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Abstract

This article concerns the uniform classification of infinite dimensional real topological vector spaces. We
examine a recently isolated linearization procedure for uniform homeomorphisms of the form¢ : X — Y,
where X is a Banach space with non-trivial type and Y is any topological vector space. For such a uniform
homeomorphism ¢, we show that ¥ must be normable and have the same supremal type as X. That Y is
normable generalizes theorems of Bessaga and Enflo. This aspect of the theory determines new examples
of uniform non-equivalence. That supremal type is a uniform invariant for Banach spaces is essentially
due to Ribe. Our linearization approach gives an interesting new proof of Ribe’s result.

2000 Mathematics subject classification: primary 46B20; secondary 46B04,

1. Introduction

Enflo [7, Theorem 6.2.1] proved that if a quasi-normed space Y is uniformly homeo-
morphic to a Banach space X with ‘roundness’ p > 1, then there is anorm on Y that is
uniformly equivalent to the given quasi-norm. Prassidis and Weston [12, Theorem 4.2]
generalized this theorem to include all Banach spaces X of non-trivial type. In so
doing, they isolated from Enflo’s earlier work a linearization procedure that applies,
in particular, to any uniform homeomorphism between Banach spaces of non-trivial
type. The purpose of this article is to examine this linearization procedure in more
depth and to extend its range to include all topological vector spaces.

More specifically, we show in Theorems 6.1 and 6.2 that if a topological vector
space Y is uniformly homeomorphic to a Banach space X that has non-trivial type, then
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Y must be normable and have the same supremal type as X. That Y is normable gen-
eralizes theorems of Bessaga [3] and Enflo {7]. This aspect of the theory leads to new
results and insights into the uniform structure of spaces such as Ly(u). That supremal
type is a uniform invariant for Banach spaces is essentially due to Ribe [13]. Our
proof of Ribe’s result, via remodelling and linearization, is obtained in a completely
different manner to existing arguments in the literature. Several other classical results
in the uniform theory of topological vector spaces are also shown to be derivable from
this one very general linearization procedure.

It should be emphasized that there is a paucity of linearization techniques in the
uniform theory of Banach spaces, and not without reason. This is because uniformly
continuous functions do not have derivatives in general. The situation is, for example,
quite different for Lipschitz homeomorphisms, as can be seen from the survey article
by Yost [16]. Note also the text by Sims [15, Chapter 14].

All vector spaces in this article are assumed real and infinite dimensional.

2. Linear and non-linear type

The importance and rdle of Rademacher (or, linear) type in the contemporary
understanding of the geometry of Banach spaces is exceptionally well documented.
See, for example, Pisier [11]. In Bourgain, Milman and Wolfson [4], a notion of
non-linear type for general metric spaces was developed, generalizing linear type in
Banach spaces. They showed that the supremum of the linear types of a Banach space
is equal to the supremum of its metric types. Pisier [11] provides a simplified proof
of this theorem. In this article it will be very helpful to work with metric type (rather
than linear type), and we recall its definition now.

An n-cube C in a metric space (X, d) is a collection of 2" points x; € X where
each point is indexed by a unique n-vector f=@),1Q2),...,t(n) € {0, 1})". The
indexing vectors allow one to identify diagonals and edges in the cube. Specifically,
a diagonal in C is an unordered pair of vertices (x;, x;) with u(i) # v(i) for all
i € {1,2,...,n}). An edge in C is an unordered pair of vertices (xgz, x;) with
w(i) # z(i) for precisely one i € {1, 2,...,n}. Throughout this article, given an
n-cube C, we will use D(C) and E (C) to denote the sets of all diagonals and all edges
in C, respectively.

DEFINITION 2.1. Let p > 1. A metric space (X, d) has metric type p if there is a
constant Z > 0 such that for all n € N and all n-cubes C = (x;) in X we have

1/2 1/2
( Z d(xﬁ,xa)z) Sﬂn””_l/z( Z d(xw,xz)2> .

(xi,x5)€D(C) (xg,x;)€E(C)
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It is noteworthy that the notions of linear and non-linear type were predated by
Enflo’s [5] notion of roundness. We will not discuss roundness here except to say that
it can be directly figured as an analogue of non-linear type.

3. Uniform Banach groups

The notion of a uniform Banach group generalizes the additive group structure
of a Banach space. It is a group structure on a Banach space that satisfies some
compatibility conditions with the norm. Uniform Banach groups were introduced by
Enfloin [6] and [7].

