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Abstract

The generalized conditional symmetry method is applied to study the reduction to finite-
dimensional dynamical systems and construction of exact solutions for certain types of
nonlinear partial differential equations which have many physically significant applications
in physics and related sciences. The exact solutions of the resulting equations are derived
via the compatibility of the generalized conditional symmetries and the considered equa-
tions, which reduces to solving some systems of ordinary differential equations. For some
unsolvable systems of ordinary differential equations, the dynamical behavior and qualita-
tive properties are also considered. To illustrate that the approach has wide application, the
exact solutions of a number of nonlinear partial differential equations are also given. The
method used in this paper also provides a symmetry group interpretation to some known
results in the literature which cannot be obtained by the nonclassical symmetry method due
to Bluman and Cole.

1. Introduction

The reduction to finite-dimensional dynamical systems and construction of exact
solutions are two important problems in the study of nonlinear partial differential
equations (PDEs). The most effective and universal method used is the classical
symmetry method pioneered by Lie [17]. But there exist very important equations
that admit poor Lie symmetries. Various generalizations of the classical method
have been developed, which include the method of partial invariant solutions due to
Ovsiannikov [24], the nonclassical symmetry method due to Bluman and Cole [5], the
direct method of Clarkson and Kruskal [6], the side conditional constraint approach of
Olver and Rosenau [23] and the iteration of nonclassical symmetry method of Nucci
[22]. Those generalizations have been successfully applied to construct exact solutions
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of and present symmetry group classifications for a considerable number of nonlinear
PDEs. Recently Fokas and Liu [9,10] introduced a concept of generalized conditional
symmetry (GCS) and have applied it to construct some physically interesting exact
solutions [9,10,25,26] of some nonlinear PDEs. The method can be thought of as a
generalization of the nonclassical method.

An important class of nonlinear diffusion equations

u, = g(u, ux)uxx + / ( M , UX) (1)

has a wide range of applications in physics and related sciences, for example, in
biophysics [20], solid state physics [21], plasma physics [29] and hydrodynamics [11].
The symmetry group reductions of (1), including the classical and the nonclassical
symmetry reductions, has been studied by many authors [3,4,7,8,30,32]. There
are some examples of (1) [12,13,16] of special ansatz which reduce the equations
considered to systems of ordinary differential equations (ODEs). The generalized
conditional symmetry reduction of (1) was considered in [26] under ansatz on GCSs,
which ensures the reduction of (1) to systems of ODEs in the cases of power law and
exponential diffusivities.

The other three classes of important nonlinear PDEs, that is, the nonlinear hyper-
bolic equations of second order

u,, = g(u,ux)uxx+f(u,ux), (2)

the generalized Kuramoto-Sivashinsky equations [19]

u, = ~uxxxx +g(u, ux)uxx + / ( « , w,), (3)

and the nonlinear elliptic equations of fourth order

UXXXX + 2UXXyy + Uyyyy = g (U , M, ) UXX + / (U , UX) , (4)

also have many physically significant applications in wave motion, nonlinear mechan-
ics and physics. The symmetry group properties and classification of (2) have been
discussed by several authors [2,15]. Ibragimov et al. [15] used a preliminary group
classification technique to (2). The point Lie symmetry groups of equation (4) with
/ = g = 0 is considered in [1,27].

In the generalization of the nonclassical symmetry method due to Bluman and Cole
[5], Olver and Rosenau [23] show that in order to determine a group-invariant solution
of a given PDE, one can use any group of infinitesimal transformations. However, in
general, given any group of infinitesimal transformations and any PDE(s), there will be
no solutions invariant under the group and so the question becomes how to determine
a priori whether a given group will classify the large class of nonlinear PDEs and
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give meaningful symmetry reductions to the resulting equations. This problem will
be considered in this paper.

It is known [12,13,16,32] that a large number of 1 + 1 dimensional nonlinear
PDE(s) possess exact solutions

u(t, x) = [ait) + pit) cos(ox) + y(t) sin(ox)]1/m (5)

or

u{t, x) = [a(r) + Pit) cosh(ax) + y(t) sinh(a*)]1/m, (6)

where a is a constant and m is an arbitrary integer, or polynomial-type solutions of a
spatial variable. A common feature of these three types of solution is that the equations
considered are invariant under GCSs

a - uxxx±ux (7)

or

a = ^ , n e Z+, (8)
dx"

which will be described in the sequel.
This paper is devoted to discussing the reduction and construction of exact solutions

of some nonlinear PDEs, including equations (l)-(4) and other important nonlinear
PDEs with the generalized conditional symmetries (7)-(8). In Section 2, we give
a brief discussion of the GCS method. In Section 3, we determine the admissible
forms of equations (l)-{4) under the GCSs (7)-{8). The exact solutions of nonlinear
PDEs (l)-(4) and the reductions to systems of ODEs are discussed in Section 4 and
Appendix A. Section 5 contains a number of further examples which illustrate the
wide application of the approach. The dynamical behavior and qualitative properties
of some unsolvable systems of ODEs are investigated in Section 6. Section 7 is a
discussion of our results.

2. The GCS of nonlinear PDEs

Let K(t, u) denote a function which depends in a differentiable manner on u, ux,
uxx,... and t. The function a (t, x, u) is a symmetry of the equation

u, = K(t, u), (9)
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if and only if

da
— = [K,a], (10)
at

where [AT, a] = K'o—o' K and primes denote the Gateaux derivative. The concept of
conditional symmetry was introduced in [5] under the name of nonclassical symmetry.
The GCS is a generalization of conditional symmetry. The function a(t, x, u) is a
GCSof(9)if

-£- = [K, a] + A(t,x,u, a), A(t,x, u, 0) = 0, (11)
at

where K{t, u) and a(t, x, u) are differentiable functions of t, x and u, ux,uxx,...,
and A(t,x, u,a) a differentiable function of t, x, u, ux, uxx,... and a, ox,axx,....
From (10), if a is explicitly independent of time t we see that (9) admits a GCS a if
and only if

a'K\a=o = 0. (12)

This method provides an algorithm for constructing exact solutions of nonlinear PDEs.

3. The admissible forms of (l)-(4) under GCSs (7)-(8)

In this section, we determine the admissible forms of (l)-(4) under GCSs (7)-(8).
The method used here is the GCS method from Section 2. If m ^ 1 and a ^ 1 in (5)
and (6), by performing the transformations

x* = ax, t*=bt, y* = cy, u* = um, (13)

(l)-(4) can be reduced to the same types of equations, so that, without loss of gener-
ality, we can set a = m = 1. We consider four cases with respect to (7)-(8).

3.1. Under ax = uxxx + ux. From Section 2, we see that (1) admits the GCS ax if
and only if

,=0 = £222"?, + {fill + 3g221«x + 3£i2)w^,

l + gu", - 2g22ux - 2,2 +/122M* +fn)u2
xx

- 9gi2w, - 6g,H, + 3fu2U2
x + 3/nu, - 3f12ux)uxx

+ (fin - 3gnWx + 3(g2 -fnWx = 0, (14)
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where K\ = g(u, ux)uxx + / ( « , ux) and/i and/2 denote the partial derivative with
respect to u and ux throughout the paper. Equating to zero the coefficients of each
polynomial term of uxx implies

£222 = 0, /222 + 3gi22», + 3g,2 = 0,

^ + g\\ux - 2g22ux - g2 +fmux +/12 = 0,

- 9gi2ux - 6gi + 3/n2"x + 3/ii - 3/22 = 0,

3/ , 2 = 0. (15)

The general solution of (15) can be easily obtained as

g(u, ux) = (d« + c2)u
2
x + (c3u + c4)ux + C!«3 + (3c2 - 2c6)u

2 + csu + c9,

f(u, ux) = ~u\ - jul + (c6u + Cl)u\ + ( j u 2 + c4u + c5) ux + -C,M4

+ (2c2 - C6)M
3 + (c8 + C7)M

2 + cwu + cn, (16)

where as hereafter, c,, i = 1, 2 , . . . , are arbitrary constants. This includes the well-
known equation (6) of reference [13] as a special case.

In the same way, we can prove that if (2)-(4) admit the GCS a, g(u, ux) and
/ (M, W,) in (2)-(4) must take the form (16).

