for all L∗(M )-formulas, where L∗(M ) = L(M ) ∪ L∗. (From now on, M∗,N ∗, ...
always denote models of PA∗ that are expansions of M,N , ..., respectively.) We can
think of PA∗ as a subtheory of PA by identifying PA with PA∗ ∪ {Ui = ∅ : i < �}.
Many concepts, such as interstructure lattices, that concern models of PA extend
in an obvious and natural way to models of PA∗. Also, many results about models

1A referee has asked for a description of the flaw, which, unfortunately, has disappeared from my
memory.
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THE PENTAGONS AND PA 3

of PA, together with their proofs, extend in a straightforward manner to models
of PA∗. Almost all results in [1] do. Theorem 1 and Corollary 2 also do. In other
words, Theorem 1∗ and Corollary 2∗ are valid, where we are adjoining ∗ to indicate
that PA∗ rather than just PA is being considered. But Theorem 3 has the unusual
feature that it does not. The next theorem, our second new result, indicates why.

Theorem 4. Every countable, recursively saturated M has an expansion M∗ for
which there is N ∗ �mix M∗ such that Lt(N ∗/M∗) ∼= N5.

As far as notation and terminology go, we generally follow what is standard or
what can be found in [1].

There are four numbered sections following this introduction. Section 1 contains
some preliminary material much of which is a rehash. Theorem 3 is proved in Section
2. Section 3 is almost purely combinatorial in nature and prepares the way for the
proof of Theorem 4, which is then presented in Section 4.

§1. Ranked lattices and their representations. This section, comprising three
subsections, culminates with a description of how to obtain elementary extensions
realizing a given finite ranked lattice. Section 1.1 repeats some material from
[1, Chapter 4]. Section 1.2 extends Section 1.1 and puts a new perspective on it.
Finally, Section 1.3 extends Section 1.2 from lattices to ranked lattices.

1.1. Representations of lattices. For any set A, let Eq(A) be the lattice of
equivalence relations on A, ordered in such a way that if Θ1,Θ2 ∈ Eq(A), then
Θ1 ≤ Θ2 iff Θ1 ⊆ Θ2 (that is, Θ1 refines Θ2). We let 00A be the discrete equivalence
relation on A (that is, 00A is the equality relation on A) and 11A be the trivial
equivalence relation (that is, 11A = A× A). Thus, for any Θ1,Θ2 ∈ Eq(A), we have
that

00A ≤ Θ1 ≤ 11A

and

Θ1 ∧ Θ2 = Θ1 ∩ Θ2.

If Θ ∈ Eq(A) and B ⊆ A, then Θ ∩ B2 ∈ Eq(B). If f is a function with domain A,
then f induces Θ ∈ Eq(A) if whenever a, b ∈ A, then 〈a, b〉 ∈ Θ iff f(a) = f(b).

Let L be a finite lattice. A representation of L is a one-to-one function α : L −→
Eq(A) such that

α(0L) = 11A,

α(1L) = 00A,

and

α(r ∨ s) = α(r) ∧ α(s)

for each r, s ∈ L. (It is not required that α(r ∧ s) = α(r) ∨ α(s).) We say that α is
finite if A is a finite set. If B ⊆ A, then α|B : L −→ Eq(B) is such that (α|B)(r) =
α(r) ∩ B2 for each r ∈ L. The representation � : L −→ Eq(B) is isomorphic to α
(in symbols: α ∼= �) if there is a bijection f : A −→ B such that for any x, y ∈ A
and r ∈ L, 〈x, y〉 ∈ α(r) iff 〈f(x), f(y)〉 ∈ �(r). If such is the case, then we say that
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f demonstrates that α ∼= � . If α : L −→ Eq(A) is a representation and Θ ∈ Eq(B),
then Θ is canonical (for α) if B ⊆ A and Θ = α(r) ∩ B2 for some r ∈ L.

Suppose that α : L −→ Eq(A) is a representation of the finite lattice L, and B is
a set of representations of L. Then α arrows B (in symbols: α −→ B) if whenever
Θ ∈ Eq(A), then there is B ⊆ A such that Θ ∩ B2 is canonical for α and α|B ∼= �
for some � ∈ B. We usually write α −→ � instead of α −→ {�}.

We next define, by recursion on n < �, when the representation α : L −→ Eq(A)
of the finite lattice L has the n-canonical partition property (or, briefly, is n-CPP).
First, α is 0-CPP if for every r ∈ L, there do not exist exactly 2 α(r)-classes; next, α
is (n + 1)-CPP if there is a set B of n-CPP representations of L such that α −→ B.

GivenM, we say that a representationα of a finite lattice L is anM-representation
if it is M-definable. Also, if A ∈ Def(M), then we let EqM(A) be the set of
those Θ ∈ Eq(A) that are definable in M. All the definitions in this subsection
up to this point make sense when interpreted in a model M and are applied
just to M-representations. In particular, it makes sense to refer to an M-finite
M-representation α as being a-CPP for a ∈M . Thus, for every finite lattice L,
there is a Σ1 formula cppL(x) such that for any M and a ∈M , M |= cppL(a) iff
there is an M-finite M-representation of L that M thinks is a-CPP. The following
theorem can be found in [1, Chapter 4] or [3].

Theorem 1.1. Let L be a finite lattice and M be a nonstandard, countable model.
The following are equivalent:

(1) There are N0 � M0 ≡ M such that Lt(N0/M0) ∼= L.
(2) For every n < �, M |= cppL(n).
(3) There is N �cf M such that Lt(N/M) ∼= L.

Notice that Corollary 2 follows from Theorem 1 and (1) =⇒ (3) of the previous
theorem.

Corollary 1.2. If L is a finite lattice, then the following are equivalent:
(1) There is N such that Lt(N ) ∼= L.
(2) There are M ≺ N such that Lt(N/M) ∼= L.

Proof. Obviously, (1) =⇒ (2) by lettingMbe the prime elementary submodel of
N . The converse (2) =⇒ (1) follows from Theorem 1.1 as long as M is not a model
of True Arithmetic (TA) and so its prime elementary submodel is nonstandard. IfM
is a model of TA, then by (1) =⇒ (2) of Theorem 1.1, M |= cppL(n) for all n < �.
SinceTA is undecidable, there is a prime, nonstandardM0 such thatM0 |= cppL(n)
for all n < �. Then by (1) =⇒ (2) of Theorem 1.1, there is N0 �cf M0 such that
Lt(N0) = Lt(N0/M0) ∼= L. �

1.2. Correct sets of representations. This subsection consists of a definition
followed by a theorem generalizing Theorem 1.1.

Definition 1.3. Let M be a model and L be a finite lattice. We say that C is an
M-correct set of representations of L if each of the following holds.

(1) C is a nonempty set of 0-CPP M-representations of L.
(2) Whenever α : L −→ Eq(A) is in C and Θ ∈ EqM(A), then there is a B ⊆ A

such that α|B ∈ C and Θ ∩ B2 is canonical for α.
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Here is an example. Suppose that M is nonstandard and that M |= cppL(n) for
every n < �. Let C be the set of those M-finite M-representations α of L such that,
for some nonstandard n ∈M , M thinks that α is n-CPP. Then, C is M-correct.
With this example, we see that the following theorem generalizes a good portion
of Theorem 1.1. It is a consequence of Theorem 1.1 when M is countable and
nonstandard.

Theorem 1.4. Suppose that M is a model and L is a finite lattice.

(1) If there is N � M such that Lt(N/M) ∼= L, then there is an M-correct set of
representations of L.

(2) If M is countable and there is an M-correct set of representations of L, then
there is N � M such that Lt(N/M) ∼= L.

