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Abstract

This paper presents the technical specifications of a lightweight humanoid robot platform named Robinion Sr.
including its mechanical and electrical design. We describe a versatile and robust mechatronic system, efficient
walking gait, and software architecture of the humanoid robot. The humanoid robot platform is targeted for use
in a range of applications, including research and development, competitions, and the service industry. A reduced
platform cost was an essential consideration in our design. We introduce a specialized and inexpensive mechanical
design, which includes a parallel-kinematics leg design, external gears, and low-cost controllers and sensors. The
humanoid robot is equipped with an efficient electronic structure and a tablet computer for task scheduling, control,
and perception, as well as an embedded controller for solving forward & inverse kinematics and low-level actua-
tor control. The perception system recognizes objects at real-time inference with Deep Learning-based detection
algorithms without a dedicated GPU. We present and evaluate the capabilities of our newly developed advanced
humanoid robot and believe it is a suitable platform for the academic and industrial robotics community.

1. Introduction

With the rapid development of robots and artificial intelligence technology, the world is developing into
a world where humans and robots coexist due to advanced human-robot interaction. As a result, cleaning
robots, drones, guide robots, delivery robots, and service robots have already penetrated and are used in
various industries. Advances in robotics have enabled our machines to explore the sea, go to Mars, and
perform surgery. Robots are getting more precise, innovative, functional, and better. In particular, the
research and development(R&D) on humanoid robots that are similar in appearance to humans, which
are the most suitable form for human living environments, is being actively conducted. Humanoid robots
have the advantage of being able to adapt to the environment formed by humans and are available to
move in uncertain environments in various ways, such as walking, climbing stairs, manipulating tasks,
collaborating with humans, and running. It is natural to conclude that humanoid robots are a fascinating
topic for the future environment.

WABOT, developed by a research team at Waseda University in Japan, and ASIMO from Honda have
led the development of humanoid robots with remarkable bipedal locomotion, leading to Hubo, who won
the Darpa Robotics Challenge, and Atlas, developed by Boston Dynamics (Kato, 1973; Kato et al., 1987;
Sakagami et al.,2002; Jung et al., 2018). Also, to develop a humanoid robot with a structure more similar
to that of a human, Kengoro at the University of Tokyo, which has a musculoskeletal structure identical
to the human body, is being studied (Asano et al., 2016). In addition, as research on the convergence
of artificial intelligence and robots is active, research on applying artificial intelligence to humanoid
robots is increasing. Saeed et al. solved the balance problem when a humanoid robot drags heavy objects
through deep reinforcement learning (Saeedvand et al., 2021), and Rodriguezel al. successfully applied
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a learned model to the real robot in simulating with DDPG (Deep Deterministic Policy Gradient), a
reinforcement learning algorithm, to create a human-like walking pattern (Rodriguez & Behnke, 2021).

International robot competitions have significantly gained attention among robotics researchers and
are essential research benchmarks in robotics. International robot competitions that directly involve
humanoid robots perform certain activities such as sports games and magic. The two most representative
international robot tournaments that engage humanoid robots to play sports are FIRA RoboworldCup
(soccer, archery, sprint, marathon, and weightlifting) (Baltes, Tu, et al., 2017) and RoboCup (Gerndt
et al., 2015). The competitions help guide research by having a clear road map that slowly increases
the complexity and the difficulty of the challenges that teams must overcome. The RoboCup commit-
tee has reported in the robot soccer competition that the road map aims to beat the FIFA World Cup
champion team in 2050 (Baltes, Sadeghnejad, et al., 2014; Paetzel & Hofer, 2019). On the other hand,
the FIRA organizing committee successfully organized the first robot-human archery competition in
2018 (Tu et al., 2020). Tu et al. have implemented their robot’s design and shooting stance, which in
this competition challenges a human archery player. The suggested posture consists of primitive arms’
motion for more torque on archery equipment (bow and string). However, the robot got second place
in this competition and lost to a human player from Chung Kong Senior High School. This outcome
shows that progress in humanoid robot research continues to grow in the present and the future. Another
kind of humanoid robot competition launched in 2016 is the IEEE IROS Humanoid robot Application
Challenge(HAC) (Moon et al., 2017; Baltes et al., 2018). With the central theme of magic and music,
IROS-HAC aims to make the humanoid robots perform magic like human magicians and communi-
cate with the audience. Magic tricks are performed in magic shows based on mathematical, scientific,
and psychological principles. In particular, we should focus on optimizing complex technologies-based
magic tricks for the robot magician to interact with the audience (Williams & McOwan, 2014). From
the judgment viewpoint, the winner is decided by successful performance and scientific contribution
applied to the robot. The robot with Human-Robot Interaction(HRI), a successful magic trick, and a
positive scientific contribution are more likely to win (Jeong et al., 2022).