3.2. Under o2 = uxxx — ux. Analogously to case (3.1), (1) admits GCS a2 if and
only if

2=0 = £222"^ + {fm + Igniu* + 3gi2)"L
2 + (£,i + 2£22 +/122K + g2Wxx

(9gl2 + 3fU2)ux + 3(2g, + / „ +f22)]uxuxx

+fn))u2
x = 0. (17)

Equating to zero the coefficients of each polynomial term of uxx yields/ and g, which
satisfy the overdetermined system of ODEs

£222 = 0, /222 + 3^122"^ + 3g12 = 0,

2ginu2
x + (gu + 2g22 +fm)ux + g2 = 0,

gmu] + 3(3£12 +fu2)ux + 6gl + 3 / , , + 3/2 2 = 0,

( / i i i + 3 s , , K + 352 + 3/1 2 = 0. (18)

We the obtain general solution of (18) as

g(u, ux) = (c,« + c2)u] + (C3M + c4)ux - Ciu3 - (3c2 + 2c6)u
2 + csu + c9,
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/ ( « , ux) = - y " * - 2C3"x + (C6" + c^ul + ( " T « 2 - c4" + c5j ux + -CiM4

+ (2c2 + c6)u
3 - (c8 + C7)K

2 + C10M + c,,. (19)

From (12) it is easily shown that o2 also is a GCS of (2)-(4) with (19).

3.3. Under cr3 = uxxxx. Equation (1) admits the GCS CT3 implying

-o = I5g22uxxuxxx + (4g, + I2gl2ux + VnWxxx

I6gnux + I2fmux + l0fl2)uxxuxxx

+ 6fuiux + 4/, i «,)«„, + gm\uxx (20)

(fun + 4gl222Ux + 6gn2)uxx

l ,,2 + 4/1 2 2 2)MX + 3gu+ L
î  +6(giU +fimWx + nfn2U

+ 6fiU)u2
xuxx + fnuu

4
x = 0 ,

which in turn implies g and f satisfy the system of ODEs

£22 = 0, / 2 2 2 2 = 0 , / , , , , = 0 , S m i = 0,

4gi + I2gl2ux + 3/2 2 = 0, 1 lgi2 + 3/222 = 0,

9gmu2
x + Sgiiu* + 6fmux + 5/,2 = 0,

2gluu
2
x+3fn2ux + 2 / , , = 0 , (21)

KX + 3gn + 6/1222 = 0,

+ 6fim)u] + I2fmux + 3/,, = 0,

gnu",2 + 4/iii2«^ + 6/ni = 0.

The general solution of (21) is given by

g(u, Ux) = C\UX + C2U + C3,

2
/ («, ux) = -^c2u

2
x + c5ux + c4u + c6, (22)

which includes equation (1.6) with a = —2/3, N = I'm [16]. Investigating the above
proof again, we find that if (2)-(4) admit the GCS CT3, g a n d / must possess the form
(22).

3.4. Under CT4 = uxxx. Equation (1) admits the GCS CT4 giving rise to

^ ( ^ i ) U 4 = 0 = £222"^ + (/222 + 3g12 + 3gi22Ux)uxx
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[7] Reductions and solutions of PDEs 7

" +(Sll+/l22)Mx+/l2]«L

+ 3 / U 2 H , + 3fn)uxuxx + / , „ « ' = 0. (23)

Equating to zero of the coefficients of each polynomial term of uxx implies

£222 = 0, / i n = 0, /222 + 3gn + 3gmux = 0,

K, + tell+/l22)K*+/l2=0,

\ + 3/u2Mx + 3/n = 0, (24)

with general solution

g(u, ux) = (C,K + c2)u\ + (c3w + c4)ux - 2c6u
2 + csu + c9,

f( ) ——— 4 - — 3 + r + 1 2 + -i- -i- ^ s ^

It is easy to show that (2)-(4) with (25) also admit the GCS CT4.

4. Exact solutions of (1)

In this section we consider reductions of (1) to systems of ODEs to construct their
exact solutions by using the compatibility of a = 0 and the equations considered.
The procedure is first to solve the ODE a — 0 to derive u as a function of x with
x -independent integration constants and then to substitute those solutions into the
governing equations to obtain the time-evolution of those constants. Those systems of
ODEs play an important role in discussing the asymptotic behaviour of the solutions,
such as blow-up phenomena. Though the general solutions are difficult to derive,
some exact solutions are obtained in special cases.

To obtain the exact solutions of (1), we distinguish four cases in terms of its GCSs
(7M8).

4.1. Under ax = uxxx + ux. In this case, g and/ are constrained by (16). Solving
CTI = 0, we have

u(t, x) — a(t) + fi(t) cos* + y(t) sin x. (26)

The substitution of (26) into (1) with (16) implies that a, fi and y satisfy the system
of ODEs

,P,y), y, = L3(a, fi,y), (27)

where Lu L2 and L3 are given by

\ f - (02 + y2)2] + 2c2a
3 + c6a(/J2 + y2 - a2)
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y2) + csa
2 + c10a + c,,,

\ ciap)(P2 + y2 - a2) + c2p(3a2 - f - y2)

c4ay + (2c7 + c8)ap + (c,0 - c9)0 + c5y, (28)

32 + y2 - a2) + c2y(3a2 - f - y2)

(2c7 + c8)ay + (c,0 - c9)y -

Even though the general solution of (27)-(28) for arbitrary c, is unknown, we can
obtain some exact solutions of this system in the following special cases.

4.1.1. c,: = 0, i ^ 1. Two exact solutions are admitted. First

(i)

a = ± ^ ( 1 + D2)?2 + D2p, y = DX0,

= ^ClDl(t - to), D 2 ^ 0 , (29)

with 0 — j + -jj^-- As subsequently, unless otherwise stated, £>,, i = 1,2,.. . ,
denote arbitrary constants introduced into computations and t0 is an arbitrary positive
constant. Secondly

(ii)

a = ±yjl + D2D2, P = D2, y = DxD2, (30)

which combined with (26) gives the steady-state solution of (1) with (16) and c, = 0,
i / I .

4.1.2. c, = 0, i ^ 2, 6. Three subcases arise,

(i) c2 — 0. In this subcase, the solution is given by

a = D20, y = Dxp, fi = [2c6(£>2
2 - D2 - \){t - to)rK (31)

which blows up at finite time t0.
(ii) c6 = c2 ^ 0. The exact solution of (27)-(28) is implicitly given by

a = ±7(1 + D\W + D2p, y =

+ (^D2)l (32)
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(iii) C6 = 2c2 7̂  0. The implicit exact solution is

— - In — ^ — = D2
2c6(t - t0). (33)

a a — D2

4.1.3. Ci = 0, i ^ 4,7, 8. There are also three subcases,

(i) c4 = 0, cs + 2c7 ft 0. Two possibilities arise.

(i.A) c7 = 0.

a = - , p = D,a, y = £>2«. (34)

which combined with (26) gives a separable solution of (1).
(i.B) c7 9̂  0. The system (27)-{28) has the implicit exact solution

f dp = (c8 + 2c7)(f - ib), (35)

where p0 is a constant, provided the integral exists,

(ii) c4 7̂  0, Cg + 2c7 = 0. In this subcase,

a = D,coth[c7D,(r-*,)] ,

P = Dx sin{c4D, In sinh[c7 Z),(r - to)] + D2], (36)

Y = D{ cos{c4Di lnsinh[c7Di(f — t0)] + D2}.

This form of solution is new and blows up at t = t0 and

1 . ._, \(2k+ l)n - 2D2 1Tk = t0 -\ sinh exp < | .

(iii) c8 + 2c7 ^ 0, c4 7̂  0. The general solution of system (27)-(28) in this subcase
is

a = —h,, P=psinh, y=pcos/i, (37)
c4

where p and h are given implicitly by

il'-'l(c8 + 2c7)
2 + D2s ^ 1 2 ds = t - to, h = — - — lnp + Dx.J c + 2c
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.If c8 = —3c7, we get an explicit solution

c4

[10]

= cj[(*(t - t0)
2 - D2]"5 sin

y = ej[<*(t - to)2 - cos

4 4 7

--In[c7(c'(r-/O)2-A . - i

(38)

1.1.4. c\ = c5 = c6 — c7 = 0. In this subcase

)3 = q sin

y = q cos (39)

where

, 5 = 2 /
Jo

(3c2a
2 + csa + cl0 - c9) dt

(40)

and a solves

a, = 2c2a
3 + c&a2 + c10Q! + c n .