Proof. (1) Suppose that N � M and that F : L −→ Lt(N/M) is an isomor-
phism. Let f : L −→ N be such that for r ∈ L, f(r) generates F (r) over M. Let
a = f(1L).

For each pair of elements r, s ∈ L, let gr,s : N −→ N and hr,s : N 2 −→ N be
functions that are N -definable using parameters only from M such that

• gr,s(f(r ∨ s)) = f(r),
• hr,s (f(r), f(s)) = f(r ∨ s).

The functions gr,s exist since f(r) ∈ F (r ∨ s); the functions hr,s exist for a similar
reason. Let gr = gr,1, so that gr(a) = f(r). In particular, g1(a) = a. The two
equalities above become

• gr,s(gr∨s (a)) = gr(a),
• hr,s (gr(a), gs (a)) = gr∨s (a).

For each X ∈ Def(M), let αX : L −→ Eq(X ) be such that whenever r ∈ L, then
αX (r) is the equivalence relation in Eq(X ) induced by gr�X . Let B be the set of all
x ∈M such that

• gr,s(gr∨s (x)) = gr(x),
• hr,s (gr(x), gs (x)) = gr∨s (x),
• g1(x) = x.

Clearly, B ∈ Def(M) and a ∈ BN . We claim that αB is an M-representation of L.
But even more is true. If X ⊆ B , X ∈ Def(M) and a ∈ XN , then αX = αB |X .

We now claim that each such αX is an M-representation of L.
First, αX is one-to-one. For, suppose that r, s ∈ L and αX (r) = αX (s). Then,

gr�X and gs�X induce the same equivalence relations on X. It follows that there are
M-definable functions e0, e1 :M −→M such that for all x ∈ X , e0(gr(x)) =
gs(x) and e1(gs(x)) = gr(x). But then eN0 (gr(a)) = gs(a) and eN1 (gs(a)) = gr(a),
implying that F (r) = F (s) and, therefore, r = s .

Next, to prove that each αX is a representation of L, it is enough to show that
αB is.

For all x ∈ B , g0(x) = f(0) and g1(x) = x, so αB(0) is trivial and αB(1) is
discrete. Finally, we show that if r, s ∈ L, then αB(r ∨ s) = αB(r) ∧ αB(s). To do so,
we let x, y ∈ X , and then show that 〈x, y〉 ∈ αB(r ∨ s) ⇐⇒ 〈x, y〉 ∈ αB(r) ∩ αB(s).
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〈x, y〉 ∈ αB(r ∨ s) ⇒ gr∨s(x) = gr∨s(y)

⇒ gr,s(gr∨s(x)) = gr,s(gr∨s(y))

⇒ gr(x) = gr(y)

⇒ 〈x, y〉 ∈ αB(r).

Similarly, 〈x, y〉 ∈ αB(r ∨ s) ⇒ 〈x, y〉 ∈ αB(s). Conversely,

〈x, y〉 ∈ αB(r) ∩ αB(s) ⇒ gr(x) = gr(y) & gs(x) = gs(y)

⇒ hr,s(gr(x), gs(x)) = hr,s(gr(y), gs(y))

⇒ gr∨s(x) = gr∨s(y)

⇒ 〈x, y〉 ∈ αB(r ∨ s).

Having that each αX is a representation of L, we easily see that it is 0-CPP. For if X
is partitioned intoY,Z ∈ Def(M), then either a ∈ YN or a ∈ ZN , but nodoubling
both.

Now let C be the set of all such αX ; that is,

C = {αX : X ⊆ B,X ∈ Def(M), a ∈ XN }.

We have just seen that C is a nonempty set of 0-CPP M-representations of L,
so that (1) of Definition 1.3 is verified. We prove (2) of Definition 1.3. Consider
αX ∈ C. Let Θ ∈ Eq(X ) be M-definable. Define m : X −→ X so that if x ∈ X ,
then m(x) = min([x]Θ). Let r ∈ L be such that mN (a) generates F (r) over M.
There are functions e0, e1 : N −→ N that are N -definable but using parameters
only from M such that e0(mN (a)) = gr(a) and e1(gr(a)) = mN (a). Let Y = {x ∈
X : e0(mN (x)) = gr(x) and e1(gr(x)) = mN (x)}. Then m�Y induces αY (r). This
completes the proof of (1).

(2) Since C �= ∅, let α : L −→ Eq(A) be in C. Let Θ0,Θ1,Θ2, ... enumerate all
M-definable equivalence relations on M. By recursion, obtain a sequence X0 ⊇
X1 ⊇ X2 ⊇ ··· of sets in Def(M) as follows. Let X0 = A. Suppose that we have
Xn and that α|Xn ∈ C. Let Xn+1 ⊆ Xn be such that α|Xn+1 ∈ C and Θn ∩ X 2

n+1 is
canonical for α. The Xn’s generate a complete type over M (using that each α|Xn is
0-CPP). Let N be an elementary extension of M generated by an element a realizing
this type.

For each r ∈ L, let tr :M −→M be M-definable such that whenever x ∈ X0,
then tr(x) = min([x]α(r)). Define the function F on L so that if r ∈ L, then F (r) is
the elementary substructure of N generated by tNr (a) over M. One easily checks
that F : L −→ Lt(N/M) is an isomorphism. �

1.3. Ranked lattices. To refine the notions of end/cofinal/mixed extensions, we
appeal to rankings of lattices [1, Definition 4.2.6]. Suppose that L is a finite lattice.
A function � : L −→ L is a ranking of L if for each r, s ∈ L:

(1) �(r) ≥ r,
(2) �(�(r)) = �(r),
(3) �(r) ≤ �(s) or �(s) ≤ �(r),
(4) �(r ∨ s) = �(r) ∨ �(s).
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Figure 2. Four ranked pentagon lattices.

A ranking � of L uniquely determines, and is uniquely determined by, its rankset
{�(r) : r ∈ L}. If L is finite and R ⊆ L, then R is a rankset iff R is linearly ordered
and 1L ∈ R. If � is a ranking of L, then (L, �) is a ranked lattice.

If M ≺ N and Lt(N/M) is finite, then let � : Lt(N/M) −→ Lt(N/M) be such
that if K ∈ Lt(N/M), then �(K) is uniquely defined by

K ≺cf �(K) ≺end N .

One easily verifies that � is a ranking of Lt(N/M). We let Ltr(N/M) be the ranked
lattice (Lt(N/M), �).

Suppose that � is a ranking of the finite lattice L. Then � is an end ranking if
�(0L) = 0L, a cofinal ranking if �(0L) = 1L and a mixed ranking if 0L < �(0L) < 1L.
Obviously, L has a unique cofinal ranking. If � is an end, cofinal, or mixed ranking,
then (L, �) is, respectively, an end, cofinal, or mixed ranked lattice. These definitions
are appropriate: if Ltr(N/M) is an end, cofinal, or mixed ranked lattice, then N is,
respectively, an end, cofinal, or mixed extension of M.

Of the 10 rankings of N5, four are depicted in Figure 2 by letting • denote those
points in the rankset and ◦ those that are not. Of all the ranked pentagons, the four
in Figure 2 are the most important for us because of the following.

Henceforth, we use the labeling of N5 as given in Figure 1.

Proposition 1.5. If M ≺ N and Ltr(N/M) ∼= (N5, �), then � = �i for some
i ≤ 3.

Proof. We first show that �(c) = 1. If �(c) �= 1, then �(c) = c. We apply the
Gaifman Condition [1, Proposition 4.2.12] by letting x = a, y = b, and z = c, to
get the contradiction that a = b.

