
J. Fluid Mech. (2023), vol. 973, A30, doi:10.1017/jfm.2023.769

Taylor columns and inertial-like waves in a
three-dimensional odd viscous liquid

E. Kirkinis1,2,† and M. Olvera de la Cruz1,2

1Department of Materials Science & Engineering, Robert R. McCormick School of Engineering and
Applied Science, Northwestern University, Evanston, IL 60208, USA
2Center for Computation and Theory of Soft Materials, Northwestern University, Evanston, IL 60208,
USA

(Received 29 March 2023; revised 16 August 2023; accepted 9 September 2023)

Odd viscous liquids are endowed with an intrinsic mechanism that tends to restore a
displaced particle back to its original position. Since the odd viscous stress does not
dissipate energy, inertial oscillations and inertial-like waves can become prominent in such
a liquid. In this paper, we show that an odd viscous liquid in three dimensions may give
rise to such axially symmetric waves and also to plane-polarized waves. We assume tacitly
that an anisotropy axis giving rise to odd viscous effects has already been established,
and proceed to investigate the effects of odd viscosity on fluid flow behaviour. Numerical
simulations of the full Navier–Stokes equations show the existence of inertial-like waves
downstream of a body that moves slowly along the axis of an odd viscous liquid filled
cylinder. The wavelength of the numerically determined oscillations agrees well with the
developed theoretical framework. When odd viscosity is the dominant effect in steady
motions, a modified Taylor–Proudman theorem leads to the existence of Taylor columns
inside such a liquid. Formation of the Taylor column can be understood as a consequence
of helicity segregation and energy transfer along the cylinder axis at group velocity, by
the accompanying inertial-like waves, whenever the reflection symmetry of the system
is lost. A number of Taylor column characteristics known from rigidly rotating liquids
are recovered here for a non-rotating odd viscous liquid. These include counter-rotating
swirling liquid flow above and below a body moving slowly along the anisotropy axis.
Thus in steady motions, odd viscosity acts to suppress variations of liquid velocity in a
direction parallel to the anisotropy axis, inhibiting vortex stretching and vortex twisting. In
unsteady and nonlinear motions, odd viscosity enhances the vorticity along the same axis,
thus affecting both vortex stretching and vortex twisting.
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1. Introduction

Avron, Seiler & Zograf (1995) showed that the viscosity tensor ηαβγ δ of the Cauchy stress
of a classical liquid,

σαβ = ηαβγ δVγ δ, (1.1)

can be decomposed into a symmetric part and an antisymmetric part, i.e. ηαβγ δ = ηS
αβγ δ +

ηA
αβγ δ , where

ηS
αβγ δ = ηS

γ δαβ and ηA
αβγ δ = −ηA

γ δαβ. (1.2a,b)

Here, Vγ δ = (∂uγ /∂xδ + ∂uδ/∂xγ )/2 is the rate-of-strain tensor, and uα is the liquid
velocity. The stress tensor (1.1) based on ηS is dissipative. It results in viscous heating
(Landau & Lifshitz 1987, § 49) which is a positive-definite quadratic form tr(σV) =
VαβηS

αβγ δVγ δ > 0. Here, ηA does not contribute to viscous heating due to its antisymmetry
between the first and second pairs of indices.

The non-dissipative stress ηA
αβγ δVγ δ is called the odd viscous (or anomalous) stress

tensor, and its accompanying coefficients are called odd or Hall viscosity coefficients.
This type of behaviour can be induced, for instance, by a magnetic field, giving rise
to an anisotropy axis along its direction. Avron et al. (1995) provided a clear physical
interpretation of the odd stress tensor that carries over to classical systems. Compression
or dilatation gives rise to shear, and vice versa. Thus it is easy to show, for instance, that a
cylinder rotating about its axis in an odd viscous liquid gives rise to a stress σ o

rr = 2ηoΩ
directed normal to the cylinder surface (Avron 1998; Kirkinis 2023), where ηo is the
dynamic coefficient of odd viscosity, andΩ is the constant angular velocity of the cylinder.

The ramifications of odd viscosity in classical mechanical systems have been
investigated only in the recent literature. Noteworthy are experiments showing blobs of
a liquid composed of micron-size spinning magnets whose surface undulations were
attenuated by a shear-stress-induced odd normal stress. (The shear stress is generated by
the collective rotation of the particles close to the free surface; cf. Soni et al. 2019.) In
three dimensions, Khain et al. (2022) showed that odd viscous liquids, in the absence
of inertia, give rise to unconventional fluid flow behaviour such as the stabilization of a
sedimenting cloud of particles due to an odd-viscosity-induced azimuthal velocity field
generated by the gravitational stretching of the cloud in the axial direction, in agreement
with the physical interpretation of Avron et al. (1995). In two dimensions, such an
odd-viscosity-induced azimuthal component can be seen in the radial expansion of a
bubble (Ganeshan & Abanov 2017). From a microscopic point of view, the mechanisms
that may give rise to an odd viscosity coefficient include broken parity, broken time
reversal and microscopic torques. The latter can be traced back to the literature of liquids
endowed with rotational degrees of freedom (Dahler & Scriven 1961), which have been
employed in the continuum description of magnetic liquids (Rinaldi 2002; Kirkinis 2017).
Other odd-viscosity-induced phenomena have been collected succinctly in the recent
review by Fruchart, Scheibner & Vitelli (2023, figure 1).

The stabilizing behaviour induced by odd viscosity in Soni et al. (2019), as well as
in other works that have appeared in the recent literature (see e.g. Kirkinis & Andreev
2019), implies that the odd viscous stress may endow its medium with an intrinsic
restoring property. Since the odd viscous stress does not dissipate energy, an excitation
given to the fluid may establish an oscillation. Such an oscillation may further initiate
wave propagation and periodic expansion and contraction in a plane perpendicular to
the propagation direction. This type of motion (in a non-odd viscous liquid) is called an
inertial wave and is present in the ocean, driving its upper mixing (Asselin & Young 2020),
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Taylor columns and inertial-like waves

constituting half of its energy and being responsible for the majority of its vertical shear.
Inertial waves also appear in the celestial sphere (Ogilvie 2013) and in the technology of
propulsion (Gao et al. 2020). It has also been argued that inertial waves in the Earth’s
interior are associated with a dynamo dipole and with helicity segregation (Davidson
2014; Davidson & Ranjan 2018). Waves in odd viscous liquids have been investigated on
a number of occasions. These include gravity waves (Abanov, Can & Ganeshan 2018) in
incompressible liquids, shock waves (Banerjee et al. 2017) and three-dimensional waves
in active matter (Markovich & Lubensky 2021).

A three-dimensional odd viscous liquid may also give rise to Taylor columns. Taylor
columns are known to form when bodies move slowly in (non-odd viscous) rapidly rotating
liquids (Davidson 2013). For instance, a slowly moving body along the axis of a rigidly
rotating liquid gives rise to a flow whose component along the axis of rotation can decouple
from its lateral plane counterpart. (By lateral plane, we will mean the plane whose normal
is the anisotropy axis.) Thus a Taylor column will form whose speed will be identical to
the speed of the slowly moving body that it circumscribes. There are certain restrictive
conditions that need to be satisfied in order for a Taylor column to form. These are the
small Rossby and Ekman numbers as defined in (B1a,b), which thus require high angular
velocity of rotation (and slow motions in the rotating frame) and low values of the shear
viscosity coefficient. Taylor columns are present in a multitude of diverse areas: cold water
and low salinity domes form over seamounts (e.g. the Rockall, Faroe and Hutton Banks)
of high chlorophyll and nutrient levels, enabling larval diversity hotspots (Dransfeld,
Dwane & Zuur 2009) by entrapping plankton (presumably by entraining matter through
Stewartson layers). A turbulent ocean below the icy crust of Enceladus and Europa is likely
to transfer energy through counter-rotating zonal jets inside a Taylor column (Bire et al.
2022).

Taylor columns form in (non-odd viscous) rotating liquids because the Coriolis force
is always perpendicular to the velocity field (the latter expressed in the frame of
reference rotating with the liquid). Thus a radial motion of a fluid particle gives rise
to a commensurate azimuthal component, and vice versa. This is reminiscent of the
physical interpretation given by Avron et al. (1995) to odd viscosity, and thus leads
to the possibility of observing Taylor columns in such a liquid. As is the case in their
rigidly rotating counterparts, Taylor columns in (non-rotating) odd viscous liquids can be
observed when certain restrictions are satisfied. These correspond to the smallness of the
parameter M−1 = aU/ν0, which requires a large coefficient of kinematic odd viscosity
νo and slow motions. (Here, U can be understood as the velocity of a body moving slowly
in an odd viscous liquid, and a is a characteristic length scale.) In addition, the effect of
shear viscosity νe should be small, and so should be the Ekman number T −1 = νe/νo; see
(6.2a,b).

Questions may arise as to whether this type of behaviour in three-dimensional
odd viscous liquids will ever be observed in a laboratory setting. Both odd viscosity
coefficients (termed ηo and η4 here) were measured in a series of experiments of
pressure-driven gas flow under a magnetic field by Beenaker and coworkers (Hulsman
et al. 1970) (termed η4 and η5 in this reference, respectively). In these experiments,
pressure-driven flow of one of the gases N2, CO, CH4 and HD, in a channel of rectangular
cross-section, met two small holes located at opposite sides in the narrow sides of the
channel and connected with a differential manometer. When a magnetic field was applied,
a pressure gradient was generated along the line connecting the holes, transverse to
the flow direction. The resulting pressure difference pA − pB over the channel width
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Figure 1. Restoring mechanism associated with odd viscosity in two dimensions. (a) Acceleration of a fluid
particle is resisted by the viscous force; its odd viscous counterpart acts perpendicularly to the axis of the
viscous force. (b) The new tangential motion acquired by the fluid particle is resisted by the viscous force, thus
a new odd viscous force acts perpendicularly. The direction of the latter is opposite to the original fluid particle
acceleration.

was measured with the differential manometer, and the data were analysed with the
same set of equations that we employ in the present paper. The physical mechanism of
coupling between the magnetic field and the molecule magnetic moment is discussed in
detail by Lifshitz & Pitaevskii (1981, § 13). It is likewise expected that measurements of
three-dimensional odd viscous coefficients will be undertaken in a liquid, although it is
not clear at this moment in time what the nature of this liquid will be.