The general solution of (40) is given in Appendix B.

4.2. Under o2 = uxxx — ux. Here g and/ take the form (19) and a2 = 0 leads to

«(f, x) = a(t) + P(t) cosh^: + y(t) sinh^:, (41)

which is compatible with (1) and requires that a, P and y satisfy the system of ODEs

a, = L4(a,p,Y), P, = L5(a, P,y), y, = L6(a, P,y), (42)

where L4, L5 and L6 are given by

L4 = -c,[a4 - (P2 - y2)2] + c6a(a2 - p2 + y2) + c7(y
2 -a2- p2)

•0
2c2a

2 — c8or2 + c10or + cu.

£5 = I c6/3 + cxap - -c3y I {a1 - pl + y2) + c2p(3al - pl + y2)

- c4ay - (2c7 + cs)ay + (c9 + cw)P + c5y, (43)

U = (c6y + Clay - -c3pj (a2 - p2 + y2) + c2y(3a2 + y2 - p2)

- (2c7 + cs)ay + (c9 + cw)y + c5p.

We also consider several cases.
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4.2.1. c, arbitrary. In this case, system (42)-(43) has the exact solution

11

= D] exp
J an

(3c2 + c6- \CT,)Z2 - (c4 + c8 + 2c7)z + c9 + c,0
lZ4 + (2C2 + C6)Z

3 - (C7 + C8)Z
2

where a0 is a constant provided the integral exists and a solves

a, = - c ^ 4 + (c6 + 2c2)a3 - (c7 + c8)a
2

The general solution of (45) is given in Appendix C.

4.2.2. ci = c6 = c7 = 0. In this case a fulfills

a, = 2c2a
3 - c8a

2 + c10a + cu

The general solution of (46) is given in Appendix B.
Setting

P, = =p2- y\

Pi and H\ satisfy the system

Pi, = \-\c^a2 ~ Hx) + C40fl (P,2 - 1),

« „ = -2c2H
2 + 2[3c2

2 - (c8 + 2c7)a + c9

with implicit exact solution

1 + £>, exp[c3(^2 - a2) + 2c4a]
Px =

=

1 - D, exp[c3(#2 - a2) + 2c4a]'

- c8a
2 cu)

Hence from (47) we have

c n .

- 2c2(c,0 + 2c9) /„' ae^»+2c*>'rf/ + D2

dz

(44)

(45)

(46)

(47)

(48)

( 5 0 )

https://doi.org/10.1017/S0334270000011012 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011012


12 ChangzhengQu [12]

4.2.3. Cj = 0, / ^ 1. From the system (42)-(43), we find that

a = ±[(1 — D^fi2 — D2f}]*, y = Difi. (51)

To determine fi, there are two possibilities.

(i) D2 ^ 0. Substituting (51) into the second equation of (42) and solving gives

/ , D2\
V2 , / , D2\

l/2 3
1 - D 2 - — _3(1-£>J) 1 - D 2 - — = - c , D , a - l b ) . (52)

V P J V p ) ^

(ii) D2 = 0. In this subcase, the solution of (42)-(43) is given by

a = ±(1 — D2)iD3, P = D3, y = D\D^, (53)

which gives a steady-state solution of (1) with (19).
4.2.4. Ci = 0, i' T£ 2, 6. Analogously to case 4.1.2, we obtain the exact solution

of (42)-(43) as

(i) for c2 = 0:

u = D2p, y = Dxp, p = [-2c6(D
2

2 + D2-l)(t-t0)]-i; (54)

(ii) for c2 = — c6 ^ 0:

y - (D> - 1 } ln D2-(Di-i)e - - 2 C 2 ° 2 ( ' - 'o)- (55)

(iii) for c6 = -2c2 ^ 0:

l - O 2

In ^ — — - — = 2c2D2
2(r - to). (56)

a a

4.2.5. c, = 0, i ^ 4, 7, 8. We distinguish three subcases,

(i) c4 = 0, c-i, c% + 2c-, ^ 0. From the last two equation of (42), we find that

Y = Dxp. (57)

Substituting (57) into the first two equations of (42)-(43), we obtain

/ f(l - D\)p2 + D/^] ~2

When cs = — c7, we can obtain explicit solutions for

/ if(l - D\)p2 + D/^] 2 dp = {ci + 2c1){t-t0). (58)
Jfh P L J

https://doi.org/10.1017/S0334270000011012 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011012
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(i.A) 1 - D\ > 0, D4 > 0:

- D\ < 0, D4 > 0:

'D\

(i.C) 1 - D\ > 0, D4 < 0:

= csc

>?
which blows up at points Tk = t0 — kn/(cT^/—D4).
(i.D) 1 - D\ > 0, D4 = 0:

1

- D\

(ii) c4 = c8 + 2c7 = 0. It is easy to see that

and a is given as follows.

(ii.A) D\ - D\ > 0:

a = JD\ -
which blows up at Tk = t0 4- 7r(2)t + l)/(2c7).
(ii.B) D\-D\< 0:

- to)],

a = ̂ D\-D\co\h \cyJD] - D\(t - ro)j

(ii.C) D\ = D\:

- to)

13

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(iii) c4 ^ 0, c8 + 2c7 7̂  0. We consider two special subcases.

https://doi.org/10.1017/S0334270000011012 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000011012


14 Changzheng Qu [14]

(iii.A) c8 + 2c7 + c4 — 0. An exact solution to (42)-(43) is given by

«—/"£*+£*'*S> ^^~)'' H + dv Dl*0> <67)

where </> is determined implicitly by

(iii.B) c8 -f 2c7 — c4 = 0. An exact solution to (42)-(43) is given by

/ 1 D2 1 — 3. 1 V̂  1
ot = — / iff H ^ c<, /$ = (- y, y = , Z)j ^ 0, (68)

where V̂  is determined implicitly by

•• r 4d4c2 I

^ i J
= t-t0.

4.3. Under CT3 = uxxxx. In this subcase, g and / are given by (22). Integrating
a3 = 0, we obtain the following ansatz for the function u(t, x):

u(t, x) = a(t) + 0(t)x + y(t)x2 + S(t)x3. (69)

Inserting this into (1) with (22) shows that a, ft, y and S satisfy the system of ODEs

a, = L1{a,p,Y,S), 0, = £,(«, j8, y, S),

Y, = L9(a, P, Y, &), 8, = 18c,52 + c4S, (70)

where L7, L8 and L9 are given by

L7 = 2c])3y + 2c2 I ay — - 0 I + 2c3y + c4a + c50 + c6,

. 2
L& = 2c, (2y2 + 308) + -c2(9a8 - 0y) + 6c38 + 2c5y + c40, (71)

3
( l i\

Lg = 18ciy<5 + 2c2 [08 — -y I + 3c5<5 + c4y.

We consider the following cases.
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4.3.1. c2 = c6 = 0, ^ ^ 0, c4 ^ 0. The general solution of (70)-(71) is

s = ID , * - *" - ^p-1 , Y =

3>76 c4r)

where >j = (D, - ^ec")l/\ D, = D,1/3 and

(72)

^ - 2 , ifD,=0.

4.3.2. c, = 0, i ^ 2, c2 7̂  0. The general solution of (70)-(71) in this case is
given by King [16].

4.3.3. ^ jL Q, c2 = c4 = 0. The general solution of (70)-(71) in this subcase is
given by

Dl , D2D->. i
oc = -=r~(t - to)'1 + - ^ ( t - ro)-5 + C6(t - t0) + D4,Zlc\ 3

~ { t - toy' + D3(r - fo)-' - - ,
3c, c,

( 7 3 >

which blows up at point /0.

4.3.4. c3 = c6 = 0, c\, c2, c4 ^ 0.

T!S' P = lD*S' y = D^ S = \ ^f ]
which with (69) give a separable solution of (1) with (22).