If �(0) = 1, then � = �0. So, assume that �(0) < 1. Since �(c) = 1 and c ∧ b = 0,
it follows from the Blass Condition [1, Proposition 4.2.7] that �(b) = b.
Finally, �(0) �= b by [1, Theorem 4.6.1]. Thus, �(0) ∈ {0, a}, so it must be that
� ∈ {�1, �2, �3}. �

We make some comments about this proposition. First, Proposition 1.5∗ is also
valid. Theorem 1 can now be restated as: For all countableM there are i ∈ {1, 2} and
N � M such that Ltr(N/M) ∼= (N5, �i). In fact, Wilkie’s proof of Theorem 1 yields
that i = 1. A similar proof shows that for every countable M there is N �end M
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such that Ltr(N/M) ∼= (N5, �2). Since �3 is the only mixed ranking of the four in
Figure 2, then in Theorem 4 we get N ∗ such that Ltr(N ∗/M∗) ∼= (N5, �3).

The next order of business is to generalize Definition 1.3 and Theorem 1.4 from
lattices to ranked lattices.

First, we need some terminology. Suppose that M is a model, A ∈ Def(M), and
Θ ∈ EqM(A). We say that a set E of Θ-classes is M-bounded if there is a bounded
I ∈ Def(M) such that I ∩ X �= ∅ for each X ∈ E .

If (L, �) is a finite ranked lattice, then a representation α of L is a representation
of (L, �) if whenever r ≤ s ∈ L, then s ≤ �(r) iff every α(r)-class is the union of a
finite set of α(s)-classes. This definition should help motivate the next definition.

Definition 1.6. Let M be a model and (L, �) a finite ranked lattice.
(1) A representation α : L −→ Eq(A) is an M-representation of (L, �) if α is an

M-representation of L and whenever r ≤ s ∈ L, then s ≤ �(r) iff every α(r)-class
is the union of an M-bounded set of α(s)-classes.

(2) We say that C is an M-correct set of representations of (L, �) if C is an
M-correct set of representations of L and each α ∈ C is an M-representation of
(L, �).

We next generalize Theorem 1.4 from lattices to ranked lattices.

Theorem 1.7. Suppose that M is a model and (L, �) is a finite ranked lattice.

(1) If there is N � M such that Ltr(N/M) ∼= (L, �), then there is an M-correct
set of representations of (L, �).

(2) If M is countable and there is an M-correct set of representations of (L, �),
then there is N � M such that Ltr(N/M) ∼= (L, �).

Proof. (1) Obtain C as in the proof of Theorem 1.4(1), so that C is an M-correct
set of representations of L. If α : L −→ Eq(A) is in C, r ≤ s but not s ≤ �(r),
then there is some α(r)-class that is not the union of an M-bounded set of α(s)-
classes. (For, otherwise, there would be an M-definable function b :M −→M
such that b(f(r)) ≥ f(s).) However, it could be that r ≤ s ≤ �(r) and some α(r)-
class is not the union of an M-bounded set of α(s)-classes. Let C0 be the set of
those α ∈ C that are M-representations of (L, �). We will show that this C0 is an
M-correct set of representations of (L, �). To see this, it suffices to show that for
each α : L −→ Eq(A) in C, there is B ⊆ A such that α|B ∈ C0.

Suppose that we have α : L −→ Eq(A) in C and that r ≤ s ≤ �(r). Partition A
into two sets A0, A1, so that A0 is the union of those α(r)-classes that are the union
of an M-bounded set of α(s)-classes. Since C is M-correct, then either α|A0 ∈ C or
α|A1 ∈ C. By what was previously said, the latter option is impossible, so we have
that α|A0 ∈ C. Repeating this for all such r, s ∈ L, finally yields B ⊆ A as required.
This completes the proof of (1).

(2) Let C be an M-correct set of representations of (L, �). Then C is an
M-correct set of representations of L, so we can obtain N � M as in the proof of
Theorem 1.4(2). Then Lt(N/M) ∼= L.

We use the notation from the proof of Theorem 1.4(2). Thus, F : L −→
Lt(N/M) is an isomorphism and F (r) is generated by tr(a) over M. We prove that
F is also an isomorphism of the ranked lattices (L, �) and Ltr(N/M). It suffices to
prove: whenever r < s ∈ L, then s ≤ �(r) iff F (r) ≺cf F (s). So, let r < s ∈ L.
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(=⇒): Suppose that s ≤ �(r). Consider α ∈ C. Every α(r)-class is the union of an
M-bounded set of α(s)-classes. Let g :M −→M be an M-definable function such
that if x ∈ X , then g(x) = max{ts(y) : 〈x, y〉 ∈ α(r)}. Clearly, g(x) is well defined
for x ∈ X , so there is such an M-definable g. Thus, g(tr(x)) ≥ ts(x) for all x ∈ X ,
so that gN (tNr (a)) ≥ tNs (a). Therefore, F (r) ≺cf F (s).

(⇐=): Suppose that F (r) ≺cf F (s). Then there is an M-definable g :M −→M
such that gN (tNr (a)) ≥ tNs (a). There isXi such that g(tr(x)) ≥ ts(x) for all x ∈ Xi .
Let αi = α|Xi ∈ C. Thus, each αi(r)-class is the union of an M-bounded set of
αi(s)-classes. Then s ≤ �(r). �

Wilkie’s proof of Theorem 1 made implicit use of Theorem 1.7(2).

§2. Proving Theorem 3. This section is devoted to proving Theorem 3.
With the idea of obtaining a contradiction, assume that M ≺mix N and that

Lt(N/M) ∼= N5. Proposition 1.4 implies that Ltr(N/M) ∼= (N5, �3). Following
Theorem 1.7(1), we let C be an M-correct set of representations of (N5, �3). In the
course of this proof, we will see that C must have certain properties. We will also see
that there are other properties that C possibly could have, and we will then assume
that C does have these properties.

Since C �= ∅, fix some α ∈ C. Thus, α : N5 −→ Eq(A). We can assume:

(C1) For every � ∈ C, there is B ⊆ A such that � = α|B .

Since a ∨ c = 1, then α(a) ∩ α(c) = 00A; therefore, whenever X is an α(a)-class
and Z is an α(c)-class, then |X ∩ Z| ≤ 1. Since 0 < a = �3(0), then, according to
Definition 1.6, the set of α(a)-classes is M-bounded; let n + 1 ∈M be the number
of α(a)-classes according to M. Then, we can assume:

(C2) α : N5 −→ Eq(A), whereA = [0, n] ×M and n is nonstandard, is such that
if 〈i, j〉, 〈i ′, j′〉 ∈ A, then〈

〈i, j〉, 〈i ′, j′〉
〉
∈ α(a) iff i = i ′,

〈
〈i, j〉, 〈i ′, j′〉

〉
∈ α(c) iff j = j′.

At first, it may look as if we can only assume that A ⊆ [0, n] ×M . But it is always
possible to enlarge the set A so as to get [0, n] ×M .

For just this proof, let us say that the M-representation � of N5 is rectangular
if |X ∩ Z| = 1 for each �(a)-class X and �(c)-class Z. We see from (C2) that α is
rectangular. We can even assume:

(C3) Every � ∈ C is a rectangular representation.