In figure 1, we demonstrate schematically the restoring property induced by odd
viscosity on a two-dimensional liquid. In three dimensions, when odd viscosity dominates
over its shear counterpart, the restoring behaviour can be established qualitatively by
balancing the inertial terms in the Navier–Stokes equations with the odd viscous term
(cf. Tritton (1988, § 16.6) for the case of a rotating liquid). Let v > 0 be the velocity of an
isolated unit mass fluid particle in a plane perpendicular to the anisotropy axis (say, in the
azimuthal direction). Balance between inertia and odd viscous terms leads to

v2

r
= νo

v

r2 , (1.3)

giving v = νo/r, where νo = ηo/ρ > 0 is the odd kinematic coefficient of viscosity. Thus
the particle will move in circles of radius r = νo/v. The period To of this rotation depends
on the distance from the axis of anisotropy, i.e. To = 2πr2/νo, and this shows that an odd
viscous liquid is endowed with an intrinsic frequency

ωo = νo

r2 . (1.4)

Although the above argument is only schematic, the derived expression for the frequency
ωo is recovered in the following quantitative analysis (see (3.17)), at least in the short
wavelength limit. A more satisfying argument supporting the restoring effect of odd
viscous liquids is relegated to the end of § 3.1.

In a three-dimensional odd viscous liquid, we observe waves whose motion resembles
the inertial waves occurring in (non-odd viscous) rigidly rotating liquids. The anisotropy
axis inherent in the odd stress plays the role of the rotating axis of a rigidly rotating liquid.
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When the inertial-like waves induced by odd viscosity are plane-polarized, there is a
superposition of two oppositely directed waves; particle paths are helical, and this is
reflected in the sign of the helicity density (vorticity times velocity) associated with each
direction. When the propagation direction is at right angles to the odd anisotropy axis,
the phase velocity vanishes and the system suffers a loss of reflection symmetry (Moffatt
1970). Energy then propagates along the anisotropy axis at maximum group velocity and
is accompanied by helicity of a commensurate sign. This effect is called ‘segregation of
helicity’ in (non-odd viscous) rigidly rotating liquids (Davidson & Ranjan 2018) and is
believed to be important in understanding the dipolar nature of planetary dynamos since
in a planet, mean helicity is segregated spatially, having opposite signs at the northern and
southern hemispheres, respectively.

In this paper, we will assume tacitly that such an axis of anisotropy has already been
established, and proceed by examining the consequences of the resulting odd viscous
stress to fluid motions. Here, we consider fluid motions in a three-dimensional odd viscous
liquid. The paper proceeds in the following manner. In § 2, we describe the constitutive
law for the odd viscous liquid that will give rise to the inertial-like waves (Lifshitz &
Pitaevskii 1981, § 13). Section 3.1 establishes the existence of the inertial-like waves in
an odd viscous liquid. These are waves that propagate along the axis of anisotropy and
wrapped in coaxial cylinders where liquid does not cross. We determine theoretically
the frequency and wavelength of propagated modes. We provide a more satisfying, yet
still qualitative discussion of the ‘elasticity’ of an odd viscous liquid. In § 3.4, we solve
numerically the full Navier–Stokes equations for the slow motion of a sphere inside
an odd viscous liquid. Such motions generate liquid oscillations downstream the body.
Their wavelength is in astonishing agreement with the theoretical value obtained from
the inertial theory of § 3.1. In § 3.5, we establish the existence of inertial-like waves
exterior to a cylinder and extending to infinity. In § 3.6, we derive the frequency, phase
and group velocities of three-dimensional plane-polarized waves. These differ from their
axisymmetric counterparts derived in § 3.1, which also vary in the propagation direction.
They are also special as they segregate helicity, and this is discussed in § 4. In § 5,
we derive a modified Taylor–Proudman theorem. This means that when odd viscosity
dominates over shear viscosity and inertial terms, the motion in the lateral plane becomes
decoupled to the motion of the fluid along the anisotropy axis. This opens up the prospect
of existence of Taylor columns in odd viscous liquids, which we explore in § 6. Since the
study of Taylor columns entails overwhelming details, in order to provide some structure
in our discussion we follow the map set up by Maxworthy (1970) for the slow motion
of a particle. We thus solve numerically the Navier–Stokes equations, and find many
similarities to Maxworthy’s work: counter-rotating swirling motion above and below the
sphere, a forward and a rearward ‘slug’, a stagnant region, indication of an Ekman layer
surrounding the sphere, etc.

In § 8, we revisit the foregoing results by introducing another part of the odd stress
tensor (the η4 part of the stress in the notation followed by Lifshitz & Pitaevskii 1981,
§§ 13 and 58). This provides a complete picture of odd viscous effects that may be present
in a liquid. A consequence of including both viscosity coefficients is the more diverse
behaviour displayed by the velocity field (it can now resemble Kelvin functions). Helicity
is still conserved in such a composite liquid when its velocity field is determined by
plane-polarized waves.

The problems that we discuss in this paper present many similarities to flows generated
in a rotating liquid and described in a rotating frame of reference. Thus, throughout
the paper, where appropriate, we establish connections to these effects. We conclude in
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Appendix B by outlining a few facts about rotating fluids that are of relevance to this
paper (although this paper is not about rotating liquids).

2. Constitutive relations of a three-dimensional odd viscous liquid

In fluid mechanics, the constitutive law (the Cauchy stress tensor) of a Newtonian liquid
is usually introduced following the phenomenological approach (cf. Batchelor 1967, § 3.3)
or more rigorously by employing the principle of objectivity (cf. Truesdell & Noll 1992).
It is, however, possible to also introduce the notion of stress through the Onsager principle
of the symmetry of the kinetic coefficients (Lifshitz & Pitaevskii 1981, § 13). When
these coefficients (here, the viscosity tensor ηαβγ δ that we introduced in (1.1)) depend
on external fields, say B, in the direction b = B/B, that change sign under time reversal,
the symmetry of the kinetic coefficients is ensured when

ηαβγ δ(b) = ηγ δαβ(−b). (2.1)

For an incompressible liquid, the stress tensor (1.1), subject to such a field, obtains the
form

σ ′
αβ = 2Vαβ(η + η1)+ Vβγ

[
2(η2 − η1)bγ bα + η3bαγ

]
+ Vαγ

[
2(η2 − η1)bγ bβ + η3bβγ

]
+ Vγ δ

[
(η1 + ζ1)δαβbγ bδ + (η1 − 4η2)bαbβbγ bδ

+ (2η4 − η3)(bαγ bβbδ + bβγ bαbδ)
]
, (2.2)

where bαβ = εαβγ bγ , ηi, ζi are viscosity coefficients, Vγ δ = (∂uγ /∂xδ + ∂uδ/∂xγ )/2, and
εαβγ is the alternating tensor.

The physical system considered in this paper consists of an odd viscous liquid endowed
with odd coefficients η3 and η4 in (2.2), and the field b lying in the z-direction, so b = ẑ.

The presentation becomes opaque when both coefficients are employed simultaneously.
We thus consider each one in turn. Considering only η3 /= 0, we set η = η4 = 0 and η2 =
η1 = −ζ1 = 0. The corresponding odd stress tensor in polar cylindrical coordinates reads
(cf. figure 2)

σ ′ = ηo

⎛
⎜⎜⎜⎝

−
(
∂rvφ − 1

r
vφ + 1

r
∂φvr

)
∂rvr − 1

r
vr − 1

r
∂φvφ 0

∂rvr − 1
r
vr − 1

r
∂φvφ ∂rvφ − 1

r
vφ + 1

r
∂φvr 0

0 0 0

⎞
⎟⎟⎟⎠ , (2.3)

by identifying ηo (> 0) with −η3. In Khain et al. (2022), ηo also appears as coefficient
−ηo

1. Since the liquid is three-dimensional, there is a third velocity component vz, related
to vr and vφ through the isochoric constraint

∂r(rvr)+ ∂φvφ + r ∂zvz = 0. (2.4)

For the sake of clarity, in (2.3) we have chosen only one of the coefficients that appear in
the stress (2.2) to characterize our odd viscous liquid. This is done so that the fluid flow
behaviour associated with this coefficient becomes uncoupled to other types. It would be
possible to also consider non-zero η4 (corresponding to ηo

2 in Khain et al. 2022). We thus
revisit the current problem in § 8 by considering the η4 viscosity coefficient in (2.2) both
individually and in conjunction with ηo.
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z

r

vz

vr

vφ

Figure 2. Three-dimensional odd viscous liquid in cylindrical coordinates, with velocity field
v = vr r̂ + vφ φ̂ + vzẑ.

3. Three-dimensional waves in an odd viscous liquid

3.1. Axisymmetric inertial-like waves
In this paper, we assume tacitly the existence of an axis of anisotropy in the z-direction,
established by a secondary mechanism such as a magnetic field or rotation, to which,
however, we make no reference. Consider an inviscid liquid endowed with odd viscosity
as in (2.3), and an axially symmetric wave propagating along the axis of the magnetic
field. Following Landau & Lifshitz (1987, § 14), we consider cylindrical polar coordinates
r, φ, z (cf. figure 2); the fields are independent of φ, we neglect nonlinear terms (assuming
small-amplitude motions), and the time and axial dependence are given by the factor
exp[i(kz − ωt)] where the frequency ω and wavenumber k along the axis are both real.
Employing the constitutive law (2.3), the linearized equations of motion (see Appendix A)
become

−iωvr = − 1
ρ

∂p′

∂r
− νo

[
1
r
∂

∂r

(
r
∂vφ

∂r

)
− vφ

r2

]
, (3.1)

−iωvφ = νo

[
1
r
∂

∂r

(
r
∂vr

∂r

)
− vr

r2

]
, (3.2)

−iωvz = − ik
ρ

p′, (3.3)

where p′ is the variable part of the pressure in the wave, and ρ is the liquid’s constant
density. The equation of continuity is

1
r
∂

∂r
(rvr)+ ikvz = 0. (3.4)
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Because of (3.3) and continuity,

p′/ρ = ωvz/k = iω
k2

1
r
∂

∂r
(rvr), (3.5)

and the identity
∂

∂r

(
1
r
∂

∂r
(rvr)

)
= 1

r
∂

∂r

(
r
∂vr

∂r

)
− vr

r2 , (3.6)

we obtain
1
ρ

∂p′

∂r
= iω

k2

[
1
r
∂

∂r

(
r
∂vr

∂r

)
− vr

r2

]
. (3.7)

Thus, introducing the linear operator

L = ∂2
r + 1

r
∂r − 1

r2 , (3.8)

the r and φ momentum equations become

−iωvr = −i
ω

k2 Lvr − νoLvφ, (3.9)

−iωvφ = νoLvr. (3.10)

Expressing the velocities vr and vφ in terms of Bessel or modified Bessel functions,
vr = A Jm(κr), vφ = B Jm(κr), or vr = A Im(κr), vφ = B Im(κr), etc. (where A and
B are constants, and κ is an eigenvalue), we find that m = 1. With the identity
L J1(κr) = −κ2 J1(κr), the system (3.9) and (3.10) has a solution when the determinant
κ4k2ν2

o − ω2(κ2 + k2) of the coefficients of the resulting linear system

Ak2ω − κ2(iνoBk2 − Aω) = 0 and iνoAκ2 + ωB = 0 (3.11a,b)

vanishes. Consider first the case where the origin is included in the domain. It is not
difficult to show that the solution is the Bessel function J1(κr) for which κ satisfies

κ2 = ω
ω ±

√
ω2 + (2k2νo)2

2k2ν2
o

. (3.12)

Thus overall we found

vr = A J1(κr) ei(kz−ωt), vφ = −iA
νoκ

2

ω
J1(κr) ei(kz−ωt), vz = iA

κ

k
J0(κr) ei(kz−ωt).