4.4. Under a4 = uxxx. Here g and / take the form (25) and solving a4 = 0 we
obtain the following ansatz for the function u(t, x):

. (75)

The substitution of (75) into (1) with (25) yields that a, fi and y satisfy

a, = LiQ(a,p,Y), P, = Lu(a, fi,y), Y, = Ll2{a, p, y), (76)
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with Lio, Lu and L12 given by

£ - 2c6a)(4ay - p2) + (2crfy + 2c4y

+ 2c&ay + 2c9y + cwa + cn,

Lu = (2crfy + c3y - c6p)(4ay - /32) + [Sc2y
2 + (4c7 + 2cs)y + cl0\P

+ 4c4y
2 + 2c5y, (77)

Li2 = (2c,)/ - c6)(4ay - p2)y + [8c2y
2 + (4c7 + 2cs)y + cl0]y.

We consider two cases.

4.4.1. c9 = C\i = 0 . The system (76)-(77) admits an exact solution

« = £". P = [4c4 J ydt + D,l y, (78)

with y solving

Y, = 8c2y3 + (4c7 + 2c8)y2 + cl0y. (79)

The general solution of (79) is given in Appendix B.

4.4.2. Ci = 0, i j£ 1,3,6. In this case, we have

Ot = — T + T
4(2c,y - c 6 ) 4 V c6 y

-, y = [2D,«b-0r i , (80)
C(, y

which blows up at t0 and t0 — 2c2/(D1c|).

5. Further examples

In this section, we give a number of additional examples which provide illustrations
that our approach can be extended to consider other types of nonlinear PDEs. The exact
solutions of some examples have been constructed by special ansatz on solutions. In
[12,13,16], the exact solutions are claimed not to be group-invariant solutions. Our
discussion shows that those solutions are invariant under GCSs, which provides a
group interpretation for some known results in the literature [12,13,16].
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5.1. Example 1

u, = -u3uxxxx + au2uxuxxx + bu2u\x + cuux
2uxx + du\. (81)

It is easily shown that o = uxxx is a GCS of (81) under b + 2c + 4d = 0. The
corresponding exact solution is

«(/, x) = a(t) + P(t)x + Y(t)x2, (82)

where a, fi and y satisfy

a, = 2cy(p2-4ay)a-d(16y2a2-p4), .

0, = 2cy(p2 - Aycc)p + MPyiP2 ~ 4K«)> (83)

The general solution is as follows.

5.1.1. c^

. fn)i-3Sra5 (84)

It blows up at t0 provided (c + 4d)(3c + lOd) > 0.

5.1.2. c=-l0d/3.

Dj D2 . [4dD2 I
a = Y Y ~ 4 y ' P = Diy' Y=av\—21(t-to)\- (85)

When a = _«S=±!l t b = - 2 2 ^ , c = _««+2)Om+i) and d = 3Om+i>(«+2> ( 8 1 ) c a n
m—1 ' m—1 ' (m — I)2 (m—I)3 ' v '

be transformed to

u, = - - ^ j ( v 4 ) (86)
m dx4

by a transformation of dependent variable

v = M
3/<"-». (87)

Equation (86) has an exact solution of form (82) if and only ifw = —\,m = —|, or
m = - 1 [16].
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5.2. Example 2

u '=4£("2 ) - (88)

This equation has been discussed in [16]. It is worthy of note that (88) admits two
GCSs, a+ = 0 and a_ = «,,, - \ux + £ux - ±u. Integrating a+ = 0, we obtain
the exact solution of (88) as

u{t, x) = a(t) + P(t)x + y{t)x2 + 8(t)x* + $(t)x\ (89)

where a, /}, y, 8 and § satisfy

a, = -l2(y2 + 2p8+2a!;), fi, =-120(0$+ y8), (90)

Y, = -180(52 + 2Y$), 8, = -8405| , £, = -840^2,

with general solution

)-', ^

This blows up at t0. Integrating a_ = 0 gives rise to a formal exact solution of (88)

u(t, x) = a(t)xl/2 + P(t)x3/2 + y(t)x\ (92)

Substitution of (92) into (88) yields a, 0 and y satisfying

945 3465
(*, = -—ay, A = —Py, K, = -1680y2, (93)

o o

with general solution

a = D2(t-t0)-&, P^D^t-to)-^, Y = TTZZO - to)'1. (94)
looU

This also blows up at the finite point t0.

5.3. Example 3

d2v /dv\2 n - l dv ,nc'
(95)

d2v /dv\2 n - l dv

dr2 \drj r dr

This is the so-called iV -dimensional radially symmetric nonlinear diffusion equation
discussed by King [16]. We reconsider it using the approach of GCS. Four cases arise
in terms of A. and N.
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5.5.7. A. = —(N + 2)/4. A direct and tedious calculation shows that a =
vrrr — 3r~'urr + 3r~2vr is a GCS of (95). Integrating a = 0, we find

(96)

which is compatible with (95) and implies

a, = 2Na0, p, = (N - 2)/32 + 4(N + 2)aS, 8, = 2N08. (97)

The general solution is given in [16]. It is interesting to note that a = 0 is the same
as the fi equation (47) in [22, p. 129].

5.3.2. N = 2, A. = - 1 . In this case, a = vrrr - \vrr - ^-vr + ̂ f^-v is a GCS
of (95), where p is a constant. Solving o = 0 we obtain

v{t, r) = a(t)r2-" + P(t)r2 + 8(t)rp+2. (98 )

T h e subs t i tu t ion of (98) in to (95) w i t h N = 2,X = - l g ives that a, 0 a n d 8 satisfy

a, = p2ap, 0, = 4p2a8, 8, = p208. (99)

The solution is also given in [16]. Here a = 0 corresponds to the £2 equation (41) of
[22, p. 129].

5.3.3. X = (4 - N)/(2(N - 3)), W ̂  3. In this case (95) admits a GCS

3 ( 3 ) (2N-U)(N-3) 4(N-4)(N-3)
= vrrr H vrr H iv v.

r r2 r3

Integrating a = 0 gives

v = a(t)r2 + P(t)r4~N + 8(t)r6-2N, (100)

where a, 0 and 8 satisfy

a, = 2KU2, p, = 2KCCP, 8, = -)-K[(N - 4)p2 + 4(3 - N)a8], (101)

which has been derived by Nucci [22] (but note the misprint in [22]). Its general
solution is

^ to)3-N, (102)

where K = (N - 2)2/(N - 3) and a — 0 is exactly the Q equation (51) of [22,
p. 129]. This type of solution is new and can be thought of as a generalization of the
instantaneous source solution [16].
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5.3.4. X = —3/4, N = I. A tedious calculation shows that (95) in this subcase
admits a GCS a = d5v/dr5. Integrating a = 0 we have

v(t, r) = o(0 + P(t)r + Y(t)r2 + 8(t)r3 + ${t)r\ (103)

the substitution of which into (95) yields the time-dependent function in (69) satisfying

a, = lay - ^ 2 , 0, = 6a8 - /3y, y, = \2a% + lp& - y\

8, = 6/3$ - y8, f, = ly% - ^-8\ (104)

which has been given in [16] (but note the misprint in [16]). Differentiating (104)
once with respect to t leads to

aI, = ^=y1L = S ! 2)

a 0 y 8 I

which combined with (104) gives

a =
y = (D5w + £>6)£, 8 = (D7w

[3 3/ 3 \ / 3\ - | - ' /3

-D^w3--\2D5--D1Di\w
2-3\2D6--Dljw + D9\ , (106)

where u> is determined implicitly by

(107)

Here D,, i = 1, 2 , . . . , 9, satisfy

- D2D7
2 - 4D,£>5 = 0,2D7

- D2D1Di - 4DiD6 + D3D4 = 0,

-D,D 9 = 0,

D7(D3DS - D4D7 - 8D,) = 0,

- 2D3D6 + 2D4D5 - D4D7D8 - 4D,D8 - 4D2D7 = 0,

D5D8 - D6D-, - 2D3 = 0, (108)
3

3Z)6D8 + D7D9 - -D\ - 6D4 = 0,
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3D2 - ^D6Dl + D5D9 - 12D2 - ^D,DS = 0,

3D4D6 - -D4D
2

S + D3D9 - 6D2DS = 0,

DsDl - D6D7D8 - 8D, - D3D8 - D4D7 = 0,

which admits general solution

D, = ~ D-,D\\ ,

D2 = ^ Tl6D6
2 - 8D6D8

2 + y D5D9 - ^D 7 D 8 D 9 + D8
4^ , (109)

16
J6U% '

D3 = ~(D5DS - D6D7), D4 = — (12D6D& + 4D7Dg - 3D3
S),

where D5, D6, D7, D8 and D9 are arbitrary constants. Hence (109) is the general
solution of (108). We consider several special cases.