To see why, let C0 be the set of those rectangular M-representations � , where
B ⊆ A and� = α|B , for which there isA0 ⊆ B such thatα|A0 ∈ C. To prove that this
C0 is anM-correct set of representations of (N5, �3), it suffices to prove that ifA1 ⊆ A
and α|A1 ∈ C, then there is B ⊆ A1 such that α|B ∈ C0. To prove this, consider
some α1 = α|A1 ∈ C. Define Θ ∈ Eq(A1) so that if y, z ∈ A1, then 〈y, z〉 ∈ Θ iff
the following holds for each α1(a)-class X : there is u ∈ X such that 〈u, y〉 ∈ α1(c)
iff there is v ∈ X such that 〈v, z〉 ∈ α1(c). Clearly, α1(c) ⊆ Θ ∈ Eq(A1). Since C is
M-correct, there are A0 ⊆ A1 and r ∈ {0, c} such that α|A0 ∈ C and α1(r) ∩ A2

0 =
Θ ∩ A2

0. The number of Θ-classes is at most 2n+1, so it must be that r = 0. Let
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B be the union of those α1(c)-classes that have a nonempty intersection with A0.
Then A0 ⊆ B ⊆ A1 and � = α|B ∈ C0. This proves that C0 is an M-correct set of
rectangular representations of (N5, �3), so we can assume (C3).

Moreover, we can also assume:

(C4) If I ⊆ I ′ ⊆ [0, n], J ⊆ J ′ ⊆M , and α|(I × J ) ∈ C, then α|(I ′ × J ′) ∈ C.

Working in M, let 〈Bk : k ∈M 〉 be a one-to-one enumeration of all α(b)-classes.
Thus, we let �(u, v) be an L(M )-formula such that

M |= ∀u, v[�(u, v) ↔ v ∈ Bu].

We also let q : [0, n] ×M −→M be such that if 〈i, j〉 ∈ A, then q(i, j) = k, where
〈i, j〉 ∈ Bk .

If � : N5 −→ Eq(X ) is in C and p ∈M , then there is X ′ ⊆ X such that � |X ′ ∈ C
and if Bk ∩ X ′ �= ∅, then k > p. To see why, just consider Θ ∈ Eq(X ) such that⋃
{Bk ∩ X : k > p} is a Θ-class and then apply Definitions 1.3 and 1.6.
For each j ∈M , there is a (unique) permutation �j of [0, n] defined by the

following condition: if i, i ′ ≤ n, then �j(i) ≤ �j(i ′) iff q(i, j) ≤ q(I ′, j). Using these
permutations, we define Ψ ∈ Eq(A) so that

〈
〈i, j〉, 〈i ′, j′〉

〉
∈ Ψ iff �j = �j′ . Clearly,

�(c) ⊆ Ψ and the set of Ψ-classes is M-bounded as M thinks that there are no
more than (n + 1)! Ψ-classes. Thus, there are I × J ⊆ [0, n] ×M = A and � such
that α|(I × J ) ∈ C and �j = � whenever 〈i, j〉 ∈ I × J . Without loss of generality,
we assume that J =M and that � is the identity permutation. Thus, we can assume:

(C5) A = I × J = [0, n] ×M , and if i, i ′ ≤ n and j ∈M , then

i ≤ i ′ iff q(i, j) ≤ q(i ′, j).

We now have that C is an M-correct set of representations of (N5, �3) satisfying
(C1)–(C5).

With (C5) in mind, we make a couple of definitions concerning a � ∈ C, where
� : N5 −→ Eq(I × J ). Suppose that X and Y are�(b)-classes. We say that X is below
Y if there are i, i ′ ∈ I and j ∈ J such that 〈i, j〉 ∈ X , 〈i ′, j〉 ∈ Y , and i < i ′. If X is
below Y, then Y is above X. Thus, (C5) says: If Bk is below Bk′ (as α(b)-classes),
then k < k′. The following is a consequence of (C5):

(C6) For each α(b)-class, the set of α(b)-classes below it is M-bounded.

We next show that it can be assumed that α : N5 −→ Eq(A) has a very specific
form. Recall that if d ∈M , thenMd is the set (of codes) of all definable sequences of
length d. For a given d ∈M , with d > 0, we will think ofMd =M . Also, t ∈Md
and i < d , then ti is the i-th element of the sequence coded by t. If t ∈Md and
e ≤ d , then t�e is the (code of) the sequence of length e whose i-th element is the
same as the i-th element of t.

We can assume the following, which improves on (C2):

(C7) α : N5 −→ Eq(A), where A = [0, n] ×Mn, such that, in addition to (C2),
we have if 〈i, t〉, 〈i ′, t′〉 ∈ A, then〈

〈i, t〉, 〈i ′, t′〉
〉
∈ α(b) iff i = i ′ and t�i = t′�i ′.
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Letα and A be, for now, as in (C2). Let G be a function on A such that if 〈i, j〉 ∈ A,
then

G(〈i, j〉) = {q(i ′, j) : i ′ ≤ i}.

Then G is definable in M. Let Θ ∈ Eq(A) be induced by G. We easily see that
Θ ⊆ α(b). Thus, there is a definable X ⊆ A such that X = I × J , α�X ∈ C and
α(r) ∩ X 2 = Θ ∩ X 2 for some r ∈ N5, with r ≥ b. From (C6) we get that r = b. We
then see that if j ∈ J , i, i ′ ∈ I and i < i ′, then Bq(i,j) ∩ X ⊇ Bq(i′,j). It then follows
that we can also assume (C7).

A consequence of (C7) is that α and q are defined by Σ0 L({n})-formulas.
We saw in (C3) that every � ∈ C is rectangular. We also can assume the following:

(C8) If � = α|(I × J ) ∈ C, then {min(I )} × J is a �(b)-class.

To see why, suppose that � = α|(I × J ) ∈ C and {min(I )} × J is not a �(b)-class.
Let Θ ∈ Eq(I × J ) be such that and if 〈i, j〉, 〈i ′, j′〉 ∈ I × J , then

〈
〈i, j〉, 〈i ′, j′〉

〉
∈ Θ

iff
〈
〈min(I ), j〉, 〈min(I ), j′〉

〉
∈ �(b). Clearly, Θ ∈ EqM(I × J ). Let X ⊆ I × J be

such that � |X ∈ C and for some r ∈ N5, Θ ∩ X 2 = �(r) ∩ X 2. It must be that r = 0,
so there is a �(b)-class B such that X ⊆ B × J . Then, we can assume that � �∈ C
and that � |(B × J ) ∈ C.

We will refer to the �(b)-class from (C8) as the root of � .

Corollary 2.1. For each � ∈ C, there is a �(b)-class X having an M-unbounded
set of �(b)-classes above it.

Proof. In fact, the root is such �(b)-class. �

Corollary 2.2. If � : N5 −→ Eq(X ) is in C and p ∈M , then there isY ⊆ X such
that � |Y ∈ C and if 〈i, j〉 ∈ Y , then q(i, j) > p.

Proof. Consider Θ ∈ Eq(X ) such that for 〈i, j〉, 〈i ′, j′〉 ∈ X , then
〈
〈i, j〉,

〈i ′, j′〉
〉
∈ Θ iff q(i, j) > p ⇐⇒ q(i ′, j′) > p. Then apply Corollary 2.1. �

Consider some � : N5 −→ Eq(X ) in C, where X = I × J ⊆ [0, n] ×M . For each
m < �, we say that � is m-thick if whenever f :M −→M is definable, then there
are i0, i1, ... , im ∈ I and j ∈ J such that f(q(ik, j)) < q(ik+1, j) for each k < m.

Lemma 2.3. If m < �, then every � ∈ C is m-thick.

Proof. Notice that every � ∈ C is vacuously 0-thick.
First, we show that every � : N5 −→ Eq(B) in C is 1-thick. By Corollary 2.1, there

is a �(b)-class B ∩ Bk0 having an M-unbounded set of �(b)-classes above it. Thus,
for anyM-definablef :M −→M , there is a �(b)-classB ∩ Bk1 aboveB ∩ Bk0 such
that f(k0) < k1. Let i0, i1, j be such that 〈i0, j〉 ∈ B ∩ Bk0 and 〈i1, j〉 ∈ B ∩ Bk1 .
Then f(q(i0, j)) = k0 < k1 = q(i1, j).