(3.13a–c)

The motion comprises regions between coaxial cylinders with radius rn such that

rnκ = γn, (3.14)

and γn are the zeros of J1(x). Both vr and vφ vanish at these coaxial cylinders, and the fluid
does not cross them. The allowed values of the frequency ω in (3.12) are not restricted in
any way in the infinite medium under consideration. (In contrast, in the rotating fluid case
where κ = k

√
4Ω2/ω2 − 1, the angular velocity Ω of the liquid is required to satisfy

the bound ω < 2Ω , for the solution to be finite.) In defining (3.12), we have assumed
tacitly that the solutions that we pursue are finite in the radial direction r and have thus
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discarded κ terms associated with (exponentially increasing/decreasing) modified Bessel
function solutions. The κ terms in our discussion are always real (which can be justified
by choosing large ω, for instance).

Employing the radial and azimuthal momentum equations (3.1) and (3.2), we can
now give a more satisfying explanation of the ‘elasticity’ of an odd viscous liquid
and its tendency to restore a fluid particle back to its original position. Following
Davidson (2013, § 1.1) and Yih (1988, § 5), consider a circular ring of fluid in an odd
viscous liquid with zero shear viscosity, located wholly on the x–y plane. By some
perturbation, the ring starts moving outwards with velocity vr > 0, and thus expands, so
that ∂rvr + (1/r)vr + (1/r) ∂φvφ > 0, where the last expression is the divergence of the
velocity field in two dimensions. Rewrite (3.9)–(3.10) as

− iω
(

1 + κ2

k2

)
vr = Fr, −iωvφ = Fφ, (3.15a,b)

where Fr ≡ −νoLvφ = νoκ
2vφ and Fφ ≡ νoLvr = −νoκ

2vr. Since vr > 0, the second
equation of (3.15) implies that there will be an azimuthal force Fφ = −κ2νovr < 0, an
acceleration of the liquid in the −φ̂ direction, and a commensurate negative velocity vφ ,
where we employed the eigenvalue −κ2 of the linear operator L in (3.8). This velocity will
give rise to a radial force Fr = −κ2νo |vφ| in the first equation of (3.15). This force endows
the ring with an acceleration that points towards the origin, that is, towards the original
location of the fluid ring, so it tries to reverse its expansion (the pressure contributes the
−iω(κ2/k2) term in (3.15)). As the ring passes through its original position due to inertia
and contracts, ∂rvr + (1/r)vr + (1/r) ∂φvφ < 0, there will be a new azimuthal velocity
component with sign opposite to the above one, that will lead to an eventual expansion
towards equilibrium.

3.2. Axial inertial-like waves interior to a cylinder
We consider the liquid confined within a solid cylindrical surface located, say, at r = a,
that would be realistic in a laboratory setting. This boundary will be a streamline located
at an integral number of cells in the radial direction. If by γn we denote the nth zero of the
Bessel function J1, then (3.12) with the condition κa = γn leads to the constraint

a

(
ω
ω +

√
ω2 + (2k2νo)2

2k2ν2
o

)1/2

= γn, (3.16)

and n denotes the number of cells in the radial direction (cf. figure 3). From (3.16), we
derive the dispersion relation

ω = νokγ 2
n

a
√

k2a2 + γ 2
n
, (3.17)

where n denotes the number of cells in the radial direction. (For clarity, we have suppressed
the symbol ± in (3.17), and consider only the positive sign.) It is clear that in the limit ka �
γn, the frequency in (3.17) becomes ω ∼ νo/a2, which recovers the qualitative frequency
(1.4) that we obtained in the Introduction.
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Figure 3. Instantaneous streamlines in the r–z plane with streamfunction (3.18a–c), representing a simple
harmonic wave propagating in the z-direction with phase velocity cp = ω/k (see (3.19a,b)). Vertical lines are
cross-sections of cylinders wrapping around the central axis, and were formed from the zeros of the Bessel
function J1, where vr = 0. The radius b of the external cylinder is determined by the condition κb = γ3, where
γ3 is the third root of the Bessel function J1 in the streamfunction (3.18a–c), or equivalently, in the radial
velocity field in (3.13a–c).

In figure 3, we plot the streamlines interior to a cylinder of radius b with the
instantaneous streamfunction

ψ(r, z) = κ

3.83
r J1(κr) sin(kz), vz = 1

r
∂ψ

∂r
, vr = −1

r
∂ψ

∂z
, (3.18a–c)

for k = 1 and κ = 2 for comparison with figure 7.6.4 of Batchelor (1967, p. 561), which
employs the same form for the streamfunction with the first zero 3.83 of the Bessel
function to modulate the amplitude in the denominator of (3.18a–c). The horizontal lines
are locations where vr = 0 (zeros of the Bessel function).

There is important information to be surmised from the phase and group velocities

cp = νoγ
2
n

a
√

k2a2 + γ 2
n

and cg = νoγ
4
n

a
(
k2a2 + γ 2

n
)3/2 , (3.19a,b)

that we derive from (3.17) (we have suppressed the symbol ± and employed only the
positive sign in (3.17)). Since

cp = cg + aνok2γ 2
n(

k2a2 + γ 2
n
)3/2 > cg, (3.20)

the energy of a disturbance caused by a slowly moving body along the axis of the cylinder,
with velocity cp, cannot advance upstream relative to the body. Waves will be formed in
the downstream direction. We reach the analogous conclusion if we employ the negative
sign in (3.17). This situation is thus similar to the rotating liquid case, where the energy
cannot propagate upstream and thus waves are formed only downstream, as described in
many experiments, e.g. those of Long (1953). We verify these claims in § 3.4 by combining
numerical simulations of the Navier–Stokes equations with the theoretical predictions of
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Taylor columns and inertial-like waves

the present subsection. (Note how the expression for ω in (3.17) contrasts with the inviscid
liquid rotating at angular velocity Ω , where ω = 2Ωk/

√
k2 + (γn/a)2.)

3.3. Allowed wavenumbers
When the number of cells in the radial direction is n, from (3.16) allowed wavenumbers
supporting propagation with phase velocity cp = ω/k, and for which the boundary at r = a
is a streamline, satisfy

ak = γn

((
νoγn

acp

)2

− 1

)1/2

. (3.21)

Wave propagation is thus possible when

acp

νo
< γn, (3.22)

where n denotes the number of cells in the radial direction. Thus although (3.12) does not
introduce a restriction on frequencies for the propagation of waves, (3.21) does: defining a
Maxworthy number Ma based on the phase velocity cp and cylinder radius a (cf. (6.2a,b)
for the definition of the dimensionless number M),

Ma = νo

acp
, (3.23)

inertial motions with n cylinders (nth zero of J1) are possible only when

Ma >
1
γn
. (3.24)

3.4. Numerical determination of odd viscous inertial oscillations inside a cylinder of
radius a

By the inequality (3.20), we argued that, based on the inertial-like waves construction of
§§ 3.1–3.3, the energy of a disturbance caused by a slowly moving body along the axis of
the cylinder, with velocity cp, cannot advance upstream relative to the body. Waves will be
formed in the downstream direction.

To verify this claim, we perform numerical simulations of the full Navier–Stokes
equations of a slowly moving body with velocity U = 0.05 cm s−1 in a cylinder
of base radius a = 25 cm filled with an odd viscous liquid of dynamic coefficient
ηo = 0.7 g (cm s)−1, shear viscosity η = 0.01 g (cm s)−1 and density ρ = 1.1 g cm−3.
Figure 4(b) displays the streamlines in the r–z plane of the liquid downstream of the
moving body, which show wave-like behaviour. To determine the wavelength, the colour
bar shows the strength of the radial liquid velocity vr whose direction changes sign
as we move down. From the plot, we can determine visually that the wavelength λ is
approximately 25 cm. We compare this estimate to the theoretical prediction of §§ 3.1–3.3:
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Figure 4. (a) In the absence of odd viscosity, no radial disturbance is visible as we move down and away from
the body. The colour bar denotes radial velocity. The plot was produced with the finite-element package comsol
by solving the full Navier–Stokes equations including inertial terms in a three-dimensional axisymmetric
domain. (b) Waves generated by a small (3.8 cm) slowly-moving sphere (located at the centre of the cylinder
– upper left of the plot) in an odd viscous liquid contained in a cylinder of radius 25 cm. The colour bar
denotes the strength of the radial liquid velocity vr. Its direction changes sign as we move down and away
from the body, and it is thus responsible for the distortion of the streamlines (in white). From this plot, we
can determine visually the wavelength to be approximately 25 cm. This agrees rather well with the theoretical
estimate 24.476 cm obtained from (3.25).

from (3.21), we find that

λ = 2π

k
= 2πa

γ1

√(νoγ1

aU

)2 − 1

= 24.4764 cm, (3.25)

where γ1 = 3.8317 is the first root of the Bessel function J1. Figure 4(a) displays the
same system as in figure 4(b) but with ηo = 0. No radial disturbance is visible in this
case. Figure 4 was produced with the finite-element package comsol by solving the full
Navier–Stokes equations in a three-dimensional axisymmetric domain. The flow Reynolds
number, based on cylinder radius a = 25 cm, is 125.