(i) D, = 0, i ± 2, 6. D2 = 1, D6 = 2. The system (104) admits an exact solution

<* = £, 6 = 8 = 0, y = 2%, £ = — ( t - t o )~K (110)
4

Hence we have

«(', r) = , (111)

which gives a separable solution of (95).
(ii) Dl = D3 = D5 = D1 = D9 = 0, D2 = D4 = D8 = 1, D6 = 9/4.

The solution of (104) in this case is

giving

H = ~ ( t - ro)-'(l + r + 9-r2 + r3 + r4), (113)

which again provides a separable solution for (95).
(iii) D, = D2 = D3 = D4 = D-, = Ds = 0, Ds = D6 = 1, D9 = - 3 .

The solution of (104) in this case is
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SO

u = -(t-toy
lr2 + ̂ (t-to)

2r\ (115)

which is exactly the instantaneous source solution [16]. All the above cases are valid
for £>7 = 0. If D-i ^ 0, we present the following examples.

(iv) Dl = D1 =
 2-£, D2 = 1, D3 = D5 = 2x/3, D4 = Ds = 4, D6 = 6, D9 = 0.

In this case (104) admits the solution

a =-j-- (t - t0), p = 2V3-4(t-t0),

r- 2\/3
Y =2V3-6(t-t0), S = ~--4(t-t0), § = to-t, (116)

which gives an unbounded solution to (95).
(v) D , = D5 = D9 = 0, £>3 = D-i, D4 = D%, D6 = -2.

The system (104) possesses the implicit exact solution

_ _ _ _ V£>,<5-4<54 r dS _

(117)

5.4. Example 4

u, = uxx + v\ + v2 + tfiw + AiU, u, = û x — u\ — u2 + a2u + b2v. (118)

It is easy to show that (118) admits the GCS

ox = uxxx +ux, <J2 = vxxx + vx. (119)

Integrating o\ — a2 = 0, we obtain the exact solution of (118) as

u(t,x) = a1(t) + pl(t)cosx + y!(0sin*,

v(t, x) = a2(t) + p2(t)c6sx + y2(0 sinj:, (120)

which is compatible with (118) and implies or,-, /9, and y,-, i = 1, 2, 3, satisfy

au = a\ + Pi + Y2 + ai«, + M2, ̂ 1, = 2a2ft + (a, - 1)0, + &,&,

Y\, = 2a2Y2 + (ai - 1)YI + biY2, a2l = -a2 - fi2 - y,2 + a2ax + b2a2, (121)

p2, = -2axpx + a2px + (b2 - l)P2,Y2, = -2n\Y\ + "IYX + (b2 - l)y2.

The system (118) was considered by Galaktionov [13] and the particular solution of
(120) with Y\ = Y2 = 0 derived by the "method of separation of variables" due to
Galaktionov.
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5.5. Example 5

u, = uxx + vxux + uv + axu + b\V,

v, = vvxx + a2vl + b2v
2 + a3u + b3v. (122)

Here at, bt, i = 1, 2, are constants. This is a parabolic system of quasilinear
equations of nonlinear heat conduction type with source, which is more general than
Galaktionov's example 6 of p. 869 in [13]. We find that (122) also admits the GCS
(119) under b2 = a2 + 1, so that the exact solution of (122) is given by (120), instead
of the system (121). Here a,, pt and y, satisfy

au = axa2 + P\P2 + Y\Yi + aial + bxa2,

a2t = b2a\ + a2fi\ + a2y2
2 + b3a2 + a3au

Pu = «20. + otxp2 + (a, - 1)0, + bxp2, (123)

p2l = (2a2 + \)a2p2 + b3p2 + a3pu

Yu = <*\Yi + otiY\ + (ai - l)Ki + b1y2,

y2t = (2a2 + l)a2y2 + b3y2 + a3yi.

5.6. Example 6

u,, = uxxxx + uxx + (u2)xx - u 2 + au,a= cons t . (124)

It is easily shown that (124) admits a GCS a = uxxx — *•*-. Solving a = 0 we have
an exact solution of (124) as

u(t, x) = «(0 + Pit) cosh ( | ) + y(t) sinh ( | ) , (125)

where a, P and y satisfy

a,, = -a2 -P2~y2 + act, p,, = - -a /3 + fa + — J p,

5.7. Example 7

u,, = uxxxx + uxx + u2
x + u2 + au, a = const. (127)

Equation (127) admits a GCS a = uxxx + ux. Integrating a = 0 we obtain

u(t,x) = a(t) + Pit) cos x + y(t) sinx, (128)

where a, P and y satisfy

a,, = a2 + p2 + y2 + act, p,, = 2aP + aP, yn = 2ay+ay. (129)
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5.8. Example 8

( d2 \m

—j u + u2
x + u2 + au, a = const. (130)

This is a semilinear parabolic equation of 2m-th order. It is easily shown that
a = uxxx + ux also is a GCS of (130), so its exact solution takes the form (128), in
which a, p and y satisfy

a, = a2 + p2 + y2 + act, p, = lap + (a - 1)/J, y, = lay + (a - \)y. (131)

Equation (130) is discussed in [13]. It is interesting to notice that the exact solution
of(130) is independent of m.

5.9. Example 9

u, = uxx + vxux — uv + a\U + b\V, v, = vvxx + a2vl + b2v
2 + a^u + b3v.

(132)

Analogously to (122), one can show that (132) admits the GCS O\ = uxxx — ux,
&2 = vxxx — vx under b2 = a2 + 1. Solving o{ = a2 = 0 gives rise to the exact solution
of(132) as

u(t, x) = ai(t) + pt cosh* + yx sinn*,

v(t,x) = a2(t) + p2coshx + y2sinh*. (133)

The substitution of (133) into (132) yields that a,, /?, and yh i — 1, 2, satisfy

(134)

ax, — —Q?iG?2 —

P\, = —<X\Pi —

Yu = -<*\Y2 -

0L2, = -b2a
2 -

P2, = (-2a2 -

y2l = -(2a2 +

P\Pi -

a2px +

a2 Y\ +

a2p\ +

\)a2p2

l)a2y2

Y1Y2 +

(ax + l

{ax + i;

a2y2 +

+ a3px -

+ a3yx -

axax 4

)Pi +

>Ki + i

a3ax^

Vb3p2

V b3y2.

- bxa2,

bxp2,

^>\Y2,

Yb3a2

5.10. Example 10

u, = uxx + v\ — v2 + axu + b\V, v, = vxx — u2
s + u2 + a2u + b2v. (135)

Similarly to (118), one can show that this admits the GCS ox = uxxx — ux, a2 =
vxxx — vx. Integrating ax = a2 = 0, we obtain the exact solution of (135) as

u(t,x) = ax(t) + px(t) coshx + yx(t) sinhx,
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TABLE 1.

25

ch i = 9, 10
Cio > Cg, Cg > 0

Cio < —Cg, Cg > 0

Cio > — Cg, Cg < 0

Cio < Cg, Cg < 0

Fi

US
AS
US
AS

F2

AS
US
AS
US

Fi

US
US
US
US

F*
US
US
US
US

TABLE 2.

Ci, i =

Cio < 0,
Cjo > vJ,

Cg <

9,
Cg

Cg

: 0

10
> 0
> 0

Fi

AS
US
US

F2

US
AS
US

v(t,x) = a2(t) + p2(t)coshx + y2(0sinhx,

which combined with (135) implies a,, 0, and y,, / = 1, 2, satisfy

a,, = -a2
2 -

yi, = - 2

/32, = 2a,

bra2,

(136)

a2t = a\ + ft - y2
{ + a2ay + b2a2, (137)

y2, = 2a, y, + a2y, + {b2 + l)y2.