Next, we assume that 1 < m < �. We will prove that every � ∈ C is m-thick.
Actually, we will prove something even stronger:

If � : N5 −→ Eq(B) is in C and f :M −→M is definable, then
there is I × J ⊆ B such that � |(I × J ) ∈ C and whenever i, i ′ ∈ I ,
j ∈ J and i < i ′, then f(q(i, j)) < q(i ′, j).
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To prove this, suppose that � : N5 −→ Eq(B) is in C and f :M −→M is definable.
We assume thatB = I0 × J0 and, without loss, that whenever i < i ′ ∈M , then, then
max(i ′, f(i)) < f(i ′).

We will obtain I and J in two steps.
In the first step, for each j ∈ J0, let Rj ⊆ I 2

0 be such that if 〈i, i ′〉 ∈ I 2
0 , then

〈i, i ′〉 ∈ Rj iff f(q(i, j)) < q(i ′, j).

Let Θ0 ∈ Eq(B) be such that if i, i ′ ∈ I0 and j, j′ ∈ J0, then〈
〈i, j〉, 〈i ′, j′〉

〉
∈ Θ0 iff Rj = Rj′ .

Obviously, �(c) ⊆ Θ0 ∈ EqM(B) and the set of Θ0-classes is M-bounded. Thus,
there is B1 = I1 × J1 ⊆ B such that � |B1 ∈ C and Θ0 ∩ B2

1 is trivial. Notice that if
j, j′ ∈ J1, then Rj ∩ I 2

1 = Rj′ ∩ I 2
1 . For some (or all) j ∈ J1, let R = Rj ∩ I 2

1 .
For the second step, define Θ1 ∈ Eq(B1) so that if i, i ′ ∈ I1 and j, j′ ∈ J1, then〈

〈i, j〉, 〈i ′, j′〉
〉
∈ Θ1 iff {k ∈ I1 : 〈i, k〉 ∈ R} = {k ∈ I1 : 〈i ′, k〉 ∈ R}.

Obviously, (� |B1)(a) ⊆ Θ1 ∈ EqM(B1). Thus, there is B2 = I × J ⊆ B1 such that
� |B2 ∈ C and Θ1 ∩ B2

2 ∈ {�(a) ∩ B2
2 , �(0) ∩ B2

2}.
We show that Θ1 ∩ B2

2 �= �(0) ∩ B2
2 . Assume to the contrary that Θ1 ∩ B2

2 =
�(0) ∩ B2

2 . Then, whenever i, i ′ ∈ I and i < i ′, then f(q(i, j)) ≥ f(q(i ′, j)). But
then � |((I \max(I )) × J ) is in C but is not 1-thick, which is a contradiction.

Therefore, Θ1 ∩ B2
2 = �(0) ∩ B2

2 . It then follows that I × J has the desired
property. �

Lemma 2.3 implies a strengthening of itself via Corollary 2.2.

Corollary 2.4. Suppose thatm < �, p ∈M , � : N5 −→ Eq(X ) in C, whereX =
I × J , and f :M −→M is definable. Then there are i0, i1, ... , im ∈ I and j ∈ J such
that q(i0, j) > p and f(q(ik, j)) < q(ik+1, j) for each k < m.

We need some more notation and terminology. Recall that a cut K (of M) is
a subset of M such that 0 ∈ K �=M and that x + 1 ∈ K whenever x ≤ y ∈ K . If
m < �, then the cut K is Σm-closed iff whenever ϕ(x) is a Σm L(K)-formula and
M |= ∃xϕ(x), then there is d ∈ K such that M |= ϕ(d ). If K is a Σ0-closed cut and
ϕ is an L(K)-formula, then �ϕ�, the Gödel number of ϕ, is in K.

Also, recall that α : N5 −→ Eq(A), A = [0, n] ×M and 〈Bk : k ∈M 〉 is a
definable, one-to-one enumeration of the α(b)-classes (as defined a few lines after
(C3)).

We work in M. For each k ≤ n, let Λk be the set of all prenex L(M )-sentences 

having length at most n and having the form


 = Q1x1Q2x2 ···Qixi ···Q�x�ϕ(x), (∗)

where � < k, each Qi is either ∃ or ∀ and ϕ(x) is a Σ0 formula. If � < k ≤ n, then
Λ� ⊆ Λk . Let Λ = Λn =

⋃
k≤n Λk . If � < n, t = 〈t0, t1, ... , t�〉 ∈ [0, n]�+1, j ∈M ,

and 
 ∈ Λ as in (∗), let


(t,j) = Q1x1 ≤ q(t1, j)Q2x2 ≤ q(t2, j) ···Q�x� ≤ q(t� , j)ϕ(x). (∗∗)
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There is an L({n})-formula, call it ϕ0(x), such that for every standard 
 ∈ Λ and
each t and j as in (∗∗),

M |= ϕ0(�
(t,j)�) ↔ 
(t,j). (1)

Let g :M −→M be an increasing, L({n})-definable function that is sufficiently
fast-growing in the following sense: whenever a ∈M , then there is a Σ0-closed cut K
such that {n, a} ⊆ K ⊆ [0, g(a)]. (There is such a g since n is nonstandard.) Notice
that g(0) > nn; in particular, g(0) > nk for every k < �.

Continue working in M. Define F : A −→M so that if 〈i, j〉 ∈ A, then F (〈i, j〉)
is the set of all pairs 〈t, 
〉 such that for some � < n and t ∈ [0, n]�+1, t0 = i , 

is an L([0, g(q(i, j)]) in Λ (as in (∗)) and that 
(t,j) is true. Let Θ ∈ Eq(A) be
induced by F. It is clear that if

〈
〈i, j〉, 〈i ′, j′〉

〉
�∈ α(b), then F (〈i, j〉) �= F (〈i, j〉)

so that
〈
〈i, j〉, 〈i ′, j′〉

〉
�∈ Θ. Thus, Θ ⊆ α(b). On the other hand, if Bk is an α(b)-

class, then the set of possible F (〈i, j〉) for 〈i, j〉 ∈ Bk is M-bounded. Thus, there is
B = I × J ⊆ A such that α|B is in C and α(b) ∩ B2 = Θ ∩ B2. Let � = α|B .

By Lemma 2.3, there are j ∈ J , a sufficiently large � < �, t = 〈t0, t1, ... , t�〉 ∈ I �+1

and a sufficiently fast-growing, definable f :M −→M such that f(q(tk, j)) <
q(tk+1, j). By “sufficiently,” we mean that for every standard Σ� L([0, g(q(t0, j))])-
sentence in Λ, we have that

M |= 
 ↔ 
(t,j). (2)

Thus, it follows from (1) and (2) that for each such 
, that

M |= ϕ0(�
(t,j)�) ↔ 
. (3)

Now let K be the smallest Σ0-closed cut such that n, q(t0, j) ∈ K . Thus we have that
K ⊆ [0, g(q(t0, j))]. From (3), we get that there is a Σ� L(K)-formula ϕ(x) such
that for every Σ�–1 L(K)-sentence 
,

M |= ϕ(�
�) ↔ 
. (4)

But the existence of ϕ(x) in (4) contradicts the following version of Tarski’s
Theorem on the undefinability of truth, which is an immediate consequence of
Gödel’s Diagonalization Lemma.

Theorem 2.5. Suppose that 1 ≤ m < �, K ⊆M is a Σ0-closed cut, and ϕ(u) is
an L(K)-formula such that for each Σm L(K)-sentence 
, M |= ϕ(�
�) ↔ 
. Then
ϕ(u) is not a Πm formula.