This situation is thus analogous to the rotating liquid case where the energy cannot
propagate upstream and thus waves are formed only downstream, as described by the
experiments of Long (1953); cf. Batchelor (1967, pp. 564–566 and plate 24).

3.5. Axial inertial-like waves exterior to a cylinder
The above discussion can also be employed to establish wave propagation when the odd
viscous liquid occupies the region r > a, exterior to a solid cylinder located at r = a. Now,
the solution is of the form of a Bessel function of the second kind in the radial coordinate,

vr = A Y1(κr) ei(kz−ωt), vφ = −iA
νoκ

2

ω
Y1(κr) ei(kz−ωt), vz = iA

κ

k
Y0(κr) ei(kz−ωt),

(3.26a–c)
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Figure 5. Instantaneous streamlines exterior to a cylinder of radius r = α3/κ , where α3 is the third zero of
Y1. This is a simple harmonic wave propagating in the z-direction with phase velocity ω/k. Vertical lines
correspond to zeros of the Bessel function of the second kind Y1, where vr = 0.

and the results of the previous subsections hold with the replacement

J1 → Y1, γn → αn, (3.27a,b)

where αn is the nth zero of Y1(x). In figure 5, we plot the streamlines exterior to a cylinder
of radius b with the instantaneous streamfunction

ψ(r, z) = κ

3.83
r Y1(κr) sin(kz), vz = 1

r
∂ψ

∂r
, vr = −1

r
∂ψ

∂z
, (3.28a–c)

for k = 1 and κ = 2 for comparison with figure 7.6.4 of Batchelor (1967, p. 561).

3.6. Plane-polarized waves induced by odd viscosity
The axisymmetric inertial-like waves that we discussed earlier propagate along the z axis
(the axis of anisotropy) and are three-dimensional in the sense that the wave amplitude
varies along both the propagation direction and normal to it. In this subsection, we will
consider different types of inertial-like waves that propagate along an arbitrary direction
𝓀 and are polarized in the plane perpendicular to the propagation axis. This subsection
follows the notation of Landau & Lifshitz (1987, § 14). The odd-viscous Navier–Stokes
equations

Dv

Dt
= − 1

ρ
∇p + νo ∇2

2 ẑ × v, (3.29)

where ∇2
2 = ∂2

x + ∂2
y and D/Dt is the convective derivative, become, after taking the curl

of both sides,
D
Dt

curl v = (curl v) · ∇v − νo ∇2
2
∂v

∂z
. (3.30)

Linearizing,

∂t curl v = −νo ∇2
2
∂v

∂z
, (3.31)
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Figure 6. (a) Coordinate system employed in plane-polarized waves, showing the definition of angles for the
propagation wavevector k. (b) When the propagation direction is normal to the axis ẑ, the group velocity
cg = ∇kω in (3.41) becomes co-axial to the axis ẑ, and acquires its maximum value.

we seek plane-wave solutions of the form

v = A exp(i(k · r − ωt)), (3.32)

where A is normal to k from the incompressibility condition.
Substituting the plane-wave solution into (3.31), we obtain

ωk × v = iνo(k2
x + k2

y)kzv. (3.33)

Taking the cross-product of both sides of (3.33) with k, we obtain

−ωk2v = iνo(k2
x + k2

y)kzk × v. (3.34)

System (3.33)–(3.34) has a solution when the determinant of the coefficients vanishes.
Solving for ω, we obtain

ω = ±νo(k2
x + k2

y)kz

k
, or ω = ±νok2 cos θ sin2 θ, (3.35)

where k =
√

k2
x + k2

y + k2
z , and the latter equation implies that θ is the angle between k

and the anisotropy axis (cf. figure 6). In figure 7, we plot the dispersion ω (see (3.35))
versus angle θ between the wavevector k and the z (anisotropy) axis. It differs qualitatively
from the corresponding relation

ω = 2Ω cos θ (3.36)

of a (non-odd viscous) inviscid fluid rotating with angular velocity Ω; cf. Greenspan
(1968). Comparing (3.35) with (3.36), when the coefficients νo and Ω are kept constant,
it becomes evident that the dispersion relation (3.35) obtained due to the specific form of
the constitutive law (2.3) that we adopted for an odd viscous liquid becomes prominent for
large in-plane wavenumbers and small corresponding wavelengths.

Following Landau & Lifshitz (1987), we introduce the unit vector k̂ = k/k in the
direction of the wavevector, and the complex amplitude A = a + ib, where a and b are
real vectors. Considering (3.33) and the dispersion relation (3.35), we obtain k̂ × b = a,
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Figure 7. Subsection 3.6 plane-polarized wave dispersionω (see (3.35)) versus angle θ between the wavevector
k and the z (anisotropy) axis (setting k = νo = 1). Of interest is the low-frequency range at θ ∼ π/2 where
group velocity is maximum. This curve structure should be contrasted to the corresponding relation ω =
2Ω cos θ of an inviscid fluid rotating with angular velocity Ω .

that is, the two vectors a and b are perpendicular to each other, are of the same magnitude,
and lie in the plane whose normal is k. Thus the velocity field is polarized circularly in the
plane defined by a and b, and is of the form

v = a cos(k · r − ωt)− b sin(k · r − ωt), a ⊥ b. (3.37)

Employing the negative sign of the dispersion relation (3.35), the above analysis leads
to the same velocity field (3.37) but with the sense of the vectors a and b reversed:
k̂ × b = −a. This will become important in § 4, where the helicity associated with wave
propagation will be determined.

It is of interest to calculate the direction of propagation of energy. We obtain

∂ω

∂kx
= νo

kxkz(k2 + k2
z )

k3 ,
∂ω

∂ky
= νo

kykz(k2 + k2
z )

k3 ,
∂ω

∂kz
= νo

(k2
x + k2

y)
2

k3 , (3.38a–c)

or, taking the z axis to be the axis of anisotropy,(
∂ω

∂kx
,
∂ω

∂ky

)
= kνo sin θ cos θ(1 + cos2 θ)(cosφ, sinφ),

∂ω

∂kz
= kνo sin4 θ. (3.39a,b)

The group velocity cg = ∂ω/∂k in vector form can be written as

∂ω

∂k
= νok

{
k̂(ẑ · k̂)

[
1 + (ẑ · k̂)2

]
+ ẑ

[
1 − 3(ẑ · k̂)2

]}
, (3.40)

which can be compared with its rigidly rotating (non-odd viscous) counterpart
∂ω/∂k = (2Ω/k)[ẑ − k̂(ẑ · k̂)], where the group velocity is perpendicular to the phase
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Odd viscous liquid Rigidly rotating liquid

Low ω k ‖ Ω , cg = 0, and k ⊥ Ω , cg = ±νokẑ (max) k ⊥ Ω , cg = ±2Ω ẑ
k

(max)

High ω θ = cos−1(
√

3/3) ∼ 0.3π k ‖ Ω , cg = 0
cp · cg 2 |cp|2 0
v · curl v ∓k |v|2 ∓k |v|2

Table 1. Summary of odd viscous plane-polarized inertial-like wave behaviour at low and high frequencies
(see (3.35)) and comparison with their rigidly rotating counterparts. Here, cg is the group velocity ∂ω/∂k, and
cp = (ω/k)k̂ is the phase velocity. The group velocity is maximum when the angle is θ = π/2, propagation
takes place perpendicular to the anisotropy axis (ẑ), the group velocity acquires its maximum propagation along
the anisotropy axis, and helicity becomes segregated; cf. § 4. Helicity density v · curl v has the same functional
form in both odd viscous and rigidly rotating liquids. Although in a rigidly rotating liquid the group velocity is
always perpendicular to the phase velocity, in an odd viscous liquid there is dependence on the angle θ (see the
third row of the table), were θ denotes the angle between Ω = Ω ẑ and the propagation direction k; cf. figure 6.

velocity cp = (ω/k)k̂ (see table 1). Here, the group velocity is not perpendicular to the
phase velocity. A calculation gives cg · cp = 2|cp|2 = 2ν2

ok2 cos2 θ sin4 θ . Thus, in contrast
to the case of inertial waves in a rotating fluid where the energy propagates perpendicularly
to the wavevector, here the energy propagation direction has a component along the k̂ axis.
The modulus of the group velocity is∣∣∣∣∂ω∂k

∣∣∣∣ = kνo sin θ
√

5 cos4 θ − 2 cos2 θ + 1. (3.41)

In figure 8, we plot the group velocity components (3.39a,b) and its magnitude (3.41)
versus angle θ between the wavevector k and the z (anisotropy) axis (setting k = νo = 1).

In addition to the information in table 1, the frequency is maximum at θ =
cos−1(

√
3/3) ∼ 0.3π, acquiring the value ω = ±νok2(2

√
3/9). The group velocity

becomes (4kνo/9)(
√

2 cosφ,
√

2 sinφ, 1), and its modulus is cg = 4kνo
√

3/9. In addition,
the group velocity has a local maximum at θ = cos−1(

√
15/5) ∼ 0.22π. The frequency

is ω = ±νok2(2
√

15/25), and the group velocity becomes (4kνo/25)(2
√

6 cosφ,
2
√

6 sinφ, 1), with modulus cg = 4kνo/5. Comparison can be made of (3.41) with
plane-polarized waves rotating rigidly (Landau & Lifshitz 1987, § 14), where |∂ω/∂k| =
(2Ω/k) sin θ .

4. Conservation of helicity of inertial-like waves in an odd viscous liquid

Helicity

H =
∫

V
v · curl v dV = constant (4.1)

was shown by Moffatt (1969) to be an invariant of inviscid fluid motion when n̂ · curl v
vanishes on any closed orientable surface moving with the liquid. Here, we show
that, analogously to the rigidly rotating case, the vorticity of an odd viscous liquid is
proportional to the velocity field. For plane-polarized inertial-like waves, this implies that
helicity is conserved. Since a number of effects appearing in the literature, such as the
emission of inertial waves in a turbulent flow (Davidson 2013, figure 3.3(b)), are related
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Figure 8. Subsection 3.6 plane-polarized wave group velocity components and magnitude (3.39a,b) and (3.41)
versus angle θ between the wavevector k and the z (anisotropy) axis, setting k = νo = 1 (and φ = π/4, for
simplicity). Of interest is the low-frequency range at θ ∼ π/2, where group velocity is maximum. The modulus
of the group velocity should be contrasted to |∂ω/∂k| = (2Ω/k) sin θ in the case of an inviscid rigidly rotating
liquid with angular velocity Ω .

to helicity and its sign, we include some discussion below on the presence of helicity in
odd-viscosity-induced inertial-like waves.