In order to develop the various advanced functions of the humanoid robot described above in the
real world, the production of a robot is unavoidable. When designing a humanoid robot, however, it is
tempting to make use of the latest technology and expensive hardware (Radford et al., 2015). However, if
left unchecked, this desire can lead to a ballooning of the manufacture and hardware cost. Furthermore,
the best hardware performance-wise might not be the best fit for a specific robot design, which also
has to consider elements such as mass distribution and power consumption (Kaneko et al., 2011). This
work presents a lightweight humanoid robot platform called Robinion Sr (see figure 1). Itis a 135¢m tall
humanoid robot and weighs approximately 12kg. We describe our hardware and software systems with
the target of developing a low-cost and robust humanoid robot. Notably, our robot’s main computer is
a low-cost Tablet computer without GPU. Nonetheless, we are still able to deploy state-of-the-art deep
learning systems such as a modified tiny YOLO-V3 model. We circumvent the need for a dedicated GPU
by making use of Google’s Coral USB accelerator, which can still achieve real-time inference speed by
compiling the processed models into a particular format (Aguiar et al., 2020).

In Section 2, we introduce the humanoid robot along with its mechanical structure, electrical struc-
ture. Section 3 describes a user-friendly graphical user interface(GUI)-based software. We explain our
analytic inverse kinematics solver and trajectory generator in section 4. We show our custom version of
a deep learning method using the tiny YOLO-V3 model in Section 5. We present the results of our work
in Section 6. Finally, we present our conclusion and future paths of the research in Section 7.

2. Mechatronic design

Manufacturing a humanoid robot is high cost and time-consuming, so it is essential to clarify the purpose
and expandability of the humanoid robot before manufacturing. Optimizing mechanics, electronics, and
software to maximize the robot’s performance while minimizing the cost of manufacturing the robot
is the target of this research. This section clarifies the mechanical structure, electrical structure, and
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Table 1. Specifications of different popular humanoid robot platforms

Specification Robinion Sr. Nimbro OP2(X) Darwin-OP3
Height(cm) 134 135 51

Weight(kg) 12 19 3.5

Kinematic structure(Leg) Parallel Parallel Standard
Degrees of freedom(DoF) 38 18 20

Frame Aluminium alloy(5052) Polyamide 12(PA12) Aluminium alloy
Gripper RH2D(10 DoF) - -

Cost(USD) 9,500 26,500 11,000

Intel Core M5 Tablet Logitech c930e
with USB Accelerator with wide-angle lens

Main Controller ‘\ Camera

Motion Controller
OpenCM 9.04 (Cortex-M3)

ith OpenCM 485 EXP ;
i e LiPo Battery

74.8V. 6400mA

Sensor Controller
OpenCM 9.04 (Cortex-M3)
with MPUG050

Smart Actuators
Robotis Dynamixel
MX106, MX64 MX28

Gripper
Seedrobotics: RHZ2D

Figure 1. Robinio Sr. with electronic components.

GUI-based software related to the lightweight and durable humanoid robot. The development cost of
our humanoid robot is lower than the commercially available small humanoid robot Darwin-OP3' of
ROBOTIS.? It is manufactured at around one-third the price of NimbRo-OP2(X) from the University
of Bonn, which is one of the lowest production costs for humanoid robots of similar size (Ficht et al.,
2020). The following table 1 shows the details of the humanoid robot platforms and the specifications.
The analysis compares the specifications of Robinion Sr. with those of Nimbro-OP2(X), a similar-sized
humanoid robot, and Darwin-OP3, a commercial humanoid robot.