6. Dynamical behavior of a system of ODEs

As mentioned in Section 5, it is very difficult to obtain exact solutions of some
ODEs in Section 4. So an important problem is to study the dynamical behavior
of these ODEs. Since (in two dimensions) chaos is possible in the nonautonomous
but not the autonomous case, we focus primarily on the stability of fixed points and
qualitative properties of the system.

Let us consider a general autonomous vector field

y, = Y(y), yeR". (138)

A fixed point of (138) is a point yeR" such that

Y(y) = 0,

that is, a solution does not change in time.
Let y(t) be any solution of (138). Roughly speaking, y(t) is stable solution if all

nearby solutions stay nearby for all future time. It is asymptotically stable if nearby
solutions actually converge to y(t) as / -> oo. A mathematical definition is provided
in [14,28].
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DEFINITION 6.1. (Liapunov stability.) y(t) is said to be stable if, given e > 0, there
exists a <5 = 5(e) > 0 such that, for any other solution y(t) of (138) satisfying

ly(«b) - y(k)\ < 5, then \y(t) - y(t)\ < €,

for / > t0, t0 e R. A solution that is not stable is said to be unstable.

DEFINITION 6.2. (Asymptotic stability.) y(t) is said to be asymptotically stable if it
is Liapunov stable and if there exists a constant b > 0 such that if \y(t0) — y(to) I < b,

= 0 .

It is easy to see that if a solution y is asymptotically stable, then is stable. Denoting
the derivative of/ by Df (x), we have the following [14].

PROPOSITION 6.1. Suppose all the eigenvalues of D Y(y) have negative real parts.
Then the fixed points y = y of the nonlinear vector field are asymptotically stable.

To study the qualitative properties of the system of ODEs, we focus attention on

P, = Yn(a, P) + *(« , P), (139)

where Xm and Yn are respectively homogeneous polynomials of a and ft of orders
m and n. The lowest order of * and * are respectively m + 1 and n + 1. Assume
the origin (0,0) is an isolated fixed point. Introducing the polar coordinates a =
r cos 6, P = r sin 6, a straightforward calculation shows that

r dG G(9) + O(r)

The following definition is useful.

DEFINITION 6.3. The equation G(9) = 0 is called the characteristic equation of
(140). The direction 6 determined by the characteristic equation is called the special
direction of (140).

To illustrate our approach, we consider three special cases of (27)-(28).

6.1. c, = 0, i ^ 7, 9, 10, c-i = 1. The system (27)-(28) then reads

a, = a1 + p2 + y2 + cl0a,

P, = 2ap + (c,o - c9)p, (141)

y, = lay + (c10 - c9)y.
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It is easy to see that there exists an arbitrary constant d such that y — dp. Hence
(141) is equivalent to

a, = a2 + (1 + d2)p2 + ciOa,

0, = 2af$ + (c,o - a,)P, (142)

which has been derived by Galaktionov [13]. Six subcases arise.

6.7.7. c\0 > c\, cio 7̂  0. In this subcase, (142) has four fixed points denoted
by Fi(a, /3), i = 1, 2, 3,4, with eigenvalues A12 of the linearization about each fixed
point given by

F ( 0 0 ) =*• A-i = cio, A2 = Cio - c 9 ,

=>• A.i = -cio, k2 = - c i o - c 9 ,

A1.2 —
Cg ± -y

C 9 ± v

2

- 3 c 2

- 3 c 2

The stability of Fh i = 1, 2, 3, 4, is indicated in Table 1 under assumptions on c,,
i = 9,10. In the tables, we use "US", "S" and "AS" to denote unstable, stable and
asymptotically stable respectively.

6.7.2. c\Q < c\. The system (142) has two fixed points Fi(0, 0) and F2(—cl0, 0).
The stability is pointed out in Table 2.

6.1.3. c10 = c9 = 0. In this subcase (142) has exactly one fixed point F^O, 0).
Equation (140) in this case then becomes

~r~d~9 ~ sin0[cos20- (1 + J2)sin26»]+ O(r)'

which has six special directions 9\ =0,92 = 7r,#3 = arctan(l/\/l + d2),94 = n+9-},
9s = n — 63 and 96 = —03. We have the following results [31, Theorems 3.4-3.7].

THEOREM 6.1. The origin (0, 0) is exactly one fixed point of the system (142).
Along each of the directions 9\, 92, 64 and 9s, there are infinite orbits reaching to
(0, 0). Along each of directions 03 and 96, there is only one orbit reaching to (0, 0).

6.1.4. cio = c9 ^ 0. There are two fixed points F((0,0) and F2(—cl0,0). It is
easy to see that F2 is asymptotically stable when c10 > 0 and unstable when C\0 < 0.
For the fixed point Ft (0, 0), analogous to the above discussion, we have the following.

THEOREM 6.2. There is only one orbit reaching to (0, 0) along each of two special
directions 9] = 0 and 9 = n.
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6.7.5. Cio = — c9 7̂  0. In this subcase, (142) has two fixed points Fi(0, 0)
and F2(-cio, 0). For F,(0,0), when C10 > 0, Ft is unstable and when do < 0, F,
is asymptotically stable. For F2(—C\0,0), there are four special directions 9\ = 0,
62 = n/2,63 = n and ft, = 3n/2. Here we have the following.

THEOREM 6.3. Along each of special directions 9\ and 62, there are infinite orbits

which are tangent to a = —ci0 reaching to point F2. Along each of special directions

#3 and 64, there is exactly one orbit which is tangent to a — — C\a, reaching to point

F2.

6.1.6. Cio = 0, c9 ^ 0. In this subcase, (142) has only one fixed point Fi(0, 0).
In the neighbourhood of Fi(0, 0), we have the following theorem.

THEOREM 6.4. Along each of two special directions 6\ = n/2 and 92 = 3n/2,
there is only one orbit reaching to the origin (0, 0).

6.2. c, = 0,1 ^ 2, 8, 10. As in case 6.1, it suffices to consider

a, = [2c2a
2 + c8a + ci0]a,

(144)

where d is an arbitrary constant. We distinguish five subcases.

6.2.1. c2ci0 > 0, c\ — 8c2cio > 0. In this subcase, there are nine fixed points
with eigenvalues A12 of the linearization about each fixed point given by

F,(0,0)=»A, = A 2 = C,o,

= -2c , 0 ,0V+d2)c2/

\
= Cio, A2 = — 2 C I Q ,V V V+d2)c2)

c\ - 8c2c10 - c%yjcl - 8c2c10 c\ - 8c2c10 - cSy/cj - 8c2c10

8c2
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4c2

eg — 8c2Ci0 —

4c2<JT+lP

- 8c2c1 0

4c2
, A2A2 = — lc2

4c2

l
J

- 8c2c1 0

4c2

eg - 8c2c1 0 -

4c2

= —lc2
4c,

-8c2c,o -c 8 - V c f - 8 c 2 c 1 0 \
. I

=> A., =

4c2

eg - 8c2c,o - 8c2c1 0

4c2

- c 8 - y/cj - 8c2c10

4c2

- c 8 - y/<% - 8c2c10

4c2 V I + •

4c2

= - 2 c 2
- c 8 -

4c2

J '

I'
6.2.2. c2cw > 0, c\ — 8c2c10 < 0. The system (144) has three fixed points Fu F2

and F3.

6.2.3. c2cl0 > 0, cl = 8c2cio- In this subcase, (144) has six fixed points
f?(-cg/(4c2),0), F5 '(-c8/(4c2),-c8/(4c2x/TT^)) and F6

1(-c8/(4c2), cg/(4c2

Vl +^2)) in addition to F,, F2 and F3.

6.2.4. cio = 0, c2, c8 7̂  0. The system (144) has four fixed points, Fy,
F|(-c8/(2c2), 0), F3

2(-c8 /(2c2) ,c8 /(2c2yrT^)) and F4
2(-c8/(2c2), -c8/(2c2

T
6.2.5. c2cio < 0. In this subcase, (144) admits seven fixed points F,, i =

1,4, 5, 6, 7, 8, 9. The stability of F;, i = 1, 2 , . . . . 9 is indicated in Table 3. In this
table A = c\ — 8c2c10.