This contradiction completes the proof of Theorem 3.

§3. Representations of N5. For almost all of this section, we ignore PA and
concentrate just on representations of N5. Only in the first and last paragraphs
is PA considered.

Caveat lector: In the next definition, and throughout this paper, �n is not an
ordinal but is the set of n-tuples of natural numbers. If s ∈ �n and i < n, then si
is the i-th element of s. Also, remember that if n < �, then n = {0, 1, ... , n – 1}. If
s ∈ �n and i < m ≤ n, then s�m ∈ �m and (s�m)i = si .
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Definition 3.1. For n < �, letAn = (n + 2) × �n+1 and then define αn : N5 −→
Eq(An) so that αn(0) is trivial, αn(1) is discrete, and whenever i, j ≤ n + 1 and
s, t ∈ �n+1, then

•
〈
〈i, s〉, 〈j, t〉

〉
∈ αn(a) iff i = j;

•
〈
〈i, s〉, 〈j, t〉

〉
∈ αn(b) iff i = j and s�i = t�j;

•
〈
〈i, s〉, 〈j, t〉

〉
∈ αn(c) iff s = t.

It is clear that eachαn is a representation of N5 and that, if n ≥ 1, thenαn is 0-CPP.
(The representation α0 is not 0-CPP because there are exactly 2 α0(a)-classes.) If
n < �, then αn(b) ∩ ({0} × �n+1)2 is trivial whereas αn(b) ∩ ({n + 1} × �n+1)2 is
discrete.

Lemma 3.2. Suppose thatm ≤ n < � and that I ⊆ n + 2 is such that |I | = m + 2.
Then there is D ⊆ �n+1 such that αm ∼= αn|(I ×D).

Proof. Suppose that m, n, I are as given. Let im+1 = max(I ) and I \{im+1} =
{i0, i1, ... , im}, where i0 < i1 < ··· < im. We consider separately the two cases:
im+1 < n + 1 and im+1 = n + 1.

First, suppose that im+1 < n + 1.

D = {t ∈ �n+1 : ti = 0 whenever i = im+1 or i ∈ (n + 1)\I }.

We show that αm ∼= αn|(I ×D). Let h : (m + 2) × �m+1 −→ (n + 2) × �n+1 be
such that if 〈j, s〉 ∈ (m + 2) × �m+1, then h(〈j, s〉) = 〈ij , t〉, where t ∈ �n+1 and

tk =

{
sj, if j ≤ m and ij = k,
0, otherwise,

for all k ≤ n. One easily verifies that h : (m + 2) × �m+1 −→ I ×D is a bijection
and that whenever 〈j, s〉, 〈j′, s ′〉 ∈ (m + 2) × �m+1 and r ∈ N5, then〈

〈j, s〉, 〈j′, s ′〉
〉
∈ αm(r) ⇐⇒

〈
〈h(〈j, s〉), h(〈j′, s ′〉)

〉
∈ αn(r).

Thus, αm ∼= αn|(I ×D).
Next, suppose that im+1 = n + 1. In this case, let

D = {t ∈ �n+1 : ti = 0 whenever i ∈ (n + 1)\I }.
Showing that αm ∼= αn|(I ×D) is much like in the first case. �

Our primary goal in this section is to prove the following theorem, which will be
given a more precise formulation in Theorem 3.9.

Theorem 3.3. If m < �, then there is n < � such that αn −→ αm.

To prove this theorem, we will take a detour and visit some other lattices and
their representations. These lattices are introduced in Definition 3.4 and their
representations in Definition 3.5.

Definition 3.4. Suppose that 1 ≤ m ≤ n < �. Let Gm,n be the set consisting
of all pairs 〈�, f〉, where � ∈ Eq(n + 1) and f : n + 1 −→ m + 1 are such that if
i, j ≤ n and 〈i, j〉 ∈ �, then f(i) = f(j). Let � be the partial ordering ofGm,n such
that if 〈�, f〉, 〈�, g〉 ∈ Gm,n, then

〈�, f〉� 〈�, g〉 iff � ⊇ � and f(i) ≤ g(i) for all i ≤ n.
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Figure 3. Embedding N5 into G1.

Clearly, � really is a partial ordering. It should be observed that Gm,n with �, as
in Definition 3.4, is a lattice in which

0Gm,n = 〈11n+1, 0〉,

1Gm,n = 〈00n+1, m〉,

〈�, f〉 ∨ 〈�, g〉 = 〈� ∩ �, sup(f, g)〉,

where sup(f, g) = h iff h(i) = max(f(i), g(i)) for all i ≤ n. In the above equalities,
we are identifying k ≤ m with the function that is constantly k on n + 1. We will
continue to do so.

Our real concern is with the lattices Gn = Gn,n. The more general Gm,n are
introduced in order to be able to do an inductive proof. One of the reasons for
introducing the lattices Gn is that there is an embedding en : N5 −→ Gn defined by:

en(0) = 0Gn ,

en(a) = 〈00n+1, 0〉,
en(b) = 〈00n+1, idn+1〉,
en(c) = 〈11n+1, n〉,
en(1) = 1Gn .

As usual, idX is the identity function on X.

It is routine to verify that each en is an embedding. Figure 3 depicts the lattice
G1 with N5 embedded in it. If r ∈ N5, then e1(r) is labeled with r. The unlabeled
point is 〈002, 1 – id2〉, where 1 – id2 is the functionf : 2 −→ 2 such thatf(0) = 1 and
f(1) = 0.

Next, we define representations of the Gm,n.
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Definition 3.5. Suppose that 1 ≤ m ≤ n < �. Let m,n : Gm.n −→ Eq
(
(n +

1) × �m
)

be such that if 〈�, f〉 ∈ Gm,n and 〈i, s〉, 〈j, t〉 ∈ (n + 1) × �m, then〈
〈i, s〉, 〈j, t〉

〉
∈ m,n(〈�, f〉) iff 〈i, j〉 ∈ � and s�f(i) = t�f(j).

Observe that m,n is indeed a representation of Gm,n. However, no m,n is 0-
CPP since if � has exactly 2 equivalence classes, then m,n(〈�, 0〉) has exactly 2
equivalence classes. In fact, if E is a �-class, then E × �m is a m,n(〈�, 0〉)-class.
Thus, the number of m,n(〈�, 0〉)-classes is equal to the number of �-classes. On
the other hand, if f : n + 1 −→ m + 1 is not constantly 0, then there are infinitely
many m,n(〈�, f〉)-classes; specifically, iff(i) > 0 and s0 �= t0, where s, t ∈ �m, then〈
〈i, s〉, 〈i, t〉

〉
�∈ m,n(〈�, f〉).

Let n = n,n. Note that for n < �, both of the representations n+1 and αn are
into Eq

(
(n + 2) × �n+1

)
. In fact, even more is true.

Lemma 3.6. If n < �, then αn = n+1 ◦ en+1.

Proof. The routine proof is left to the reader. �

We next come to the main result about the representations m,n.

Lemma 3.7. If 1 ≤ m ≤ n < �, then m,n −→ m,n.

Proof. What this lemma says is that if 1 ≤ m ≤ n < � and Θ ∈ Eq
(
(n + 1) ×

�m
)
, then there is X ⊆ (n + 1) × �m and r ∈ Gm,n such that m,n|X ∼= m,n and

Θ ∩ X 2 = m,n(r) ∩ X 2. Observe that if X ⊆ (n + 1) × �m and m,n|X ∼= m,n, then
there is D ⊆ �m such that X = (n + 1) ×D. This follows from the fact that each
m,n(〈11n+1, m〉)-class has the form (n + 1) × {s} for some s ∈ �m.