Compared to other humanoid robots of similar size, the Robinion Sr. has a high degree of free-
dom due to its gripper. Generally, humanoid robots have six joints on each of their legs, a standard
structure. However, the parallel-kinematics design with no actuator in each knee reduced the total num-
ber of actuators in the humanoid robot leg. It allows the robot to be lighter as well as cost-effective.
Robinion Sr. has a lower manufacturing price than the commercial robot Darwin-OP3 despite signifi-
cantly improved mechanical and electrical structure. Manufacturing a high-performance humanoid robot
such as Robinion Sr. would be advantageous in cost, maintenance, and scalability. Since Robinion2 was

Uhttps://emanual.robotis.com/docs/en/platform/op3/introduction/
Zhttp://en.robotis.com/

https://doi.org/10.1017/5026988892300005X Published online by Cambridge University Press


https://emanual.robotis.com/docs/en/platform/op3/introduction/
http://en.robotis.com/
https://doi.org/10.1017/S026988892300005X

4 Jaesik Jeong et al.

first developed in 2017, the mechatronic system and performance have been improved, which will be
described in detail in Sections 2.1 and 2.2.

2.1. Mechanic design

As robust mechanical design significantly affects the movement of robots, robotic designers are required
to consider many factors such as size, weight, frame, actuator, torque, gear, bearing, and cost. The
reusability and scalability of the robot design are essential since humanoid robots are historically costly
to manufacture. Robinion Sr. was first designed in 2017 and has improved its mechanical structure
through continuous partial upgrades. Robinion Sr. was developed for robot gait research and intelli-
gent robot competitions such as Robocup and FIRA, robust and lightweight leg design, and designed for
high efficiency and a reasonable cost. Table 2 describes the mechanical specification of the lightweight
humanoid robot.

Robinion Sr. stands 134 cm tall and weighs approximately 12 kg. On a humanoid robot, the standard
kinematic structure is for each leg to have six joints: roll and pitch joints in each ankle, pitch joint in
each knee, and yaw, pitch, and roll joints in each hip. The parallel structure has five joints except for
the knee joint on each leg. Our humanoid robot utilizes the parallel mechanism for the leg’s kinematic
structure, which is lightweight and low in cost. The knee-less joint design controls the knee joint by
calculating the ankle and hip joint movements. It has 38 degrees of freedom, with ten in each leg, six in
each arm, two in the head, and twenty in the grippers, using 30 actuators. To increase torque, all of the
roll and pitch joints of the legs use dual motors and external gears. Nevertheless, even the two actuators’
combined torque was insufficient, so we designed external spur gears to provide adequate torque (see
figure 2).

The similar-sized robots use four actuators to control single-pitch joints in the legs: ankle and hip
joints. To reduce the overall weight and cost, however, we designed dual actuators with external gears,
which are standard spur gears, in all joints of the legs. Each joint has a gear ratio of 24:55 for the ankle and
hip roll joints, 24:36 for the knee pitch joints, and 24:40 for the hip yaw joints. The selection of bearings
is essential for precise control. In particular, the backlash of the hip yaw joint has a significant effect on
walking gait. We stabilized the walking gait with idler bearings to reduce backlash for the hip yaw joint
and realized smooth motions with flange-type ball bearings. In order to achieve high strength and be
lightweight, the robot frame is constructed with sanded and anodized aluminum. Intelligent actuators
Dynamixel MX series® from ROBOTIS are mounted onto the humanoid robot. There are eighteen MX-
106Rs on the legs, six MX-64Rs on the arms, and two MX-28Rs on the head. A variety of advanced
features are contained in the Dynamixel MX series, with precise position control through PID control,

Table 2. Robinion Sr. mechanical specifications

Items Description

Height 134 cm

Weight 12kg

Kinematic structure Parallel kinematics in the legs, standard kinematics in the arms and head
Degrees of Freedom 38 (10 in legs, 6 in arms, 2 in the head, 20 in grippers)

Actuators MX-106 x 18, MX-64 x 6, MX-28 x 2

Gripper RH2D

Fream Aluminium alloy 5052

Surface treatment Anodising & Sanding

External spur Gears 1:2.3(Roll joints in legs), 1:1.67(Pitch joints in legs, 1:1.5(Hip Yaw joints)
Bearing ball(flanged type), Idler

3https://emanual.robotis.com/docs/en/dx1/mx/
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24:36
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Spur Gear
24:40

Spur Gear

Figure 2. Mechanism design of legs with external gears.

360-degree positioning, speed control, and torque control via the current sensor. The humanoid robot
has a detachable gripper, the RH2D,* which is an advanced gripper with force control.

2.2. Electronics

The Electrical component of the humanoid robot comprises three parts: the main controller that
recognizes the environment and manages the behavior, the motion controller that calculates inverse
kinematics, generates gait trajectory, and controls intelligent actuators, and the sensor controller that
reads the IMU raw data and computes Euler angles. Table 3 presents the electrical specifications of the
proposed humanoid robot, including the power source, controllers, and sensor.