For the fixed points F4', F5' and F6\ we have the following common qualitative
property.

THEOREM 6.5. Along each of two special directions 0{ = n/2 and 62 = 3n/2,
there is only one orbit, which is tangent to a = — c8/(4c2), reaching to points F4',
/ = 4, 5, 6.
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TABLE 3.

[30]

A
A < 0

A > 0

ClO

cio < 0
cio > 0
cio < 0
cio > 0
cio > 0
cio < 0
cio < 0
cio > 0
cm < 0
cm > 0

C2

c2 < 0
c2 > 0
c2 > 0
c2 > 0
c2 > 0
c2 > 0
c2 < 0
c2 < 0
c2 < 0
c2 < 0

Cg

arbitrary
arbitrary
cg < 0
c8 < 0
c8 > 0
c8 > 0
c8 < 0
c8 < 0
c8 > 0
c8 > 0

^ i

AS
US
AS
US
US
AS
AS
US
AS
US

F2

US
US

US
US

US

US

F3

US
US

US

us

us

us

F4

US

us
us
AS
US
US
US
AS

AS
US
AS
US

us
AS
US
US

F6

US
US
AS
US
US
US
US
US

Fj

US
US
AS
US
US
US
US

us

Fs

US
AS
US
US
US
US

us
us

F9

US
AS
US
US
US
US

us
us

When c\ — 8c2Ci0 = 0 and c2ci0 > 0, the stability of fixed points F\, F2, F2 and
F2 is indicated in Table 4.

6.3. d = 0, / ^ 4, 6, 10.
In this case, (27)-(28) is equivalent to

a, = c6[(l + d2)p2 - a2]a + c7[a2 + (1 + d2)?2] + cl0a,

P, = [c6((l + d2)? - a2) + 2Cla + clo]/8, (145)

where d is an arbitrary constant. To obtain the fixed points, we consider four subcases.

6.3. J. Cio ^ 0, c2 + 4c6cio > 0. In this subcase, (145) has five fixed points
denoted by £,(«, ft), i — I, ... ,5, with eigenvalues kh2 of the linearization about the
fixed points

£,(0,0) =• X1=X2 = cx0

2cfi
, 0 = • * , = -

c7 (c7

c7 (c7

- 4c6c,0

+ \/̂ "
2c6

- 4c6c1 0

2c6

+ 4c6cioj

- c7%/c? 4

2c6

+ 4c6c,0J

- 4c6c,0

- 4c6cl0

2c6

-SH Cl° \
2c7' 2c7yrr^y

=• A.,,2 = ± C I 0 ,
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TABLE 4.

31

C2

C2 > 0

c2 < 0

Cg

c8 < 0
c 8 > 0
c8 < 0
c8 > 0

Fi

US

s
s

us

Fl
US

us
s
s

Fl
US

us
s
s

Fl
US

us
s
s

/_£jO C,p \

V 2c7'2c7^/^T^;
A.li2 = ±C10.

6.3.2. cio ^ 0, c% + 4c6Cio < 0. The system (145) has three fixed points E\, E4

and E5.

6.3.3. Cio, c7 ^ 0, c?. + 4c6Cio = 0. There are four fixed points E\, E4, E5 and
£3'(c7/(2c6),0).

6.3.4. cio = 0, c6, c7 ^ 0. In this subcase, (145) has two fixed points Ex and
E|(c/c6,0).

When cio ^ 0, the stability of the fixed points £,-, i = 1, 2 , . . . , 5 is indicated in
Table 5. In this table £2 = c2. + 4c6cl0.

For the fixed point E\, we have the following.

THEOREM 6.6. Along each of two special directions 6\ = n/2 and 02 = 3n/2,
there exists only one orbit reaching to point E\.

When cio = 0 and c6,c7 ^ 0, the fixed point E\ is unstable. For the fixed point
Ei(0,0), there are six special directions

6i = 0 , 02 = n, #3 = arctan M, 04 = — arctan
T + rf2

05 = n — arctan —==, 06 = n + arctan

\+d2

'l+d2 l+d2

We have the following theorem.

THEOREM 6.7. Along each of special directions 6\ and 02, there are infinite orbits
reaching to point E\. Along each of special directions dh i = 3, 4, 5, 6, there is only
one orbit reaching to point E\.
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TABLE 5.

[32]

n<o arbitrary

c6 > 0
c6 > 0
c6 > 0
c6 > 0
c6 < 0
c6 < 0
c6 < 0
c6 < 0

arbitrary
arbitrary

c7

arbitrary

c7 > 0
c7 > 0
c7 < 0
c7 < 0
c7 > 0
c7 > 0
c7 < 0
c7 < 0
c7 7^0
c 7 ^ 0

ClO

c10 < 0
cio > 0
cio < 0
cio > 0
cio < 0
c,0 > 0
cio < 0
cio > 0
c10 < 0
c10 > 0
cio < 0
cio > 0

Ei

AS
US
AS
US
AS
US
AS
US
AS
US
AS
US

E2

US
US

us
AS
US
US

us
AS

£3

US
AS
US
US
US
AS
US
US

£4

US

us
us
us
us
us
us
us
us
us
us
us

E5

us
us
us
us
us
us
us
us
us
us
us
us

7. Discussion

In this paper, we have discussed the reduction of the four types of nonlinear
PDEs which are known to have many physically significant applications in physics
and related sciences, under four types of GCSs. The resulting equations include a
considerable number of nonlinear PDEs which have been widely studied by many
authors as their special examples. The exact solutions of these equations can be
determined by the compatibility of the GCSs and the considered equations, which
reduce to solving systems of nonlinear ODEs. Though the general solution of these
systems of ODEs are difficult to obtain, we get many interesting particular solutions.
Moreover, these systems of ODEs play an important role in discussing the asymptotic
behaviour of the exact solutions such as blow-up property. To illustrate that the
approach has wide applications, we derived the exact solutions of additional further
examples by the current approach, some of which have been considered by several
authors. Our approach strongly provides a symmetry group interpretation for known
results. It would be of interest to set up the relationship between the iteration of the
nonclassical method [22] and the current approach and give a GCS group interpretation
for known results [16] of the multidimensional diffusion equations.
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Appendix A

In this appendix, we present the exact solutions and reductions to systems of ODEs
for(2M4).

A.I. u,, = g(u, ux)uxx + f (M, UX). Analogously to the procedure for case (4.1),
we can easily obtain the corresponding results for (2), which are listed as follows.

A. 1.1. Under ox = uxxx + ux. The exact solution of (2) with (16) is determined
by (26), where a, 0 and y satisfy

a,, = Ldatp,Y), 0,, = L2(o, 0, y), ylt = L3(a,0,y), (A.I)

where Z,,, i = 1,2, 3 are as in (28).

A. 1.2. Under o2 = uxxx — ux. In this subcase, the exact solution of (2) with (19)
is given by (29), where a, 0 and y satisfy

a,, = L4(a,0,y), 0,, = L5(a, 0,y), y,, = L6{a, 0, y), (A.2)

where L4, L5 and Lt, are given by (31).

A. 1.3. Under CT3 = uxxxx. The ansatz for the exact solution of (2) with (22) is
(32), where a, 0, y and S satisfy

au = L1(!oi,0,y), 0,, = L,(fx, 0, y), yu = L9(a, 0, y), 8,, = 18c,S2 + c<8.
(A.3)

A.2. Under CT4 = uxxx. The equation (2) with (25) in this subcase has exact solution
given by (35), where or, 0 and y satisfy

atl = Lw{a,0,y), 0,, = Ln(a, 0,y), yn = Ln(a, 0, y), (A.4)

where LW,LU and L12 are given in (37).