4.1. Conservation of helicity in plane-polarized waves of an odd viscous liquid
From the plane-polarized velocity field (3.37), we obtain curl v = −k × b cos(k · r − ωt)
−k × a sin(k · r − ωt). The relation k̂ × b = ±a (where the ± symbol corresponds to the
sign of the dispersion relation (3.35)) leads to curl v = ∓kv, thus

v · curl v = ∓k |v|2 and H =
∫

V
v · curl v dV = ∓k |v|2 V, (4.2a,b)

where |v|2 = |a|2 + |b|2 is the constant magnitude of the velocity in (3.37), V is the
volume of the region under consideration, and k =

√
k2

x + k2
y + k2

z . The negative sign in
(4.2a,b) (corresponding to the positive sign in the dispersion relation (3.35)) is associated
with particle paths following left-handed helices, and the positive sign is associated with
right-handed helices. Energy propagates along a cone whose normal is the vector k̂ (cf.
Davidson (2013) for the case of a rigidly rotating liquid).

Inertial-like waves give rise to maximal helicity. This can be seen by substituting
(4.2a,b) into the the Cauchy–Schwarz inequality H2 ≤ EW expressed in terms of the
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helicity (4.1) and the energy and enstrophy integrals (Moffatt 1969)

E =
∫

V
v2 dV, W =

∫
V
(curl v)2 dV. (4.3a,b)

As shown by Moffatt (1970) for the case of rigidly rotating liquids, inertial waves exhibit
a loss of reflection symmetry when the energy propagates parallel to the rotation axis
(and the phase velocity is perpendicular to this axis). Davidson (2013) associates each
direction of propagation of energy with one of the signs of helicity in (4.2a,b): negative
sign of helicity for energy propagating in the +ẑ direction, and positive sign of helicity for
energy propagating in the −ẑ direction. This is called the ‘segregation of helicity’ and has
found applications in problems of magnetohydrodynamics (Davidson 2013; Davidson &
Ranjan 2018). The waves that correspond to this type of behaviour have low frequencies
(the frequency ω in (3.35) is nearly zero). The consequence of this behaviour in an odd
viscous liquid can be seen more easily by going back to the original equation of motion
(3.29). Linearizing, and taking the limit ω → 0, amounts to dropping the time derivative.
Then the equation of motion becomes (5.1a–c) of the next section, which makes the
dynamics effectively two-dimensional (perpendicular to the anisotropy axis), leads to the
Taylor–Proudman theorem, and gives rise to Taylor columns.

4.2. Helicity in axisymmetric inertial-like waves of an odd viscous liquid
It turns out that vorticity is also parallel to the velocity field for the inertial-like waves
of § 3.1. This can be shown directly by taking the curl of the velocity field (3.13a–c) and
solving in expression (3.12) for the frequency ω = νokκ2/

√
k2 + κ2. (In contrast to the

previous section, k here denotes the wavenumber kz along the axis; cf. § 3.1.) Alternatively,
setting A = a eiθ for real amplitude a and phase θ , we obtain

vr = a J1(κr) cos(kz − ωt + θ), vφ = νoκ
2

ω
a J1(κr) sin(kz − ωt + θ), (4.4a,b)

and vz = −(κ/k)a J0(κr) sin(kz − ωt + θ). In either case, the final result is

curl v = ∓
√

k2 + κ2 v and v · curl v = ∓
√

k2 + κ2 |v|2. (4.5a,b)

When the liquid is contained in a solid cylinder of radius b, ω is replaced by (3.17) and κ
by γn/b, where γn is the nth zero of J1(x).

5. Modified Taylor–Proudman theorem

For simplicity, we consider Cartesian coordinates. The ‘geostrophic’ form (i.e.
Navier–Stokes with odd viscosity, without inertia and without shear viscosity) of the
equations is

1
ρ

∂p
∂x

= −νo ∇2
2v,

1
ρ

∂p
∂y

= νo ∇2
2 u,

∂p
∂z

= 0, (5.1a–c)

where ∇2
2 = ∂2

x + ∂2
y . This reduction is possible by invoking the requirement u  νo/�,

where u and � are characteristic velocity and length scales, respectively. This inequality
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can be derived by balancing the inertial terms v · ∇v ∼ u2/� with the odd viscous term
νo ∇2

2 u ∼ νou/�2, and requiring that latter is dominant, or in other words,

|v · ∇v|  |νo ∇2
2v| and |νe ∇2v|  |νo ∇2

2v|, (5.2a,b)

where the latter inequality implies subdominance of shear viscosity with respect to odd
viscosity. These two inequalities lead us to define new dimensionless Taylor T and
Maxworthy M parameters that will be discussed in the next section (see (6.2a,b)).

Differentiating (5.1a,b) with respect to z and considering (5.1c), we obtain

∇2
2∂zu = 0 and ∇2

2∂zv = 0. (5.3a,b)

Eliminating the pressure by cross-differentiation of (5.1a,b), we obtain

∇2
2 (∂xu + ∂yv) = 0. (5.4)

Thus, from continuity we also obtain

∇2
2∂zw = 0. (5.5)

Defining
(U,V,W) = �2 ∇2

2 (u, v,w) (5.6)

(the length scale is determined, for instance from the size of the vessel), we derive the
Taylor–Proudman theorem for the velocity field (U,V,W), that is,

∂zU = ∂zV = ∂zW = 0, (5.7)

and this can be considered as a liquid in a frame rotating with angular velocityΩ = νo�
−2.

Thus when the odd viscosity terms are larger than inertia, there is a superposition of a
two-dimensional motion in the lateral x–y plane and a vertical motion, independent of z.

Some familiar behaviour at a boundary can also be recovered. Because of the
no-penetration condition w = 0 on a solid boundary, we have W = 0 on the same
boundary ((∂2

x + ∂2
y )w must be zero on the boundary). Thus when a streamline parallel

to the axis meets a stationary boundary, this implies that W is zero everywhere.
For axisymmetric systems, a further simplification takes place. Letting Vr = Lvr and

Vφ = Lvφ , where L was defined in (3.8), (5.1a–c) become

νoVφ = − 1
ρ

∂p
∂r

and −νoVr = 0. (5.8a,b)

Thus Vr is zero everywhere, and the flow proceeds in spirals. With Vz = Lvz, the
continuity equation becomes ∂rVr + ∂zVz = 0. Thus ∂zVz = 0 everywhere, giving rise to
the Taylor–Proudman theorem.

6. Taylor columns in an odd viscous liquid

The Navier–Stokes equations (5.1a–c) written in the form

1
ρ

∂p
∂x

= −νo

a2 V,
1
ρ

∂p
∂y

= νo

a2 U,
∂p
∂z

= 0, (6.1a–c)

by employing the definitions of U, V and W in (5.6), are suggestive of the existence of
Taylor columns in an odd viscous liquid. By this we mean that when an axisymmetric
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body moves slowly in an odd viscous liquid, a column or a ‘slug’ will be pushed ahead
of the body with zero axial velocity relative to the body. In the inviscid limit implied by
(6.1a–c) (meaning that the shear viscosity is zero), the column is a cylinder, but it will be
modified by the presence of shear viscosity. A rear slug will also be present. In general, the
motion of the liquid in the slug cannot be determined from the simple equations (6.1a–c).
In reality, a number of boundary layers exist that act as a conduit that transports liquid
between different locations.

The determination of the flow structure is not only difficult but also changes dramatically
when one alters the parameters and the geometry. Taylor columns were studied in the
past in the context of slowly moving bodies immersed in a liquid rotating rigidly; see, for
instance, the comprehensive articles Moore & Saffman (1968), Maxworthy (1970), Bush,
Stone & Tanzosh (1995) and Tanzosh & Stone (1994), and references therein.

We can define some useful dimensionless parameters for the odd-viscosity-dominated
problems, such as the Taylor T and Maxworthy M numbers (Maxworthy (1970) employed
the notation N to denote the rotating counterpart of the latter):

T = νo

νe
, M = νo

aU
. (6.2a,b)

To understand how (6.1a–c) arise, we introduce dimensionless variables

X = x
a
, T = Ut

a
, V = v

U
, P = pa

ρνoU
, (6.3a–d)

and the dimensionless form of the Navier–Stokes equations that includes shear viscosity,
scaled by the velocity U and size a of a slowly moving body, becomes

M−1 DV
DT

= −∇P + ∇2
2 ẑ × V + T −1 ∇2V, (6.4)

where the gradient operators refer to the dimensionless variables (6.3a–d). In the limit of
Taylor and Maxworthy numbers T ,M � 1, as defined in (6.2a,b), one obtains (6.1a–c).

The Taylor number can be understood as an inverse Ekman number denoting the strength
of odd to even viscosity (angular velocity to even viscosity in the rotating fluid case),
and the Maxworthy number is the ratio of odd viscous force to inertial forces or the
odd-viscosity-induced inertial wave propagation velocity to convection velocity.

We can compare the Maxworthy number M in (6.2a,b) for an odd viscous liquid to
the inverse Rossby number Ro−1 = Ωa/U in (B1a,b) when the parameters νo and Ω are
held constant. It is clear that Taylor columns in an odd viscous liquid are favoured at small
(in-plane) length scales, while Taylor columns are favoured at large length scales in rigidly
rotating liquids. This is clear due to the fact that odd viscosity multiplies second-order
spatial derivatives. Even if its value is small and unimportant in general, observable effects
will be present close to boundaries, such as sharp boundary layers. Thus one should
consider odd viscous effects (described by the specific constitutive law (2.3)) under the
restrictions posed by this discussion, which might limit the applicability of the odd viscous
liquids in comparison to their (non-odd viscous) rotating counterparts.

The pressure p is a streamfunction and thus constant on a streamline of the flow
(U,V,W). A finite-length cylinder with generators parallel to the rotating axis and moving
horizontally in a rotating liquid will have a liquid velocity parallel to its generators, and a
column will accompany its motion (Yih 1988, § 12.2). Likewise, a solid body translating
slowly along the axis of the cylinder will be accompanied by a column of fluid with
generators parallel to the axis.
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Figure 9. Distribution of (a) azimuthal and (b) axial velocity in an odd liquid moving slowly and meeting an
immobile sphere (of radius 3.8 cm) located at elevation z = 50 cm at the centre axis of a cylinder. Liquid enters
from the top (z = 100 cm) and exits at the bottom (z = 0). The sphere is not allowed to rotate. Counter-rotation
of liquid takes place above and below the sphere in the azimuthal direction (this was also observed by Khain
et al. (2022, figure 4c) for the analogous problem in Stokes flow). A Taylor-type column is also visible in
(b), placed symmetrically above and below the sphere.