DEFINITION 3.1. Let (X, || - ||) be a Banach space. Suppose that the map X x X —
X : (x,y) — x-yisagroup operation on X that is uniformly continuous as a function
of two variables with identity O = Oy, the zero vector of X. Then the resulting group
structure G = (X, -) is said to be a uniform Banach group modelled on (X, | - ||). We
will often write xy instead of x - y.

Uniform homeomorphisms generate examples of uniform Banach groups in the
following way: suppose that X is a Banach space, Y is a topological vector space,
and ¢ : X — Y is a uniform homeomorphism such that ¢(0) = 0. Then, the product
x-y = ¢ Hp(x) + ¢(»)) defines a commutative uniform Banach group structure
G = (X, -) thatis modelled on X. We say that G is the uniform Banach group induced
by ¢. Through a deep analysis of such structures, Enflo [7] deduced that L [0, 1] is
not uniformly homeomorphic to L,[0,1]if0 < g <1 < p < 00.

There are no known examples of non-commutative uniform Banach groups.

4. G-invariant metrics

Suppose that G = (X, -) is a commutative uniform Banach group modelled on
(X, I - 1. We can introduce a G-invariant metric d on X as follows:

d(x,y) =sup|lwx —wy|, x,yeX.
weX
Obviously d(x, y) = ||x — y|l forall x, y € X. This G-invariant metric d is uniformly
equivalent to the || - ||-distance. In other words, the identity map (X, || - ||) = (X, d):
x > x is a uniform homeomorphism. As d is a G-invariant metric on X, we get
a triangle inequality of the form d(xy,0) < d(x,0) + d(y,0) for all x,y € X.
Associated with the G-invariant metric d is a chain or intrinsic metric d; defined in
the following way. Letx, y € X be given. Any finite sequence x = xg, X1, ..., X, =Yy
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(n € N) of points in X such that d(x;, x;11) < lforalli,0 <i <n— 1, is called
a one-chain between x and y. The intrinsic or chain distance between x and y is
given by

n—1
di(x,y) =inf ) d(x;, xis1),
i=0
where the infimum is taken over all one-chains x = xg, ..., x, = y between x and y.
For all x, y € X it is clear that ||x — y|| < d(x,y) < d;(x, y) and, moreover, that
di(x, y) = d(x, y) if (additionally) d(x, y) < 1. It follows that the chain metric d; is
also uniformly equivalent to the || - ||-distance.

5. G-invariant metrics and the (partial) stability of type

The following lemma is standard to the uniform theory of Banach spaces and is
given without proof.

LEMMA 5.1. Let (X, || - ||) be a Banach space. Let p be any metric on X that is
uniformly equivalent to the || - ||-distance. Then there is a positive constant € such
that p(x, y) < €|lx — yll whenever |x — y|| > 1or p(x,y) > 1.

The next theorem shows that if (X, || - ||) and (X, p) satisfy the hypotheses of
Lemma 5.1 and if p dominates the || - ||-distance, then (X, p) will inherit the metric
types of (X, || - ||) at ‘large distances’. There does not seem to be any obvious way to
extend this statement to include ‘small distances’ and, indeed, it might not hold under
these circumstances.

THEOREM 5.2. Let (X, || - ||) be a Banach space. Suppose (X, | - ||) has metric
type p with type constant B. Let p be any metric on X, uniformly equivalent to the
[l - ||-distance, that satisfies ||x — y|| < p(x,y) forall x,y € X. Then there is a
constant € > 0 such that

12 1/2
(Z p(xz, xa)z) < €Bn'/P112 (Z p(xg, xz)z)
D(©) E(0)

Jor any n-cube C = (x;) in X whose diagonals all have || - ||-length (and/or, p-length)
at least one.

PROOF. Lemma 5.1 gives a constant ¥ > 0 such that p(x,y) < % - |lx — y|
whenever |x — yl] > 1 or p(x, y) > 1. Fix an n-cube C = (x7) in X whose diagonals
all have || - ||-length (and/or p-length) at least one. Using Lemma 5.1, together with
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the hypotheses on (X, || - ||) and p, we see that

1/2 1/2
(Z p(xz, xa)2> <% (Z llxz — Xallz)

D(C) D(C)
172
< € Bn"/r712 (Z llxa — lelz)
E(©)
1/2
< ERBn'/P1/2 (Z o(xs, x;)z) . O
E©)

In the case of a commutative uniform Banach group G = (X, -), p could be either
of the G-invariant metrics d or d; introduced in Section 4. This is how we will use
Theorem 5.2 in the next section.