A four-cell Lithium Polymer (LiPO) battery with a capacity of 6,400mA power the electronic sys-
tem, which are the motion controller, sensor controller, and actuators. The electronic system has been
optimized to allow up to one hour of battery life with motion control. A tablet PC with an Intel Core
m5 processor, 4 GB of memory, and 128 GB SSD of storage serves as the main processing unit of the
humanoid robot. This tablet PC, which is the main controller, contains a battery to extend the life-
time of the power source. Furthermore, the robot uses an inexpensive Coral USB accelerator® with
high-performance machine-learning inferencing capabilities. The accelerator detects objects using deep
learning techniques, and it is available to replace expensive GPUs. Our software utilizes the accelerator
to recognize a ball, goalposts, robots, and junctions for autonomous soccer. It uses an open-source robot
controller called OpenCM 9.04,° embedded with an ARM Cortex-M3 microcontroller for its motion con-
troller and sensor controller. OpenCM also supports the ROS embedded system and provides UART, SPI,
and other functions. Various libraries can be efficiently accessed and programmed using the Arduino
IDE. The motion controller includes an extension board, OpenCM 485 EXP,’ for controlling Dynamixel

“https://www.seedrobotics.com/rh2d-advanced-manipulator
Shttps://coral.ai/products/accelerator/
Shttps://emanual.robotis.com/docs/en/parts/controller/opencm904/
7https://emanual.robotis.com/docs/en/parts/controller/opencm485exp/
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Table 3. Actuator and electronic specifications of Robinion Sr

Items Description
Power Source LiPo battery (14.8V, 6400mAh)
Up to 60 min

Main Controller Tablet PC (Intel Core-m5, 4 GB RAM, 128 GB SSD, WIFI, Bluetooth)
Coral USB Accelerator
Motion Controller =~ OpenCM9.04 & EXP board (ARM Cortex-M3, 128 KB Flash, 20 KB SRAM)
Sensor Controller OpenCM9.04 (ARM Cortex-M3, 128 KB Flash, 20 KB SRAM)
Sensors IMUMPU6050), Camera(Logitech C930e with 150° Wide angle lens)

adequately via RS485 and TTL connectors. The inverse kinematics solution and the generation of a
trajectory of the walking gait are calculated in the 32-bit sub-controller to reduce the amount of compu-
tation carried out by the main controller. Since the motion controller is not designed for a 6-DoF standard
structure of legs commonly needed for the numerical inverse kinematic analysis, we developed an ana-
lytical inverse kinematics solver for the 5-DoF parallel system of legs using trigonometric formulas. The
sensor controller includes OpenCM and an MPU6050, which integrates three axes gyroscopes and three
axes accelerometers. In order to have a sense of stability in the robot, the sensor controller reads six axes
of IMU information and measures the raw data to calculate the Euler angles. The humanoid robot has
been developed with a closed-loop stable walking gait based on the IMU. Robinion Sr. walks stably at
speeds of up to 25 cm/s. Through USB connections, the main controller transmits inverse kinematics
parameters to the motion controller and receives IMU data from the sensor controller. Figure 1 illus-
trates the location of each component, such as the controllers located in the body, the camera attached
to the head, and the LiPo battery inside the body.

3. Software

The software and firmware are designed based on Robinion version 1 (Robinion vl), a previous
humanoid robot platform with a similar mechanical structure and smaller size (Yang et al., 2019). Not
only is this system designed specifically for autonomous soccer, and it is also used for various research
purposes, such as closed-loop omnidirectional walking, object detection with image processing and
deep learning algorithms, and localization. An overview of the firmware and software architecture of
the humanoid robot is shown in figure 3.

To reduce the amount of computation that each controller must do and to have an affordable elec-
trical system, the humanoid robot is designed to use three independent controllers: the main controller,
motion controller, and sensor controller. The main controller uses image processing and deep learning
algorithms to recognize objects or environments. According to the recognized objects and environments,
the robot behaves according to the state machine to perform the given task. The main controller trans-
mits parameters of the pre-programmed motions to the motion controller to play the required actions
in the FIRA Hurocup and HAC competitions and research. It is also possible to monitor data loggers,
send inverse kinematics information to the motion controller, and control the humanoid robot via the
joystick. The motion controller calculates inverse kinematics solutions for walking in real-time in order
to generate gait trajectories. It contains a motion player, which behaves with pre-programmed motions
for the competitions and manipulation tasks. The motion controller commands the position and velocity
of every actuator in the head, arms, and legs. Intelligent humanoid robots need to recognize the values
of their current orientation for balance. With the quaternion, the IMU uses a dedicated processor named
DMP to determine the roll, pitch, and yaw angles.
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Figure 3. System architecture of robinion Sr.

