AN INEQUALITY FOR THE DERIVATIVE OF SELF-INVERSIVE POLYNOMIALS

K.K. Dewan and N.K. Govil

In this paper it is shown that if $p(z)$ is a polynomial of degree n satisfying $p(z) \equiv z^{n} p(1 / z)$ then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| .
$$

The result is best possible.

$$
1
$$

Let $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ be a polynomial of degree n and $p^{\prime}(z)$ its derivative. Concerning the estimate of $\left|p^{\prime}(z)\right|$ on the unit disc $|z| \leq 1$, we have the following inequality, due to Bernstein [1]:

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)| \tag{1.1}
\end{equation*}
$$

An inequality analogous to (1.1) for the class of polynomials having no zero in $|z|<1$ is due to Lax [4].

If $p(z)$ has all its zeros in $|z| \leq 1$, then it was proved by Turan [5] that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| \tag{1.2}
\end{equation*}
$$

An inequality analogous to (1.2) for polynomials having all its zeros

Received 3 February 1983.
in $|z| \leq K, K \geq 1$ has been obtained by Govil [2].

It was proposed by Professor Q.I. Rahman to study the class of polynomials satisfying $p(z) \equiv z^{n} p(1 / z)$ and obtain inequalities corresponding to (1.1) and (1.2). The class of polynomials satisfying $p(z) \equiv z^{n} p(1 / z)$ is interesting in view of the fact that if $p(z)$ is any polynomial of degree n, then $P(z)=z^{n} p(z+(1 / z))$ is a polynomial of degree $2 n$ satisfying the condition $P(z) \equiv z^{2 n} P(1 / z)$. In an attempt to solve the problem proposed by Professor Rahman, the following theorem was proved by Govil, Jain and Labelle [3].

THEOREM A. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n satisfying $p(z) \equiv z^{n} p(1 / z)$ and having all its zeros lying either in the right half plane or in the left half plane, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{\sqrt{2}} \max _{|z| \equiv 1}|p(z)| \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z| \equiv 1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.4}
\end{equation*}
$$

Inequality (1.4) is best possible and equality holds for the polynomial $p(z)=(1+z)^{n}$ when the zeros lie in the left half plane and for the polynomial $p(z)=(1-z)^{n}$ when the zeros lie in the right half plane.

In this note we strengthen inequality (1.4) by proving it without the assumption that $p(z)$ has all its zeros either in the left half plane or in the right half plane. Our result is best possible. We prove

THEOREM. If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree n satisfying $p(z) \equiv z^{n} p(1 / z)$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \geq \frac{n}{2} \max _{|z|=1}|p(z)| . \tag{1.5}
\end{equation*}
$$

This result is best possible and equality holds for the polynomial
$p(z)=\left(1+z^{n}\right)$.

2.

Proof. Since the polynomial $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ satisfies $p(z) \equiv z^{n} p(1 / z)$, we have

$$
p^{\prime}(z)=n z^{n-1} p(1 / z)-z^{n-2} p^{\prime}(1 / z)
$$

Thus

$$
\left|p^{\prime}\left(e^{i \theta}\right)\right|=\left|n e^{i \theta} p\left(e^{-i \theta}\right)-p^{\prime}\left(e^{-i \theta}\right)\right|
$$

In particular if $\theta_{0}, 0 \leq \theta_{0}<2 \pi$, is such that

$$
\max _{0 \leq \theta<2 \pi}\left|p\left(e^{i \theta}\right)\right|=\left|p\left(e^{-i \theta_{0}}\right)\right|
$$

then

$$
\begin{align*}
\max _{0 \leq \theta<2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right| & \geq\left|p^{\prime}\left(e^{i \theta} 0\right)\right| \tag{2.1}\\
& =\left|n e^{i \theta_{0}} p\left(e^{-i \theta} 0\right)-p^{\prime}\left(e^{-i \theta} 0\right)\right| \\
& \geq n\left|p\left(e^{-i \theta} 0\right)\right|-\left|p^{\prime}\left(e^{-i \theta} 0\right)\right| \\
& =n \max _{0 \leq \theta<2 \pi}\left|p\left(e^{i \theta}\right)\right|-\left|p^{\prime}\left(e^{-i \theta_{0}}\right)\right|
\end{align*}
$$

Inequality (2.1) is equivalent to

$$
\left|p^{\prime}\left(e^{-i \theta}\right)\right|+\max _{0 \leq \theta<2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right| \geq n \max _{0 \leq \theta<2 \pi}\left|p\left(e^{i \theta}\right)\right|
$$

which implies

$$
2 \max _{0 \leq \theta<2 \pi}\left|p^{\prime}\left(e^{i \theta}\right)\right| \geq n \max _{0 \leq \theta<2 \pi}\left|p\left(e^{i \theta}\right)\right|
$$

From here the result follows.

References

[1] Serge Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d^{\prime} une variable reele (Gauthier-Villars, 1926).
[2] N.K. Govil, "On the derivative of a polynomial", Proc. Amer. Math. Soc. 41 (1973), 543-546.
[3] N.K. Govil, V.K. Jain and G. Labelle, "Inequalities for polynomials satisfying $p(z) \equiv z^{n} p(1 / z) "$, Proc. Amer. Math. Soc. 57 (1976), 238-242.
[4] Peter D. Lax, "Proof of a conjecture of P. Erdös on the derivative of a polynomial", Bull. Amer. Math. Soc. 50 (1944), 509-513.
[5] P. Turan, "über die Ableitung von Polynomen", Compositio Math. 7 (1940), 89-95.

Department of Mathematics,
Indian Institute of Technology,
Hauz Khas,
New Delhi llool6,
India.