6. Linearization of certain uniform homeomorphisms

Every Banach space has (metric) type 1. In the statement of Theorem 6.1 (below)
the essential hypothesis is on the Banach space X. Namely, that it has non-trivial
(metric) type p > 1. The assumption that Y is a Banach space can be weakened
considerably. This is done in Theorem 6.2. The technique being developed in this
article is seen to have two important aspects: Y is not restricted to be a normed (or,
even quasi-normed) space and (appropriately) the Corson-Klee Lemma is not used.

THEOREM 6.1. Let p > 1. Let (X, | - ||) be a Banach space with metric type p.
If (X, || - 1) is uniformly homeomorphic to a Banach space (Y, || - ||), then the vector
space operations and norm on X can be re-modelled (in a uniformly equivalent way) to
produce a new Banach space (X, N(:)) that has metric type p, and which is, moreover,
linearly isomorphic to (Y, || - ||). In particular, Y is seen to have metric type p.

PROOF. Denote by 4 the metric type p constant of (X, || - ||). We may assume that
the uniform homeomorphism ¢ : (X, || - [[) = (¥, || - {i) satisfies ¢ (0) = 0. Denote
by G = (X, -) the uniform Banach group modelled on (X, || - ||) that is induced by ¢.
So, forall x,y € X, xy = ¢~ (¢(x) + ¢(y)). Introduce the G-invariant metrics
d and d; associated with this group structure. For any x € X and ¢t € R, define
x' = ¢~ (t¢(x). Introduce new vector space operations on X as follows: addition is
the group multiplication (x, y) — xy, and scalar multiplication of x € X by r € R is
given by x’. For all x € X, define

t
N(x) = limsup M .

=0
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Prassidis and Weston [12, Theorem 4.2] showed that N(.) is a norm relative to the
new vector space operations on X, and that

0Y) lixll < N(x) < d;(x,0)

for all x € X. For brevity we write (X, N(-)) to denote this new normed vector space
structure. A simple (omitted) argument shows that (X, N(-)) is complete. Since d,
is uniformly equivalent to the original || - ||-distance, it follows from (1) that the
identity map (X, || - ) = (X, N(?)) : x > x is a (not necessarily linear) uniform
homeomorphism. Hence, by virtue of the new vector space operations in place on X,
we see that ¢ : (X, N(-)) = (Y, ]l - |) is a linear uniform homeomorphism. Put
differently, as a map from (X, N(-)) to (¥, || - |I), ¢ is a linear isomorphism.

It remains to show that (X, N(-)) has metric type p. Applied to the original Banach
space (X, || -||) and the G-invariant metric d; on X, Lemma 5.1 gives a constant ¥ > 0
such that d;(x, y) < €|lx — y|l whenever ||x — y|| > 1 ord;(x, y) > 1. Importantly,
relative to this constant %, the conclusion of Theorem 5.2 holds for the pair of spaces
(X, || - ) and (X, d;). This will be used below.

The metric d; is also uniformly equivalent to the new norm N(-) and satisfies
N(xy™) < d;(xy~',0) = d;(x,y) for all x,y € X by G-invariance. Hence by
Lemma 5.1, applied to the pair of spaces (X, N(-)) and (X, d,), there is a constant
2 > 0 such that

() di(x,y) =d;(xy™',0) < 2N(xy™")

forallx,y € X with N(xy™!) > 1.

To determine that (X, N (-)) has metric type p (with type constant ¥ Z 2), it suffices
to consider only those n-cubes C = (x7) in X whose non-zero N (-)-distances are all at
least one. This is because N (-) is scalar homogeneous. Take such an n-cube C = (x;7)
in X. Then by using (1), Theorem 5.2 (as above), and (2) (consecutively), we see that

1/2 1/2
(Z N(x;x;l)z) < (Z di(xz, xa)2>

D(C) D)
1/2
< G Bn'Iv1 (Z di(x3, x#)
E(C)
1/2
< %ggnl/p—l/Z (Z N(X,;,XZ_I)Z) )
E(C)

We conclude that (X, N(-)), and therefore (Y, || - |), has metric type p. O
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As noted in the preamble at the beginning of this section, the hypothesis on Y in the
statement of Theorem 6.1 can be greatly relaxed. In fact, the next theorem determines
that ¥ need only be a topological vector space.