Figures 9 and 10 display the salient features of Taylor columns in odd viscous liquids.
Liquid flow entering from the top of a cylinder encounters an immobile sphere located at
the central axis. The two ‘slugs’ located above and below the sphere in figures 9(b) and 10
are characterized by the sharp blue colour. There is a swirling flow that takes place above
and below the sphere with opposite sense of rotation (figure 9a). This is discussed further
below.

The exact form of a flow associated with Taylor columns induced by a solid body is
a complicated problem depending on parameter regimes (Ekman, Reynolds and Rossby
numbers) as well as the geometry (finite or infinite cylinder) of the body and ultimately
its constitution (whether it is a solid or a liquid). Here, we will not pause to carry out a
detailed enumeration of special cases arising in the various parameter regimes, geometries
and materials; we will only point out certain qualitative similarities that exist between an
odd viscous liquid and a rigidly rotating flow.

Figure 11 displays azimuthal and axial velocities of the liquid flowing in the cylinder of
figures 9 and 10. Probes located at different elevations of the cylinder measure velocities
as they vary in radial direction, from the cylinder central axis to its external surface,
with a view to comparing our results to the experiments of Maxworthy (1970). In these
numerical simulations, the Taylor and Maxworthy numbers are T = 50 and M = 26,
respectively.

We find a velocity defect region (at z = 70 cm; cf. region I in the experiments of
Maxworthy 1970), that is, the region where the velocity is less than that of the free stream.
This is surrounded by the region 5 < r < 15, which has a velocity in excess of that of
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Figure 10. Three-dimensional realization of odd viscous flow around an immobile sphere (of radius 3.8 cm)
located at elevation z = 50 in a moving cylinder with liquid entering from the top (z = 100 cm) and exiting at
the bottom (z = 0), with the cylinder speed (the sphere is not allowed to rotate). The colour bar denotes the
strength of the axial velocity w. A Taylor column of low axial velocity is visible circumscribing the sphere
and surrounding the central axis. Parameters employed to produce this figure are odd viscosity coefficient
ηo = 0.5 g (cm s)−1, shear viscosity η = 0.01 g (cm s)−1, cylinder radius 20 cm, sphere radius 3.8 cm, cylinder
height H = 100 cm, liquid density ρ = 1 g cm−3, and liquid velocity in the −ẑ direction U = 0.01 cm s−1.
These give a Taylor number based on the sphere length scale T = 50 and Maxworthy number M = 26.316;
see (6.2a,b).
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Figure 11. Plots of (a) azimuthal velocity vφ and (b) axial velocity vz, versus distance r from the central axis of
the cylinder of figure 10, for an odd viscous liquid past a stationary sphere of radius 3.8 cm, located at elevation
z = 50 cm. Each curve corresponds to a specific elevation in the cylinder where a probe has been placed. Two
probes are located below the sphere at z = 30 and 45 cm, one lies at the level of the sphere (z = 50 cm), and
two are located above the sphere at z = 55 and 70 cm. Plot (a) shows the counter-rotating azimuthal velocity
components above and below the sphere, as was also depicted in figure 9(a). The magnitude of the azimuthal
velocity decreases as one approaches the cylinder lids (at z = 0 and 100 cm) because liquid entering or leaving
the cylinder has been set to have a vanishing azimuthal velocity component. The axial velocity of the liquid in
(b) shows similarities (and differences) with respect to the analogous flow of a fluid in a rotating cylinder, as
was described clearly by Maxworthy (1970, figure 7).
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the free stream (region V in the experiments of Maxworthy 1970). The flow at z = 30 cm
is narrower and has larger axial velocity than its mirror counterpart (at z = 70 cm). Its
angular velocity seems to be of the same magnitude compared with its mirror image (and
this differs from the flow character in region VII of Maxworthy 1970).

The probe at z = 55 cm has a zero axial velocity close to the axis as this is determined
by the Taylor–Proudman theorem, that the axial velocity of the slug is the same as the
velocity of the body. The swirl, however, is non-zero and is actually quite large. This is
region II in the experiments of Maxworthy (1970). An Ekman layer induces a slow axial
velocity where the surface of the sphere meets the anisotropy axis (close to the z = 45 cm
probe, and near r = 0). A sharp Ekman boundary layer is seen to form at z = 50 cm,
r ∼ 4 cm.

We have not observed an oscillatory region downstream of the sphere (region III of
Maxworthy 1970), and we have not determined whether a region of clear fluid exists
downstream and adjacent to the anisotropy axis.

Figures 9(a) and 11(a) show the counter-rotating character of the flow above and below
the sphere, similar to figure 1 of Moore & Saffman (1968). The above discussion displays
an indirect verification for the validity of the Taylor–Proudman theorem in the case of
odd viscous flow with a velocity field (vr, vφ, vz), where vz has the velocity of the body
(vz = 0), vr is virtually zero, and the flow outside the column is independent of z.

7. Vortex stretching and vortex twisting in a three-dimensional odd viscous liquid

The constitutive law (2.3) can be written in Cartesian coordinates in the form

σ ′ = ηo

⎛
⎝−(∂xv + ∂yu) ∂xu − ∂yv 0

∂xu − ∂yv ∂xv + ∂yu 0
0 0 0

⎞
⎠ . (7.1)

It is possible to define a modified pressure p̃ = p + ηoζ , where ζ = ∂xv − ∂yu here is the
component of vorticity in the z-direction. Then the odd Navier–Stokes equations are

ρ
Du
Dt

= −∂xp̃ + ηo ∂y(∂zw), ρ
Dv
Dt

= −∂yp̃ − ηo ∂x(∂zw), ρ
Dw
Dt

= −∂zp̃ + ηo ∂zζ.

(7.2a–c)

What these equations show is that vortex stretching ∂zw will be important on a region in
the x–y plane with vorticity ζ . To show this, let curl v = (ξ, η, ζ ) be the components of
vorticity in Cartesian coordinates, and consider a fluid particle whose vorticity points in
the z-direction instantaneously (we perform this to simplify the nonlinear term curl v · ∇v
that arises in the vorticity equation (3.30)). Taking the curl of (7.2a–c), or considering
directly the vorticity equation (3.30), we obtain

Dξ
Dt

= (ζ − ηo ∇2
2 ) ∂zu,

Dη
Dt

= (ζ − ηo ∇2
2 ) ∂zv,

Dζ
Dt

= (ζ − ηo ∇2
2 ) ∂zw. (7.3a–c)

Thus the well-known vortex twisting, represented by the quantities ∂zu and ∂zv (cf. Tritton
1988, § 6.6), is now enhanced by the extra term ηo(k2

x + k2
y) appearing in the round brackets

in (7.3a–c), induced by odd viscosity. Likewise, vortex stretching, represented by the
quantity ∂zw, is also enhanced by odd viscosity.
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Of course, for a two-dimensional incompressible odd viscous liquid where the velocity
does not depend on z, we have

Dζ
Dt

= 0, (7.4)

as is also known from the ‘absorption’ of the odd viscous force density into the pressure
gradient see e.g. Ganeshan & Abanov 2017), thus the vorticity of a fluid particle in a
two-dimensional odd viscous liquid is conserved.

8. The effect of both ηo and η4 odd coefficients on fluid flow

Referring to the stress tensor (2.2), in this paper we assumed tacitly that only the coefficient
η3 was non-vanishing, which led the odd stress tensor to acquire the form (7.1) in Cartesian
coordinates. The coefficient η4 in (2.2) gives rise, however, to an additional odd stress
tensor. In this section, we discuss the consequences of the latter, in the context of the
effects developed in this paper.

As in § 2, we consider the field b to lie in the z-direction. Then the odd stress tensor
acquires the additional components

σ ′ = η4

⎛
⎝ 0 0 −(∂yw + ∂zv)

0 0 ∂xw + ∂zu
−(∂yw + ∂zv) ∂xw + ∂zu 0

⎞
⎠ , (8.1)

where we adopted the opposite sign to Lifshitz & Pitaevskii (1981, equation (58.16)). We
proceed below to examine the form of inertial-like waves in an odd viscous liquid whose
constitutive law is the combination of (7.1) and (8.1).

8.1. Plane-polarized waves
We define the linear operator

S = (νo − ν4)∇2
2 + ν4 ∂

2
z , (8.2)

where ν4 = η4/ρ, and ∇2
2 = ∂2

x + ∂2
y . To obtain an understanding of the effect of odd

viscosity parameters on the type of solutions, we classify the operator S in (8.2) as follows
(assume here that ν4 > 0):

(i) S is elliptic when νo > ν4;
(ii) S is hyperbolic when νo < ν4;

(iii) S is parabolic when νo = ν4.

Here, we have assumed that z plays the role of the time-like variable. This is the standard
route followed in rigidly rotating liquids; see Whitham (1974, § 12.6). With the notation
ζ = ∂xv − ∂yu for the component of vorticity in the z-direction, and a modified pressure
p̃ = p + η4ζ , the Navier–Stokes equations (3.29) are replaced by

Dv

Dt
= − 1

ρ
∇p̃ + S ẑ × v, (8.3)

and the vorticity equation (3.31) by

∂t curl v = −S ∂v
∂z
. (8.4)

With v = A exp(i(k · r − ωt)), the vorticity equation (8.4) becomes a system of three
equations for the three unknown components of the amplitude A. This system has a

973 A30-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

76
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.769


Taylor columns and inertial-like waves

non-trivial solution when the determinant of the matrix⎛
⎜⎝

−ikz S(k) ωkz −ωky

−ωkz −ikz S(k) ωkx

ωky −ωkx −ikz S(k)

⎞
⎟⎠ (8.5)

vanishes. Here,
S(k) = −(νo − ν4)(k2

x + k2
y)− ν4k2

z . (8.6)

The dispersion relation becomes

ω = ∓S(k) kz

k
or ω = ± cos(θ) k2

[
νo − ν4 − (νo − 2ν4) cos2 θ

]
. (8.7)

Here and below, the reader can keep in mind the parabolic case νo = ν4 and the elliptic
case νo = 2ν4 (parabolic and elliptic with respect to the operator S in (8.2)), which
simplify all relations significantly and are to be discussed in what follows.