A.3. u, = —uxxxx + g(u, ux)uxx + f (u, ux). Equation (3) is a model frequently
encountered in the study of continuous media which exhibits a chaotic behaviour [19],
including the well-known Kuramoto-Sivashinsky equation as its special case. The
GCSs CT3 and <r4 imply uxxxx = 0. Then equation (3) reduces to equation (1). We
consider two cases.
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A.4. Under ox = uxxx + ux. The ansatz for the exact solution of (3) with constraints
(16) also is determined by (26), where a, p and y satisfy

,p,y)-p, y, = L3(a,p,y) - y, (A.5)

with Lx, L2 and L3 given by (28).

A.4.1. Under a2 = uxxx — ux. It is easy to show that u(t, x) takes the form (29).
Substitution of (29) into (3) with (19) gives rise to

at = L4(a,p,y), p, = L5(a,p,y) - p, y, = L6(a,p,y) - y, (A.6)

where L4, L5 and L6 are given by (31).

A.5. uxxxx + 2uxxyy + Uyyyy = g(«, Ux)uxx + f (u, ux). \s\ \sxms. of the GCSs of
(4), four subcases arise.

A.5.1. Under ax = uxxx + ux. In this subcase, / and g are determined by (16).
Integrating O\ = 0 gives

u(x,y) = a(y) + P(y) cos x + y(y) sinx. (A.7)

Substitution of (A.7) into (4) with (16) implies a, p and y satisfy

Clyyyy = L t ((X, P, ) / ) , Pyyyy ~ Ifiyy + ^ = L2(ff, j8 , )/),

yyyyy -2yyy + Y = L3(a, P, y), (A.8)

where LX,L2 and L3 are given in (28).

A.5.2. Under a2 = uxxx — ux. The ansatz of the exact solution of (4) with (19) is

u(x, y) =a(y) +^(v)coshx + y(y) sinhx, (A.9)

which is compatible with the governing equation (4) and leads to

Olyyyy = LA{U, P, / ) , Pyyyy + 2Pyy +£= L J («, /3, Y) ,

Yyyyy + 2 Yyy + / = L^Ot, P, / ) , (A. 10)

where L4, L5 and L6 are given by (31).

A.5.3. Under a3 = uxxxx. Solving c3 = 0, we obtain the exact solution of (4)
with (22) as

u(x, y) = a(y) + P(y)x + y(y)x2 + S(y)x\ (A.ll)

Substitution of (A.ll) into equation (4) yields

ayyyy + 4Yyy = L^a> P< Y)> Pyyyy + l28y = L&(a> P< J/)>

Yyyyy = L^U, fi, / ) , Syyyy = l ^ , (A.12)

where L7, L& and L9 take the form (34).
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A.5.4. Under a4 = uxxx. Here the exact solution of (4) with (25) is

and a, f} and y satisfy

ayyyy+4yyy = Ll0(a,p,y), $yyyy = Ln(a, fi, y), yyyyy = Ll2(a, p, y),
(A. 14)

with Li0, Ln and L12 determined by (37).

Appendix B

In this appendix, we present general solution to a special Abel equation

a, = Aa3 + Ba2 + Ca + D, (B.I)

where A, B, C and D are arbitrary constants, which appears in this paper several
times. There are three cases to consider.

B.I. A ^ 0. In terms of the roots of

Act3 + Ba2 + Ca + D = 0, (B.2)

we distinguish four subcases.

B.I.I. There are three distinct real roots. The general solution is

(a - ai)"2-ai(a - a2)a3~a'(a - a3)
a'~fl2 = Dle

Ai"l~ai)iai~ai)iai~ai){'~u'), (B.3)

where at, i — 1, 2, 3, are the three real roots.

B.I.2. There is one real and two conjugate complex roots. In this subcase, we
have

Aa3 + Ba2 + Ca + D = A{a - a,)[(a + a2)
2 + aj], a3 ^ 0.

The general solution of (B.I) is
1 i a-at ax-\-a2 a + a2

ln —===== arctan = A(t — to). (B.4)
^ ( )2 ]

r ln =====
(ai + a2y + a$ ^ ( a + a2)

2 + a]

B.I.3. There are two distinct, real roots a{ and a2, the multiplicity of a2 being
two. So we have for the general solution of (B.I)

a — a.\
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B.I.4. There is only one real root alt of multiplicity three.

a = a] + [2A(tQ-t)]-l/2. (B.6)

B.2. A — 0, B ^ 0. The equation reduces to the constant Riccati equation and the
general solution is given according to three subcases.

B.2.1. A = C2 -4BD > 0.

a = * + * + £iZ£!L coth ( a ' f l 2 )
2

g ( f r o ) , (B.7)

where at and a2 are the real roots of (B.2) with A = 0.

£.2.2. A < 0.
The general solution of (B.I) is

a +
B.2.3. A = 0.

C -JABD - C2

+ t B ( r Z o ) . (B.8)

which blows up at t0.

B.3. A = B = 0, C ^ 0.

« = - £ - »,/ M. (B.9)

or = eC('-'s) - —. (B.10)

B.4. i4 = B = C = 0.

a = D(t-t0). (B.ll)

Appendix C

In this appendix, we derive the general solution to the ordinary differential equation

a, - Act4 + Ba3 + Co1 + Ca + D. (C.I)

where A, B, C and D are constants. The case A — 0 has been considered in Appendix
B, so we consider the case A ^ 0 . Analogously to the discussion for (B.I), in view of
the roots of

Q(a) = Aa4 + Bee3 + Ca2 + Ca + D = 0 (C.2)

we distinguish nine cases.
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C.I. There are four distinct real roots. In this case, we obtain the general solution
of (C.I) as

) ((X — Qj)

x (a — a4)<°i-'"4><=2-°4><«3-<'4> = e
A<-'-'°\ ( C . 3 )

where a,, i = 1,2, 3,4 are the different roots of (C.2).

C.2. There are three distinct real roots ah i = 1,2, 3, a\ having multiplicity two.
The general solution of (C.I) in this case is

[ •q+y-a-i i i i

(a — a,)'^-"!)2^-"!)2 (a — a2)(°2-«3>(»2-i)2 (a — a 3 ) <«3-°2><°3-i>2

1 =A(t-t0). (C.4)
- a , )

C.3. There are two distinct real roots ahi = l, 2, both with multiplicity two. We
obtain the general solution of (C.I) as

^lfi_^Zfi_21n^—^=A(.a2-al)\t-t0). (C.5)
a — a\ a — a-i a — a.\

C.4. There are two distinct real roots, at of multiplicity three and a2 of multiplicity
one.

a-ai ai-a2 (a, - a2)
2

 3
In -\ — =A(a, -a2)

3(t-t0) (C.6)
a — a2 a — a\ 2{a — a\Y

gives the general solution of (C.I) in this case.

C.5. There is only one real root au of multiplicity four. The general solution of
(C.I) in this case is

i i 1 / 3

which blows up at t0.

C.6. There are four distinct complex roots. In this case, we first have

Q(a) = [(a + a,)2 + &2][(a + a2f + b\], bx, b2 ̂  0. (C.8)

Hence we obtain the general solution to (C.I) as

(«• - *2>ln

- a2f + b\- b\] arctan ^ - ^
b2

- a2f + (b2 - *,)2][(ai - a2)
2 + (b2 + i,)2](r - t0). (C.9)
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C.7. There are two distinct complex roots of multiplicity two. In this case

0(a) = [(a + a,)2 + fc2]2. (CIO)

The general solution of equation (C.I) is

blia + ai) Z ± « t - t o ) . (Cll)

C.8. There are one real root of multiplicity two, and two conjugate complex roots.
In this case,

(2(«) = (a - ai)
2[(a + btf + c2]. (C.12)

Hence we obtain the general solution of (C.I) as

(a, + bOIn ( a + M 2 + C? + [2(fll + hf - 1] arctan ^ ±
c* - a, d

a — ax

C.9. There are two distinct real roots and two conjugate complex roots. We can
write

Q(a) = (a - aMa - a2)[(a + bx)
2 + c2], c, 96 0. (C.14)

The general solution of (C.I) is then given by

[(«i + b\)2 + c2] ln(a - a2) — [(a2 + bx)
2 + c2] ln(a — a{)

( a 2 a i ) [ (* i+c , ) ( a ,+ fe l ) - c 2 ] a
H — arctan

2]= A{a2 — a\)[{a\ +b\) + c2][(a2 + b\) + c,](f — t0).
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