Figure 4 presents a graphical user interface (GUI) developed with Qt® and Python for users to con-
trol various robot functions efficiently. The GUI-based software includes categories for competitions
such as FIRA Hurocup, Humanoid robot Application Challenge (HAC), Robocup humanoid league, and
research. Game, image, and motion are on three separate pages in each category. On the Game page, it
is possible to monitor the object recognition and behavior of the robot for each competition and research
and to check the current robot orientation value calculated from the IMU sensor. There are buttons for
testing robot motions such as omnidirectional walking, kicking, and head moving, and setting initial
orientation values. It is possible to recognize objects through color recognition by dragging the mouse
on the Image page. Color recognition uses the Lab color space, which is robust to light, to detect objects.
In addition, slide bars allow users to change the range of L, a, and b to set a more precise detection. With
the Motion page, users transmit the inverse kinematics parameters for walking to the humanoid robot
in real-time, fine-tune it to find suitable values, and save and load the values. Additionally, the software
contains features such as detecting objects using image processing algorithms and deep learning models,
controlling the robot with a joystick, interacting with other robots for multi-robot cooperation, recog-
nizing a voice, and speaking sentences with text-to-speech (TTS). It establishes serial communication
between each controller and reads video frames from the camera.

4. Gait analysis

One of the most crucial aspects of humanoid robots is the ability to walk with stability. Stable walking
for robots requires complicated mathematical approaches such as kinematics, dynamics, zero moment
point(ZMP), central pattern generator(CPG), and feedback control theories. Furthermore, the leg struc-
ture of most humanoid robots is generally designed with standard kinematics, which has six degrees
of freedom: roll and pitch joints in the ankle, pitch joint in the knee, and roll, pitch, and yaw joints
in the hip. It is possible for the developers of humanoid robots to solve the forward and inverse kine-
matics of the standard kinematics leg structure using a variety of libraries. This section describes the
parallel kinematic design, which is a different structure from the general humanoid robot leg, and the
lightweight walking gait of the humanoid robot. Robinion Sr. walks on a simple gait trajectory con-
trolled by the inverse kinematics solution of the parallel kinematic structure for basic walking gait.

8https://www.qt.io/
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Figure 4. View of our GUI-based software for robot control.

To reduce the amount of computation required of the main controller and perform motions with
low latency, the motion controller, a 32-bit MCU, calculates the inverse kinematics and trajectory in
real-time. The motion controller figures trigonometric formulas to solve the inverse kinematics on MCU.

The position of the feet determines the walking gait of the humanoid robot. The inverse kinematics
principle establishes the angle of the leg joints relative to the foot position. Generally, inverse kinematics
derives solutions through analytical and numerical methods. The numerical approach calculates the
correlation between the joint’s angular velocity and the end effector’s linear velocity with the Jacobian
matrix. The computation speed of the numerical approach is slower than the analytical approach, and it is
challenging to calculate on the 32-bit MCU since it involves complicated matrix calculations. Therefore,
we calculate the inverse kinematics of the robot leg through the analytical approach by simplifying the
walking gait. The parallel-kinematics is a structure in which the robot’s feet always move parallel to the
ground, and it is possible to compute the inverse kinematics using analytical methods. Figure 5 presents
numerical values and joint information to solve the inverse kinematics (6,,: hip yaw joint, 6,,: hip roll
joint, 8,,: hip pitch joint, 6,,: Ankle pitch joint, 6,,: ankle roll joint).

Figure 5a shows that the motion in the hip yaw rotation angle redefines the values of x and y as x
and y. As the feet move in the y-direction, the z value changes, as shown in Figure 5c, so z is redefined
as Z (d; =2l cos 6,,). The proposed inverse kinematics solution redefines the x, y, and z coordinates of
each foot, as shown in Equation 1, according to the yaw angle of the hip joint and roll angles of hip
and ankle joints. Then, through inverse kinematics, the angle of each joint of the leg is available to be
calculated based on the x, y, and z values.