We display the dispersion (8.7) for νo = 0 in figure 12(a), to be compared with figure 7.
This dispersion relation is interesting as it crosses the ω = 0 axis at angle θ = π/4
(different to the π/2 of rigidly rotating liquids or the ηo of odd viscous liquid). Likewise,
it has an inflection point at θ /=π/2, which signals the presence of a maximum for the
group velocity that differs from those of rigidly rotating liquids and the ηo of odd viscous
liquid. The group velocity (3.39a,b) is replaced by(

∂ω

∂kx
,
∂ω

∂ky

)
= ±k

(
(νo − 2ν4) cos2 θ + νo − ν4

)
sin θ cos θ (cosφ, sinφ), (8.8)

∂ω

∂kz
= ±k

(
(νo − 2ν4) cos4 θ + (−2νo + 5ν4) cos2 θ + νo − ν4

)
, (8.9)

with modulus

|cg| = k
[
−5(νo − 2ν4)

2 cos6 θ + (7νo − 16ν4)(νo − 2ν4) cos4 θ

− 3(νo − ν4)(νo − 3ν4) cos2 θ + (νo − ν4)
2
]1/2

. (8.10)

Its components and modulus are displayed in figure 12(b) for the case νo = 0. The modulus
of the group velocity displays a maximum at θ /=π/2, as expected from the properties of
the corresponding dispersion relation (8.7).

When the flow field is determined by the plane-polarized waves v = A exp(i(k · r − ωt))
considered in this section, its helicity is conserved for an odd viscous liquid that
incorporates both constitutive laws (7.1) and (8.1). That is the case because in wavenumber
and frequency space, the linearized vorticity equation (8.4) can be written in the form

− iωB = −iAkz S(k), (8.11)

when curl v = B exp(i(k · r − ωt)) and S(k) is defined in (8.6). Since ω = ∓S(k) (kz/k)
(from (8.7)), we obtain B = ∓kA, or

curl v = ∓kv. (8.12)

Thus the helicity of the flow field determined by the odd stress tensors (7.1) and (8.1) is
conserved:

v · curl v = ∓k |v|2. (8.13)
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Figure 12. (a) Plane-polarized wave dispersion ω (see (8.7)) versus angle θ between the wavevector k and the
z (anisotropy) axis (setting k = −ν4 = 1, νo = 0). It differs qualitatively from its ηo /= 0 counterpart displayed
in figure 7 (and here denoted by the dash-dotted curve) by crossing the ω = 0 axis at angles different from
π/2. The case η0 = 2η4, discussed in detail in § 8.3, is denoted by the dashed curve. (b) Group velocity
magnitude versus angle θ between the wavevector k and the z (anisotropy) axis, setting k = −ν4 = 1, νo = 0.
The magnitude develops maxima at angles θ /=π/2, differing from those of the rigidly rotating liquid or the
ηo odd viscous liquid (here denoted by the dash-dotted curve); cf. figure 8. The case η0 = 2η4, discussed in
detail in § 8.3, is denoted by the dashed curve.

In addition, cg · cp = 2[(νo − 2ν4) cos2 θ − νo + ν4]2k2 cos2 θ = 2 |cp|2, so the last two
rows of table 1 remain unchanged.

Equation (8.3) can be employed to investigate the possibility of Taylor column formation
in an odd viscous liquid that incorporates the stress tensor (7.1) and (8.1). Dropping the
left-hand side of (8.3), it reads, in component form,

1
ρ

∂ p̃
∂x

= −Sv, 1
ρ

∂ p̃
∂y

= Su,
∂ p̃
∂z

= 0, (8.14a–c)

and carrying out the same manipulations as in § 5, we obtain the conditions

∂zSu = ∂zSv = ∂zSw = 0 and ∂xSu + ∂ySv = 0, (8.15a,b)

which replace (5.7). The forms of equations (8.14a–c) and (8.15a,b) are appealing and
resemble (5.1a–c) and (5.7), respectively. They still lead to Taylor-column-like structures,
which, however, are not identical to those of rigidly rotating liquids.

8.2. Axisymmetric inertial-like waves when ηo, η4 /= 0
We express the constitutive law (8.1) in cylindrical coordinates as

σ ′ = η4

⎛
⎜⎜⎜⎜⎜⎝

0 0 −
(

1
r
∂φvz + ∂zvφ

)
0 0 ∂rvz + ∂zvr

−
(

1
r
∂φvz + ∂zvφ

)
∂rvz + ∂zvr 0

⎞
⎟⎟⎟⎟⎟⎠ , (8.16)
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and repeat the construction of axial waves of § 3.4. The linearized equations of motion
(see Appendix A) become

−iωvr = − 1
ρ

∂p′

∂r
− (νo − ν4)

[
1
r
∂

∂r

(
r
∂vφ

∂r

)
− vφ

r2

]
+ ν4k2vφ, (8.17)

−iωvφ = (νo − ν4)

[
1
r
∂

∂r

(
r
∂vr

∂r

)
− vr

r2

]
− ν4k2vr, (8.18)

−iωvz = − ik
ρ

p′ − ikν4
1
r
∂

∂r
(rvφ), (8.19)

where we simplified (8.18) by employing the incompressibility condition (3.4). Introducing
the linear operator (3.8) L = ∂2

r + (1/r) ∂r − 1/r2, the r and φ momentum equations
become

−iωvr = −i
ω

k2 Lvr + ν4(L + k2)vφ − νoLvφ, (8.20)

−iωvφ = −ν4(L + k2)vr + νoLvr. (8.21)

System (8.20)–(8.21) has a solution when the determinant −(νo − ν4)
2k2κ4 +

(−2k4νoν4 + 2k4ν2
4 + ω2)κ2 − k2(k2ν4 − ω)(k2ν4 + ω) of the coefficients of the

resulting linear system

iBk4ν4 + i(νo − ν4)κ
2Bk2 − A κ2ω

k2ω
− A = 0 and − iA

(
(νo − ν4)κ

2 + k2ν4
)

ω
− B = 0

(8.22a,b)

vanishes.
The velocity field is again expressed with respect to Bessel functions: vr = A J1(κr) and

vφ = B J1(κr). For real ω and k, the eigenvalue κ is

κ2 = ±ω
√

4(νo − ν4)(νo − 2ν4)k4 + ω2 + ω2 − 2k4ν4(νo − ν4)

2(νo − ν4)2k2 . (8.23)

To understand the structure of the solutions, we define the frequency squared parameter α
and quartic power of frequency β of the form

α = ω2 + 2k4ν4(ν4 − νo), β = 4k4(νo − ν4)
2(ω2 − ν2

4k4). (8.24a,b)

With this notation, (8.23) simplifies to

2(νo − ν4)
2k2κ2 = α ±

√
α2 + β. (8.25)

In figure 13, we display all possible κ behaviours inherent in (8.23) and (8.25), and two
cases are summarized in table 2. Thus, referring to figure 13, when η4 ≡ 0, β is positive
and there are two real and two imaginary roots κ (the case considered in § 3.4). When
ηo ≡ 0, α is always positive and α2 + β > 0. Thus when β < 0, there are four real κ
roots. In the opposite case, there are two imaginary and two real roots. In the elliptic case,
ηo = 2η4, there can be four imaginary or two imaginary and two real κ , as tabulated in
table 2. The fact that the operator S in (8.2) is hyperbolic when νo = 0, and elliptic when
νo = 2ν4, is reflected clearly in the type of roots κ and thus the form of the velocity field.
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α

β

2 4 6

–20

–10

0

10

Two complex conjugate pairs κ 

Four imaginary κ Four real κ 

Two real and two imaginary κ 

β = –α2

Figure 13. Behaviour of roots κ of (8.23) and (8.25) in the parameter space (α, β) defined in (8.24a,b). This
includes the oscillatory Bessel functions for real κ , exponentially increasing/decreasing Bessel functions for
imaginary κ , and exponential oscillating Bessel functions for complex κ .

ω2 < ν2
4 k4 ν2

4 k4 < ω2 < 2ν2
4 k4 ω2 > 2ν2

4 k4

ηo = 0 α + + +
β − + +
κ 4 Re 2 Im + 2 Re 2 Im + 2 Re

ηo = 2η4 α − − +
β − + +
κ 4 Im 2 Im + 2 Re 2 Im + 2 Re

Table 2. Types of roots κ from (8.23)/(8.25), where κ2 ∝ α ±
√
α2 + β according to the sign of the

parameters α and β defined in (8.24a,b) for two special choices of the odd viscosity parameters. In all cases,
α2 + β > 0. Here, Re indicates real κ , and Im indicates imaginary κ .

Finally, of interest might also be the parabolic case where νo = ν4. This case is separate
from (8.23) since the equations determining κ are of second order in spatial derivatives
(they are fourth order in the case (8.23)). We obtain

κ2 =
(
k4ν2

4 − ω2) k2

ω2 , ω = ± ν4k3
√
κ2 + k2

, (8.26a,b)

giving rise to either two real κ or two imaginary κ , and the dispersion relation.

8.3. The ηo = 2η4 case
The governing differential operator S can be written in the form (νo − 2ν4)∇2

2 + ν4 ∇2,
thus in the limit ν0 → 2ν4, S is just the Laplace operator

S = ν4 ∇2. (8.27)

Mere inspection of the dispersion (8.7), group velocities (8.8)–(8.10) and parameter κ
in (8.23), shows that they all contain the combination νo − 2ν4. Setting this equal to zero
makes the operator S elliptic, which has consequences for the direction of propagation
of data along characteristics, in an odd viscous liquid. The dispersion relation (8.7),
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Figure 14. Distribution of (a) azimuthal and (b) axial velocity in an odd viscous liquid described by the
constitutive laws (2.3) and (8.1) (ηo = 2η4 = 2 g (cm s)−1), moving slowly and meeting an immobile sphere
(of radius 3.8 cm) located at elevation z = 50 cm at the centre axis of a cylinder. Liquid enters from the top
(z = 100 cm) and exits at the bottom (z = 0). The sphere is not allowed to rotate. (a) Counter-rotation of liquid
takes place above and below the sphere in the azimuthal direction, similar to figure 9. (b) A column whose
generators are parallel to the cylinder axis and circumscribes the sphere is also visible, although its axial extent
is smaller than that displayed in figure 9.