The proof of the lemma is by induction on m ≥ 1 with n ≥ m being fixed. The
basis step is for m = 1 and the inductive step for m > 1. Both steps start out the
same way. So for now, consider n ≥ m ≥ 1 and let Θ ∈ Eq

(
(n + 1) × �m

)
.

Consider an arbitrary s ∈ �m–1. (Of course, if m = 1, then s = ∅ is the only
choice.) With the idea of invoking Infinite Ramsey’s Theorem for pairs, we define
Fs : [�]2 −→ Eq

(
{0, 1} × (n + 1)

)
so that whenever {k, �} ∈ [�]2, k < �,e, e′ ∈

{0, 1} and i, j ≤ n, then
〈
〈e, i〉, 〈e′, j〉

〉
∈ Fs({k, �}) iff there are t, t′ ∈ �m such that

tm–1 = k, t′m–1 = �, t�(m – 1) = t′�(m – 1) = s and one of the following:

• e = e′ = 0 and
〈
〈i, t〉, 〈j, t〉

〉
∈ Θ;

• e = 0, e′ = 1 and
〈
〈i, t〉, 〈j, t′〉

〉
∈ Θ;

• e = 1, e′ = 0 and
〈
〈i, t′〉, 〈j, t〉

〉
∈ Θ;

• e = e′ = 1 and
〈
〈i, t′〉, 〈j, t′〉

〉
∈ Θ.

Now we apply Ramsey to get an infiniteHs ⊆ � such that Fs�[Hs ]2 is constant. Let

Ys = {t ∈ �m : t ⊇ s and tm–1 ∈ Hs}.

Each of the following is true for each s ∈ �m–1:

(1) If i ≤ n, then Θ ∩ ({i} × Ys)2 is either trivial or discrete.
(2) If i, j ≤ n, Θ ∩ ({i} × Ys)2 is trivial, Θ ∩ ({j} × Ys)2 is discrete, and
t, t′ ∈ Ys , then

〈
〈i, t〉, 〈j, t′〉

〉
�∈ Θ.
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(3) If i < j ≤ n and both Θ ∩ ({i} × Ys)2 and Θ ∩ ({j} × Ys)2 are discrete, then
one of the following:
(3a) if t, t′ ∈ Ys , then

〈
〈i, t〉, 〈j, t′〉

〉
�∈ Θ;

(3b) if t, t′ ∈ Ys , then
〈
〈i, t〉, 〈j, t′〉

〉
∈ Θ iff t = t′.

A consequence of (1)–(3) is:

(4) If i, j ≤ n and t, t′ ∈ Ys , then〈
〈i, t〉, 〈j, t〉

〉
∈ Θ ⇐⇒

〈
〈i, t′〉, 〈j, t′〉

〉
∈ Θ.

Let Ts = {i ≤ n : Θ ∩ ({i} × Ys)2 is trivial}. Because of (1), (n + 1)\Ts = {i ≤ n :
Θ ∩ ({i} × Ys)2 is discrete}. With (4) in mind, we can let �s ∈ Eq(n + 1) be such
that

�s = {〈i, j〉 ∈ (n + 1) × (n + 1) :
〈
〈i, t〉, 〈j, t〉

〉
∈ Θ}

for each t ∈ Ys . Clearly, Ts is the (possibly empty) union of some �s -classes.
Let

D0 =
⋃

{Ys : s ∈ �m–1}

and

X0 = (n + 1) ×D0.

It is readily seen that m,n|X0
∼= m,n.

Basis step m = 1: Since m = 1, it must be that s = ∅. Thus, Ys is an infinite
subset of �1 and X0 = (n + 1) × Y∅. We have already noted that 1,n|X0

∼= 1,n.
To complete this step, we need to show that there is r0 ∈ G1,n such that Θ ∩ X 2

0 =
1,n(r0) ∩ X 2

0 .
Let f : n + 1 −→ 2 be such that f(i) = 0 iff i ∈ T∅. Then we can take

r0 = 〈�∅, f〉. One easily verifies that Θ ∩ X 2
0 = 1,n(r0) ∩ X 2

0 .
Inductive step m > 1: Thus, we are assuming m–1,n −→ m–1,n. We already have

infinite Ys for each s ∈ �m–1 and that (1)–(4) hold. Also, we have D0 ⊆ �m and
X0 = (n + 1) ×D0 and that m,n|X0

∼= m,n. Without loss of generality, we assume,
for each s ∈ �m–1, that Hs = � and then Ys = {t ∈ �m : t ⊇ s}. Thus, D0 = �m

and X0 = (n + 1) × �m.
Let Θ1 ∈ Eq

(
(n + 1) × �m–1

)
be such that if i, j ≤ n and s, s ′ ∈ �m–1, then〈

〈i, s〉, 〈j, s ′〉
〉
∈ Θ1 iff Ts = Ts′ and �s = �s′ . By the inductive hypothesis, there are

r1 ∈ Gm–1,n, D1 ⊆ �m–1, and X1 = (n + 1) ×D1 such that m–1,n|X1
∼= m–1,n and

Θ1 ∩ X 2
1 = m–1,n(r1) ∩ X 2

1 . Since there are only finitely many Θ1-classes, it must be
that r1 = 〈�, 0〉 for some � ∈ Eq(n + 1). Thus, we have, for i, j ≤ n and s, s ′ ∈ D1,
that 〈

〈i, s〉, 〈j, s ′〉
〉
∈ Θ1 ⇐⇒ Ts = Ts′ and �s = �s′

⇐⇒ 〈i, j〉 ∈ �.

This implies that� is trivial and that there are T and � such that Ts = T and �s = �
whenever s ∈ D1.
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Without loss of generality, we will assume thatD1 = �m–1 so thatX1 = (n + 1) ×
�m–1. Notice that (1)–(4) remain true and, in addition, the following hold:

(5) If i ≤ n, then Θ ∩ ({i} × Ys)2 is trivial iff i ∈ T .
(6) If i, j ≤ n and t ∈ �m, then 〈i, j〉 ∈ � iff

〈
〈i, t〉, 〈j, t〉

〉
∈ Θ.

Let Θ2 ∈ Eq
(
(n + 1) × �m–1

)
be such that if i, j ≤ n and s, s ′ ∈ �m–1, then〈

〈i, s〉, 〈j, s ′〉
〉
∈ Θ2 iff one of the following:

• i, j �∈ T , 〈i, j〉 ∈ � and s = s ′;
• i, j ∈ T and for some (or, equivalently, all) t ∈ Ys and t′ ∈ Ys ′ ,

〈
〈i, t〉,

〈j, t′〉
〉
∈ Θ.

One easily verifies that, indeed, Θ2 ∈ Eq
(
(n + 1) × �m–1

)
. By the inductive

hypothesis, there are D2 ⊆ �m–1, X2 = (n + 1) ×D2 and r2 ∈ Gm–1,n such that
m–1,n|X2

∼= m–1,n and Θ2 ∩ X 2
2 = m–1,n(r2) ∩ X 2

2 . Let r2 = 〈ϕ,f′〉. It must be that
ϕ = �.

Now letD3 = {t ∈ �m : t�(m – 1) ∈ D2} andX3 = (n + 1) ×D3. Then m,n|X3
∼=

m,n. Let r3 = 〈�, f〉 ∈ Gm,n, where f(i) = f′(i) if i ∈ T and f(i) = m if i �∈ T .
Although it is not clear if Θ ∩ X 2

3 = m,n(r3) ∩ X 2
3 , we do have

Θ ∩ (T ×D3)2 = m,n(r3) ∩ (T ×D3)2.