=TTy

Oy Oy
X=x—2dsin <§> sin (%)

J ’ (H
y=1y—2dsin (%) cos (%)

z=z— (21— 2lcosb,)

The proposed inverse kinematics solver considers the leg positions and the yaw orientation of the hip
for walking gait. As shown in Figure 5, by substituting the given values of x, y, z, and 6 into Equation 2,
Ouy» Onrs Orps b, and 6, joint angles are obtained, and both feet move to the desired positions.
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Robinion Sr. applies the result of Equation 2 to the angle of each joint to move to the target pose,
including each foot position and rotation. For forward, backward, lateral, and rotational walking gait, it is
possible to implement omnidirectional walking with a combination of values of x, y, z, and 6,,. The step
size is determined by the value x. Forward walking is possible when a positive number is substituted into
the value, and backward walking is possible when a negative number is substituted into the value. The
direction of rotation of the robot is determined by the 6 value of the hip yaw joint, and omnidirectional
walking is implemented by a combination of forward, backward, lateral, and rotational walking based
on the values of X, y, z, and 0.

In this study, Robinion Sr. is modeled as walking on flat ground for the purpose of generating a gait tra-
jectory. During the walking gait, the robot undergoes two support phases: a double support phase(DSP)
and a single support phase(SSP). Based on the values of the X, y, and z positions and the yaw orientation
of the feet in the global coordinate system, the trajectory generator can generate the swing trajectory
of both feet. Humanoid robots typically walk along a trajectory generated by algorithms such as the
central pattern generator, Bezier Curves, and trigonometric functions. By designing the trajectory in the
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form of a quadratic function as in Equation 3, it is possible to have a period and continuity to the swing
trajectory of the feet.
) X — ste) size)?
Foot, = height — # 3)
step size? [height
To manufacture the humanoid robot with a low development cost, we reduce the computation amount
and optimize the main controller’s operation time by calculating the inverse kinematics solve and gait
trajectory in real-time on the MCU. The section 6.1 describes the performance of stable walking gait
with our lightweight inverse kinematics solver and gait trajectory.

5. Perception

For the robot to adapt to the environment created by humans, it must exhibit various functions and
good performance, and recognizing the relevant elements of the environment is essential. The latest
perception systems generally use Deep Learning techniques for object detection, image classification,
pose estimation, and segmentation in various research fields (Zou et al., 2019). Convolution is one of
the most extensively used operations, making up the supporting pillar of most common architectures.
Since most of these systems are relatively complex and have a considerable number of parameters, it
requires heavy computation for training and even inference. This computation commonly takes the form
of GPUs, although recently, there’s been a push for new types of technology, such as the tensor process-
ing unit(TPU) supported by Google. TPU boasts much more computing power in specific environments
than GPU because it is pre-designed for each location of ALU to facilitate vector and matrix operations.
In robot applications, TPU and GPU are weighty and require costly hardware equipment, so their use
is limited. The perception system utilizes Google’s Coral USB accelerator to deploy our models in our
work. It is an ASIC USB hardware designed specifically for running the inference of neural network
models on low-power devices. It is capable of performing four trillion operations per second (TOPS)
and uses just two watts for four TOPS. The accelerator is able to achieve incredible inference speeds
and low power consumption by Utilizing 8-bit integer operations. As such, models to be deployed on the
device are subject to limitations such as 8-bit fixed-point tensor parameters, fixed tensor sizes and model
parameters at compile-time, 1-, 2-, or 3-dimensional tensors, and using only the operations supported
by the accelerator.

Robinion Sr. with the USB accelerator detects a ball using our ball detection algorithm based
on the Tiny YOLO-V3 model (Redmon & Farhadi, 2018). The model is trained in the usual fash-
ion, that is, using 32-bit floating-point numbers. After complete training, the model is converted to
a compatible format using the Google Tensorflow library. It involves an operation called post-training
quantization®, where examples from the dataset are provided along with the model to compute trans-
formations between floating-point numbers and 8-bit integers. This operation makes the model smaller
and faster, and although it is less precise, it does not significantly affect inference accuracy. Once the
8-bit quantized model is ready, it can be compiled using a proprietary tool from the device manufacturer-
supported compiler. The compiler will ensure that the operations are supported and generate a file format
that can be loaded by the Coral USB accelerator. The proposed model architecture is identical to the
architecture of the YOLO-V3, with the sole exception that the leaky ReLU activation functions are
replaced with regular ReLLU activation functions due to the former not being a supported operation.
Figure 6 illustrates a flowchart of the conversion procedure.