THEOREM 6.2. Let Y be a topological vector space. If Y is uniformly homeomor-
phic to a closed subspace of a Banach space (X, || - ||) that has non-trivial type, then
the topology of Y is given by a norm.

PROOF. The properties of non-trivial type p > 1 and completeness are inherited by
the closed subspaces of (X, | - ||). So, without loss of generality, it suffices to consider
a uniform homeomorphism ¢ : (X, || - ||) — Y with ¢(0) = 0. The same argument as
given in the proof of Theorem 6.1 constructs the remodelled Banach space (X, N(-))
that is induced by the map ¢. And again, as a map from the Banach space (X, N(-)) to
the topological vector space Y, ¢ is a linear uniform homeomorphism. In particular,
as X is metrizable, this implies that the map ¢ : (X, N(-)) — Y is bounded. See,
for example, Rudin [14, Theorem 1.32]. It follows from the Open Mapping Theorem
(see, for example, Rudin [14, Theorem 2.11]) that Y is an F-space. Therefore, the
map ¢~ : ¥ — (X, N(-)) is also bounded via Rudin [14, Theorem 1.32]. However,
an F-space that is linearly isomorphic to a Banach space is obviously locally convex
and locally bounded. Therefore Y is normable. O

It should be noted that Theorem 6.2 is due to Bessaga [3] in the case that Y is
assumed to be a locally convex topological vector space. In fact, Bessaga [3] showed
that if a locally convex topological vector space is uniformly homeomorphic to a
normed space, then it is normable. Many new examples of uniform non-equivalence
can be deduced (automatically) from Theorem 6.2. One such result, that stands out in
relation to the uniform classification of L ,-spaces, is the following.

COROLLARY 6.3. If X is a Banach space that has non-trivial type, then Lo(u) is
not uniformly homeomorphic to any (closed) subspace of X.

In contrast to Corollary 6.3, Aharoni, Maurey and Mitjagin [2] have shown that
Lo(u) is, however, uniformly homeomorphic to a subset of Hilbert space. See also
Aharoni [1] for related results on uniform equivalence to subsets of L,, 1 < p.

Given Banach spaces X and Y of non-trivial (metric) type, and a uniform homeo-
morphism ¢ : X — Y (that may be assumed to satisfy ¢ (0) = 0), the linearization
procedure described in Theorem 6.1 (and its proof) is clearly reversible. We can apply
the same method to Y and ¢! to produce a new Banach space (Y, M (-)) that is linearly
isomorphic to X and has the same metric types as Y. Hence the supremum of the types
of X (which is equal to the supremum of its metric types, by Bourgain, Milman and
Wolfson [4]) equals the supremum of the types of Y. Moreover, as type is inherited
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by subspaces, this same argument extends to any (closed) subspace Z of Y that may
also happen to be uniformly homeomorphic to X. In summary, we have determined a
new proof of the following classical result in the uniform theory of Banach spaces, a
result that is essentially due to Ribe [13].

COROLLARY 6.4. Let p > 1. Let X, Y be Banach spaces. Suppose X is uniformly
homeomorphic to a (closed) subspace Z of Y. Then X has type p if and only if Z has
type p. Put differently, supremal type is a uniform invariant for Banach spaces.

Other classical results in the uniform theory of Banach spaces can be deduced from
Theorems 6.1-6.2 and Corollary 6.4. We give one such example. In the commutative
setting, this result is due to Lindenstrauss [10] when g > 1 and max(p, g) > 2, and
to Enflo [5, 6] when max(p, ¢) < 2. The result is new for ¢ = 0 (and follows from
Corollary 6.3). The corollary as stated is seen to follow from Theorems 6.1-6.2 and
Corollary 6.4 via standard facts about the type and local convexity of L ,-spaces.

COROLLARY 6.5. Let p, q be distinct non-negative real numbers withQ < q < p. If
1 <min(p,q) <2,0rif 0 <q <1 < p, then L (1) is not uniformly homeomorphic
to any (closed) subspace of L,(v).

Type computations of Fack [8] imply that Corollary 6.5 remains valid if L, and L,
are non-commutative L,-spaces, possibly corresponding to different von Neumann
algebras. For 1 < min(p, gq), this non-commutative version of Corollary 6.5 was
previously noted by Lennard, Tonge and Weston [9]. For ¢ < 1 the non-commutative
result is explicitly noted for the first time. One may also formulate variants of
Corollary 6.5 for large classes of (subspaces of) Orlicz and Lorentz spaces based on
considerations of their type or local convexity. However, we will not do so here.
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