ω = −k2((νo − 2ν4) cos2 θ − νo + ν4) cos θ , simplifies significantly, giving

ω = ν4kkz, (8.28)

which recovers the dispersion relation of a Hamiltonian formulation of spinning molecules
(Markovich & Lubensky 2021, equation (8)).

In addition, this combination was shown in a series of experiments of pressure-driven
gas flow (Hulsman et al. 1970, equation (13)) to arise naturally in the limit of low magnetic
field magnitude to pressure, B/p → 0, as was also discussed by Khain et al. (2022). To
this end, in table 2 we display the possible forms of roots κ obtained in (8.23) for the
axisymmetric flow of the odd viscous liquid in a cylinder. Inertial oscillations (real κ)
may be present, but they will be mixed with evanescent waves (imaginary κ), which will
become prominent near the vessel walls.

In figure 12, we display the dispersion relation and group velocity of plane inertial-like
waves for an odd viscous liquid with the combination ηo = 2η4 (dashed curve). In
addition, in figure 14, we repeat the simulations of figure 9 but for the combination
ηo = 2η4. The two figures are similar, which can be attributed to the fact that the governing
differential operator S is elliptic in both cases. In figure 14(b), we observe that a Taylor-like
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column is still present above and below the sphere located on the axis of the cylinder but
its axial extent is reduced in comparison to figure 9(b). The distributions of azimuthal and
axial velocities in the cylinder are very similar to those displayed in figure 11, and are not
repeated here.

9. Discussion

In this paper, we showed that inertial-like waves and Taylor columns are generated in a
three-dimensional odd viscous liquid. Both odd coefficients ηo and η4 that appear in the
constitutive laws (7.1) and (8.1) are nicely tucked away in a compact differential operator S
(see (8.2)) and result in the odd form of the Navier–Stokes equations (8.3) and (8.4). The
flow that arises from the consideration of plane-polarized waves is a Beltrami flow. Thus
its helicity is conserved. The flow field determined by three-dimensional axisymmetric
waves in an odd ηo and η4 liquid has a structure that is determined by the eigenvalues
κ in the argument of the Bessel function J1(κr) (or Y1(κr)), and a classification of
different behaviours is displayed in figure 13. Thus the velocity field can be oscillatory
or exponential increasing/decaying, or a combination of these.

Considering the behaviour of liquids with a single ηo odd viscosity coefficient,
we can isolate two important results that were developed here. First, we observe
inertial oscillations downstream of a slowly moving body whose theoretically determined
wavelength (3.25) is in agreement with its estimate from solutions of the full
Navier–Stokes equations (in a manner analogous to the experiments of Long (1953),
which were in agreement with the theory of inertial oscillations in rigidly rotating liquids;
cf. Batchelor 1967, plate 24). Second, we observe Taylor-column-like behaviour when a
sphere moves slowly along the axis of anisotropy, and this also resembles the behaviour of
a rigidly-rotating liquid, for instance, in the experiments of Maxworthy (1970). The latter
behaviour is to be expected since when the wavevector is perpendicular to the anisotropy
axis, the flow becomes effectively two-dimensional in agreement with the (modified)
Taylor–Proudman theorem that we developed here, suitable for odd viscous liquids. At the
same time, helicity segregation signals the generation of inertial-like waves at the interior
of the column, where information is transported along the anisotropy axis, above the body
and below the body at the group velocity. Referring to existing experiments measuring
the odd viscous coefficients ηo and η4 in pressure-driven flow of polyatomic gases in
the presence of a magnetic field B (cf. Hulsman et al. 1970), the combination ηo = 2η4
becomes prominent in the limit of small ratio of magnetic field to pressure (B/p → 0).
We performed a dedicated discussion of this case in § 8.3, showing that all observables
simplify significantly, and that the fluid flow behaviour is dominated by the character of
the differential operator S defined in (8.2), which reduces to the Laplace operator.

Our theoretical discussion was centred predominantly on an odd viscous liquid with
zero shear viscosity. (In the numerical simulations of the Navier–Stokes equations,
shear viscosity was, however, small but non-zero.) Shear viscosity would just endow the
frequency ω with an imaginary part, as is the case in rigidly rotating liquids; see, for
instance, Chandrasekhar (1961, p. 86, equation (72)).

There is a large number of unexplored phenomena in three-dimensional odd viscous
liquids associated with the findings in this paper. To name a few, consider the effects of:
shear viscosity on Taylor columns, and thus the establishment of Ekman and Stewartson
layers; different flow conditions (e.g. flow incident on a finite length obstacle also
generating Taylor columns); different material properties (e.g. a liquid droplet instead of a

973 A30-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

76
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.769


Taylor columns and inertial-like waves

solid sphere rising slowly in such a liquid; cf. Bush et al. 1995; Bush, Stone & Bloxham
1995); a freely suspended sphere rising slowly in such a liquid; and finally, an experimental
realization of these effects. Also consider determination of criteria for Taylor-column
formation in bounded and unbounded domains. To understand the diversity behind these
issues in the case of rotating liquids, see the review of Bush et al. (1995).

The formulation developed in this paper can prove to be useful in many areas of
research. For instance, one could envision the following application of odd viscous liquid
Taylor columns to materials science. Semiconducting nanowires, employed in diverse
fields such as biological molecule sensing and living cell probing, are manufactured by
the vapour–liquid–solid growth technique, whereby a liquid alloy droplet increases in
size by absorbing material from a vapour phase. Hydrodynamics has been shown to be
an important factor in this process (Schwalbach et al. 2012). Disruption of growth may
take place in the form of instabilities leading the nanowire to adopt distorted shapes
or to develop random extrusions. These instability mechanisms may, however, become
suppressed in the presence of odd viscosity. Slow impinging flow on a nanowire will
circumscribe each one of them to its own Taylor column, thus providing a unidirectional
guide for droplet alloy growth, circumventing the generation of instabilities. Thus
a fundamental related open question concerns the effect that odd viscosity has on
convection.
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Appendix A. Linearized equations of motion

The linearized equations of motion are

∂tvr = − 1
ρ

∂p′

∂r
+ 1
ρ

[
1
r
∂r(rσrr)+ 1

r
∂φσrφ + ∂zσrz − 1

r
σφφ

]
, (A1)

∂tvφ = − 1
ρr
∂p′

∂φ
+ 1
ρ

[
1
r2 ∂r(r2σφr)+ 1

r
∂φσφφ + ∂zσφz + 1

r
(σrφ − σφr)

]
, (A2)

∂tvz = − 1
ρ

∂p′

∂z
+ 1
ρ

[
1
r
∂r(rσzr)+ 1

r
∂φσzφ + ∂zσzz

]
. (A3)

Note that the definition of the stress tensor in fluid mechanics (cf. Landau & Lifshitz
1987) differs from its definition in the continuum mechanics literature, where it is defined
as the transpose. Here, we follow the fluid mechanics notation, as this arises, for instance,
in Landau & Lifshitz (1987).
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Appendix B. Basic facts about rotating fluids

The Rossby and Ekman numbers are

Ro = U
ΩL

, E = ν

ΩL2 . (B1a,b)

In the axisymmetric case where ∂φ = 0, the Taylor–Proudman theorem for the geostrophic
equations

−Ωvφ = − 1
ρ

∂p
∂r
, Ωvr = 0, 0 = ∂p

∂r
(B2a–c)

implies that vr ≡ 0 and thus the streamlines are spirals that wound around circular
cylinders (Yih 1959).

B.1. Taylor columns
The geostrophic equations, in Cartesian coordinates, written in the form

1
ρ

∂p
∂x

= −Ωv, 1
ρ

∂p
∂y

= Ωu,
∂p
∂z

= 0, (B3a–c)

show that the pressure p is a streamfunction and thus constant on a streamline of the
flow. A finite-length cylinder with generators parallel to the rotating axis and moving
horizontally in a rotating liquid will thus be accompanied by a liquid velocity parallel
to its generators, and a column will accompany its motion (Yih 1988, § 12.2). Inside the
column, the velocity can be zero, although viscous liquids are accompanied with special
flows where the velocity does not vanish (Moore & Saffman 1968).

Separate two-dimensional flows exist inside and outside the Taylor column. Liquid
cannot be transferred between these two regions. This is clear in the axisymmetric case
where vr vanishes everywhere (outside the Taylor column). Experimentally, dye that
is outside the Taylor column cannot enter, and dye inside does not exit (Tritton 1988,
figure 16.2). The flow inside the Taylor column is determined by taking into account the
thin shear layers that develop on the lateral surface of the Taylor column and the Ekman
boundary layers on the body and the boundaries (Moore & Saffman 1968).

B.2. Elasticity induced by rotation of an inviscid liquid
Consider a particle of unit mass that moves with speed v perpendicular to the axis of
rotation. Momentum conservation gives

v2

r
= 2Ωv. (B4)

Solving for r, we obtain r = v/2Ω . This implies that the locus of the particle is a
circle. It goes around the circle twice during every revolution of the liquid with period
T = 2πr/v = π/Ω (the vorticity of the liquid in rigid-body rotation is twice the angular
velocity of rotation) (Tritton 1988, § 16.6).

The effect of this constraining tendency is to support inertial waves. As remarked above,
inertial waves exist only when ω < 2Ω since κ = k

√
4Ω2/ω2 − 1 must be real.
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The relations (Taylor–Proudman theorem)
∂u
∂z

= ∂v

∂z
= 0 (B5)

do not allow vortex twisting (the liquid velocity approaching a finite obstacle does not
change relative to the obstacle – vorticity is not generated); see (Tritton 1988, figure 16.5).
This means that the background vorticity resists twisting. On the other hand, the condition

∂w
∂z

= 0 (B6)

resists vortex stretching (vortex tubes do not thin to increase vorticity; see Tritton 1988,
figure 16.6).

Another view of the same effect is to displace a circular ring of fluid outwards to a new
position r. The circulation 2πvr along that ring remains the same according to Kelvin’s
theorem. Thus, the liquid velocity v and scaled inertial force v2/r will be smaller in the
new position. Prior to the displacement, the scaled inertial force v2/r was larger at position
r, and it was balanced exactly by a pressure gradient, which now sees the lower v2/r of
the ring. Thus it will push the ring back towards its original position. The pressure at this
position will push it again outwards, and the ring will experience an oscillatory motion
(Yih 1988, § 5). See also Davidson (2013, chap. 1) for a more detailed explanation of the
same effect. A similar discussion about the restoring effect of the Coriolis force can be
traced back to Batchelor (1967, § 7.6).
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