In events such as the RoboCup Humanoid League and the FIRA Hurocup penalty kick challenges,
the recognition of a soccer ball should be prioritized for the robot to perform autonomous soccer. In
order to use our custom tiny YOLO-V3 model for autonomous robot soccer, a dataset of soccer ball
images is used. The dataset used to validate our method consists of pictures of a soccer field and a ball.
It constructs the field based on a similar height grass field of Robocup humanoid league at a reduced

%https://www.tensorflow.org/lite/performance/post_training_quantization
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Figure 6. Flowchart depicting the process of converting a trained tiny YOLO-v3 model to a format
deployable by the USB accelerator.

size. The dataset contains a total of 800 images, where 120 images (15%) of the pictures were randomly
selected for a holdout validation set, while the remaining 680 images (85%) were kept as the training
set. Half of the validation images contained a soccer ball while the other half didn’t, to measure the
rate of true-positive(TP), true-negative(TN), false-positive(FP), false-negative(FN), precision, recall,
and accuracy detections. The section 6.2 compares the performance of the tiny YOLO-V3 deployed on
the accelerator and an image processing method based on the Hough circle transform.

6. Results and discussion

The lightweight humanoid robot of a size that can be operated in a real-world environment has been
described in detail, including a cost-effective and robust mechatronic system, software architecture,
walking gait, and deep learning-based perception system. In the following Section, we describe the
results of an empirical evaluation of experiments on the lightweight mechatronic system, including one
on walking gait and one on deep learning-based perception. First, Section 6.1 analyzes the walking
gait with the analytical approach inverse kinematics solver and the swing trajectory generator. With the
customized tiny YOLO-V3 for autonomous soccer, we also analyze the perception system to detect the
soccer ball.

6.1. Walking gait

Our implementation calculates the proposed quadratic function to generate the gait trajectory with the
analytic inverse kinematics solver. We have designed a lightweight walking solution that optimizes com-
putational resources and latency on the MCU. The solution is evaluated in terms of how well it walks
stable. We have implemented the omnidirectional walking gait with the swing trajectory generator. Since
we focus on developing autonomous soccer robots in this paper, Robinion Sr. conducted a walking test
on artificial turf. Artificial turf is challenging to walk on for humanoid robots because its irregular sur-
face makes the robot more difficult to walk on compared to flat floors and can cause the robot’s feet to
trip over the turf. In this paper, to prove the stability and speed of the humanoid robot’s straight gait,
we designed an experiment in which the robot walked a distance of 3m forward on the artificial turf
surface. We derived the optimal stride length for forward walking 3m while increasing the step size
by 2cm during the same cycle. The experiment was performed with a walking test having a step cycle
of 400ms /step while changing the stride length from a minimum of 2¢m to a maximum of 20cm. The
humanoid robot walked 3 m stably up to a maximum step size of 10cm, and at strides longer than that, it
walked unstable over a certain distance. Backward walking gait is stable at the same speed as forward,
while the omnidirectional walking gait, which merges forward/backward, lateral, and rotational walking,
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1=0.8s, D=20cm t=0.4s, D=10cm t=0.0s, D=0cm

Figure 7. Bipedal full gait cycle of Robinion Sr (Speed: 25cm/s).

is possible to be stable, depending on the value of x, y, z, and 6,,. Figure 7 illustrates the stable walking
gait of Robinion Sr. with a maximum speed of 25¢m/s, a period of 0.4 seconds/step, and a step size of
10cm.

6.2. Perception

The results are compared with the previous ball detection method, Hough Circle, to evaluate the pro-
posed perception method on the accelerator. For the experiments, the dataset images are gathered while
the robot remains stationary. It is possible for the robot to play soccer autonomously using the model
trained from the dataset, which recognizes the environment while standing, walking, and shooting.
Table 4 shows the comparison between the two methods with the same validation set.

Table 4. Comparison results of the proposed method with the Hough circle method to detect the soccer
ball

TP TN FP FN Precision Recall Accuracy Inference

Tiny YOLO-V3 100% 92.04% 7.96 % 0 % 92.63% 100 %  96.02 % 38 ms
Hough Circle 52.6% 71.64% 2836% 474% 6497% 52.6% 62.12% 69 ms

To evaluate our object detection model, we compare and analyze precision, recall, accuracy, and infer-
ence speed, which are indicators commonly used for evaluation in deep learning. To analyze precision,
recall, and accuracy, the values of the true positive, true negative, false positive, and false negative are
used and defined as the standard as in Equation 4.