Without loss of generality, letD3 = �m, so that X3 = (n + 1) × �m. Thus, we have,
in addition to (1)–(6), that:

(7) Θ ∩ (T × �m)2 = m,n(r3) ∩ (T × �m)2.

To complete this inductive step,1 we proceed with what might be called a
“thinning” of �m. The object is to get D ⊆ �m and X = (n + 1) ×D such that
m,n|X ∼= m,n and m,n(r3) ∩ X 2 = Θ ∩ X 2.

Let 〈sk : k < �〉 be a one-to-one enumeration of �m. By recursion on k, choose
tk ∈ �m so that:

(T1) tk �∈ {t0, t1, ... , tk–1},
(T2) tk�(m – 1) = sk�(m – 1),
(T3) Θ and m,n(r3) agree on (n + 1) × {t0, t1, ... , tk}.

Clearly, t0 = s0. If k > 0, then there are only finitely many t ∈ � such that (T2)
holds but (T3) fails, so it is always possible to get tk .

Let r = r3, D = {tk : k < �}, and X = (n + 1) ×D. Then, X and r are as
required. �

Corollary 3.8. If 1 ≤ n < �, then n −→ n.
Proof. Let n = m in Lemma 3.7. �
LetR : � −→ � be the Ramsey function such that ifm < �, thenR(m) is the least

k < � such that whenever � : [k]2 −→ 35, then there is I ⊆ k such that |I | = m and
� is constant on [I ]2. (It seems to be right that 35 is large enough for the following
proof to work. But if it isn’t, replace it with something that is.)

Theorem 3.9. Suppose that m < 4R(m + 2)2 ≤ n < �. Then, αn −→ αm.

Proof. Let m, n be as given. Suppose that Θ ∈ Eq((n + 2) × �n+1). By Lemma
3.6 and Corollary 3.8, we can assume that Θ = n(〈�, f〉), where 〈�, f〉 ∈
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Gn+1. Thus, � ∈ Eq(n + 2) and f : n + 1 −→ n + 1. Let J ⊆ n + 2 be such that
|J | = 2R(m + 2) and that � ∩ J 2 is either trivial or discrete. We consider each of
these possibilities.

trivial: Since � ∩ J 2 is trivial, the function f�J is constant. Let r0 ≤ n + 1 be
such that f(j) = r0 for all j ∈ J . Let I ⊆ J be such that |I | = m + 2 and either
r0 ≤ min(I ) or max(I ) < r0. In either case, invoke Lemma 3.2 to getD ⊆ �n+1 such
that αn|(I ×D) ∼= αm. Let X = I ×D.

If r0 ≤ min(I ), then Θ ∩ X 2 = αn(0) ∩ X 2. If max(I ) < r0, then Θ ∩ X 2 = αn(c).

discrete: Let � : [J ]2 −→ 35 be such that if i, i ′, j, j′ ∈ J , i < j, i ′ < j′ and
�({i, j}) = �({i ′, j′}), then {〈i, i ′〉, 〈j, j′〉, 〈f(i), f(i ′)〉, 〈f(j), f(j′)〉} is an order-
preserving function. Let I ⊆ J be such that |I | = m + 2 and � is constant on [I ]2.
There are 3 possibilities: (1) f(i) < j for all i, j ∈ I ; (2) f(i) = i for all i ∈ I ; (3)
f(i) > j for all i, j ∈ I . In any case, invoke Lemma 3.2 to get D ⊆ �n+1 such that
αn|(I ×D) ∼= αm. Let X = I ×D. If (1), then Θ ∩ X 2 = αn(a) ∩ X 2; if (2), then
Θ ∩ X 2 = αn(b) ∩ X 2; and if (3), then Θ ∩ X 2 = αn(1) ∩ X 2.

This completes the proof of the theorem. �
A careful inspection of the previous proofs shows that they can be carried out in

ACA0. (Keep in mind that (M,Def(M)) |= ACA0 for every M, where Def(M) is
the set of definable subsets of M.) For example, we see from the proof of Lemma
3.7 that if 1 ≤ m ≤ n < �, then ACA0 � m,n −→ m,n. The function R defined just
before Theorem 3.9 can defined in any model of PA, and then also ACA0. Thus, we
get the following theorem.

Theorem 3.10. If m < � and n = 4R(m + 2)2, then

ACA0 � αn −→ αm.

§4. Proving Theorem 4. This section is devoted to a proof of Theorem 4. The
definitions of L∗ and the L∗-theory PA∗ are given in the introduction. For each M∗,
observe that (M,Def(M∗)) |= ACA0. For any countable, recursively saturated M
we will obtain M∗ and N ∗ as in that theorem. First, we isolate a certain class of
models of PA∗ that have such extensions.

Definition 4.1. A modelM∗ is recursively supersaturated if (M,Def(M∗)) (qua
a two-sorted, first-order model of second-order arithmetic) is recursively saturated.

Proposition 4.2. Every countable, recursively saturated M can be expanded to a
recursively supersaturated M∗.

Proof. Let T = Th(M) + ACA0. Then T ∈ SSy(M), so it has a countable
SSy(M)-saturated model (N ,X). But then N ≡ M, SSy(N ) = SSy(M), and N
is countable and recursively saturated, so N ∼= M. We can then let N = M.
Since X is countable, we can let X = {U0, U1, U2, ...}, and then let M∗ =
(M, U0, U1, U2, ...). �

Having Proposition 4.2, we see that the following theorem implies Theorem 4.

Theorem 4.3. If M∗ is countable and recursively supersaturated, then there is
N ∗ � M∗ such that Ltr(N ∗/M∗) ∼= (N5, �3).
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Proof. For n ∈M , let αM∗
n : N5 −→ Eq

(
(n + 2) ×Mn+1

)
be the function

obtained by interpreting Definition 3.1 within M∗. Then, αM∗
n is an M∗-

representation of N5. Let C be the set of those M∗-representations α such that
for some nonstandard n ∈M ∗, M∗ |= α ∼= αn. It is consequence of Theorem 3.10
and the recursive supersaturation of M∗ that C is an M∗-correct set (see Definition
1.6∗) of representations of (N5, �3). Since M∗ is countable, Theorem 1.7∗(2) can be
applied, yielding N ∗ � M∗ such that Ltr(N ∗/M∗) ∼= (N5, �3). �

Theorem 4 now follows from Theorem 1.7∗.

REFERENCES

[1] R. Kossak and J. H. Schmerl, The Structure of Models of Peano Arithmetic, Oxford Logic Guides,
vol. 50, Oxford University Press, Oxford, 2006.

[2] J. B. Paris, Models of arithmetic and the 1–3–1 lattice. Fundamenta Mathematicae, vol. 95 (1977),
pp. 195–199.

[3] J. H. Schmerl, Substructure lattices of models of Peano Arithmetic, Logic Colloquium’84, North-
Holland, Amsterdam, 1986, pp. 225–243.

[4] A. J. Wilkie, On models of arithmetic having nonmodular substructure lattices. Fundamenta
Mathematicae, vol. 95 (1977), pp. 223–237.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CONNECTICUT

STORRS, CT, USA
E-mail: james.schmerl@uconn.edu
URL: https://www2.math.uconn.edu/schmerl/

https://doi.org/10.1017/jsl.2024.6 Published online by Cambridge University Press

mailto:james.schmerl@uconn.edu
https://www2.math.uconn.edu/schmerl/
https://doi.org/10.1017/jsl.2024.6

	1 Ranked lattices and their representations
	1.1 Representations of lattices
	1.2 Correct sets of representations
	1.3 Ranked lattices

	2 Proving Theorem 3
	3 Representations of N5
	4 Proving Theorem 4

