Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T12:22:48.010Z Has data issue: false hasContentIssue false

Oriented Collagen Matrices: the Control of Biomineralizaton in Bone

Published online by Cambridge University Press:  15 February 2011

Osamu Nakamura
Affiliation:
Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106
David J. Fink
Affiliation:
CollaTek, Inc., 1445 Summit St., Columbus, OH 43201
Arnold I. Caplan
Affiliation:
Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106
Get access

Abstract

Bone-forming cells fabricate a highly ordered collagen matrix (osteoid) which subsequently mineralizes. A variety of cell culture systems exist for osteogenic cells, yet none of these is optimal for the organized formation of a mineralized matrix. We have generated collagen substrates which have different degrees of fibrillar orientation, and have cultured osteogenic cells on these matrices. In this format, von Kossa-stained sections show that highly oriented collagen matrix starts to calcify in 6–7 days, while a random fibrillar matrix does not mineralize even after 21 days. Mineral has been detected only within the collagen matrix with a narrow, unmineralized region between the cells and the mineral.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Boskey, A.L., Bone and Mineral 6, 111, (1989).CrossRefGoogle Scholar
2. Caplan, A.I., in Materials Synthesis Utilizing Biological Processes, edited by Rieke, P.C., Calvert, P.D., and Alper, M. (Mater. Res. Soc. Proc. 174, Boston, MA 1989) pp. 913.Google Scholar
3. Bruder, S.P. and Caplan, A.I., Conn. Tiss. Res. 20, 65 (1989).Google Scholar
4. Bellows, C.G., Aubin, J.E., Heersche, J.N.M., and Antosz, M.E., Calcif. Tissue Int. 38, 143 (1986).CrossRefGoogle Scholar
5. Nijweide, P.J., Iperen-van Gent, A.S. van, Haas, E.W.M. Kawilarang-de, Plas, A. van der, and Wassenaar, A.M., J. Cell Biol. 29, 318 (1982).Google Scholar
6. Ahrens, P.B., Solursh, M., and Reiter, R.S., Dev. Biol. 60, 69 (1977).CrossRefGoogle Scholar
7. Gerstenfeld, L.C., Lian, J.B., Gotoh, Y., Lee, D.D., Landis, W.J., Mckee, M.D., Nanci, A., and Glimcher, M.J., Conn. Tiss. Res. 21,215 (1989).Google Scholar
8. Butler, W.T., Conn. Tiss. Res. 23, 123 (1989)CrossRefGoogle Scholar
9. Birk, D.E. and Trelstad, R.L., J. Cell Biol. 99, 2024 (1984).Google Scholar
10. Elsdale, T.R., Exper. Cell Res. 51, 439 (1968).Google Scholar
11. Elsdale, T. and Bard, J., Nature 236,152 (1972).Google Scholar
12. Bell, E., Ivarsson, B., and Merrill, C., Proc. Natl. Acad. Sci. USA 76, 1274 (1979).CrossRefGoogle Scholar
13. Bellows, C.G., Melcher, A.H., and Aubin, J.E., J. Cell Sci. 50, 299 (1981).Google Scholar
14. Harris, A.L., Stopak, D., and Wild, P., Nature 290, 249, (1981).CrossRefGoogle Scholar
15. Stopak, D. and Harris, A.K., Dev. Biol. 90, 383 (1982).CrossRefGoogle Scholar
16. Klebe, R.J., Caldwell, H., and Milam, S., Matrix 2, 451 (1989).Google Scholar
17. Montesano, R. and Orci, Lelio, Proc. Natl. Acad. Sci. USA 25, 4894 (1988).Google Scholar
18. Guidry, C., Hohn, S., and Hook, M., J. Cell. Biol. 110, 519 (1990).Google Scholar