. TP
Precision = ——
TP + FP
TP
Recall = —— 4
TP+ FN
TP+ TN
Accuracy =
TP+ FN + FP+ TN
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Figure 8. Comparison of the ball detection results of tiny YOLO-v3 & Hough circle approach. The
top row shows examples of true positive from both models and false positives from the Hough circle
approach.

As expected, the overall precision, recall, and accuracy of the deep learning-based system trump the
Hough Circles approach. The metrics measured on the validation set show that the customized YOLO
model could find all instances of the soccer ball as the true positive, while the Hough Circles method
could find roughly half of them. Furthermore, while the deep learning model is still susceptible to false
positives, it is a much lower rate of roughly 8% compared to 28% with the image processing method.
It can be seen that the lightweight deep learning approach proposed by both the precision, a matric for
all detections, and the recall, a matric for all ground truths, is significantly higher. Figure 8 shows the
results for comparison between deep learning-based soccer ball recognition and image processing-based
soccer ball recognition.

One of the main advantages of the proposed YOLO model is that it is about twice as fast as the Hough
Circle, with a constant inference rate of 38 milliseconds. As a result, it can process approximately 26
frames per second, which is sufficient for real-time applications. Since the Coral USB accelerator device
carries out the inference, it does not put a heavy load on the CPU (or GPU), which leaves the CPU free
to handle other tasks. As a whole, Robinion Sr. detects the ball for autonomous soccer play with high
accuracy and a low rate of false positives compared to the previous perception system.

In order to verify the robustness of the perception system, deep-learning-based ball detection exper-
iments are conducted in diverse regions other than the soccer field and when the robot is walking. To
reach the high-accuracy trained model, the dataset includes data from non-field regions with the ball
as well as the field and ball. The experiment of robust recognition of cluttered regions with multiple
objects is shown in Figure 9. We demonstrate that the proposed perception method recognizes the ball
even nearby a chair with a color similar to the ball, a shelf with various objects, and a blurred image.

For autonomous soccer play, the robot has to detect objects robustly while walking as well as in
various regions of the image (see Figure 10. An algorithm is implemented to kick the ball, with the
omnidirectional walking gait to the ball from 2m away, by setting the walking speed at a maximum
step size of 7cm and a one-step cycle of 0.4 ms. In order to select the precise position for the kick, the
step size and the 6 value of the hip yaw joint are controlled together while walking toward the ball.
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Figure 9. Results of the perception system showcase the robustness in challenging scenarios: around
similar colored objects, a cluttered shelf, and blurry images.

Figure 10. Showcase of the perception system robustness during omnidirectional walking gait.

To measure the robustness of the experiment, the recorded video is split into data of 30 frames per
second to measure the recognition rate, and a recognition rate of 100% was obtained in the experiment.

7. Conclusions

This paper has presented a lightweight humanoid robot platform named Robinion Sr. with the adapt-
able and robust mechatronic system, walking gait, and software architecture of the humanoid robot,
targeted for use in multiple fields, including robotics competitions, industry, and research laboratories.
We optimized the hardware and software of the robot platform to minimize manufacturing cost and
time, which are essential considerations in the mechatronics design of humanoid robots. With external
gears and intelligent actuators, we enhanced the mechanical structure and designed a parallel kinemat-
ics configuration to reduce the number of joints in each leg. In addition, multiple functions are not
computed in one controller, and not only the amount of computation through distributed control but
also the cost and weight were minimized through electrical optimization. Therefore, our mechanical
and electrical designs had a lightweight system, efficient cost, and low power consumption electrical
architecture. In order to improve the system speed with low latency and to develop the stable gait of
the humanoid robot, we implemented an analytic inverse kinematics solver and trajectory generator on
the MCU. We implemented a lightweight deep learning-based perception system using the accelerator
USB device, circumventing the need for a heavy GPU. As a result, it has been proven that it can be
used in real-time object recognition applications with high accuracy and sufficiently fast object infer-
ence speed compared to the previous system. In future work, we plan to develop a robust and widely
step-size close-loop walking gait, motion planning for manipulation tasks, and distribute ROS & ROS2
packages for open source.
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