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ON THE MAXIMAL MONOTONICITY AND THE RANGE OF
THE SUM OF NONLINEAR MAXIMAL MONOTONE

OPERATORS

by J. R. L. WEBB and WEIYU ZHAO

(Received 3rd July 1989)

Conditions are given on two maximal monotone (multivalued) operators A and B which ensure that A + B is
also maximal. One condition used is that ||Bx||gfc(||x||)|/lx| + (i|(/4 + B)x| + c(||x||) for every xeD(A)sD(B),
where Ogfc(r)<l, and c(r)S0 are nondecreasing functions, and Ogd<l is a constant. Here, for a set C, \C\
denotes inf{||y||:)>eC}. This extends the well known result which has d = 0 (and is used in the proof here). The
second part of the paper uses similar hypotheses to give conditions under which the range of the sum,
R(A + B), has the same interior and same closure as the sum of the ranges, R(A) + R(B).
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1. Introduction

In this paper we study the maximal monotonicity and the range of the sum of two
maximal monotone operators. Throughout this paper, I is a real Banach space with
dual space X*, and the value of x*eX* at xeX is denoted by (x,x*). The norms in X
and .Y* are denoted by || ||. A multivalued operator A:X->X* is identified with its
graph as a subset of XxX*, with its domain and range denoted by D(A) and R(A)
respectively. A is said to be monotone, if for each (Xj,x?)eA(i=l,2) we have
(xt — x2,x}"—x£)^0. A monotone operator is said to be maximal monotone if it cannot
be properly extended, in the sense of graph inclusion, to any other monotone operator.

If A and B are two monotone operators from X to X*, A + B is clearly monotone.
However, when both A and B are maximal monotone, A + B is not necessarily maximal.
So it is worthwhile to consider under what useful conditions the sum of two maximal
monotone operators is maximal monotone. This problem is of importance in the
existence theory for nonlinear partial differential equations. Some results in this
direction were established in Attouch [1], Brezis-Crandall-Pazy [3], Browder [5],
Calvert [6], Kato [8] and Rockafellar [10].

The basic condition given in [3, Theorem 2.3] is:

|Bx|Sfc(||x||)M*| + c(||x||), for every x e D(A) £ D(B)

where 0^k(r)<l and c(r)^0 are nondecreasing functions of r. Here for any subset
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of X (or X*), \C\ denotes inf{||x||:xeC}. In this paper we give a result under the
following condition (we suppose B is single-valued):

||Bx||^fc(||x||)|^x| + d|(^ + B)x| + c(||x||), for every x eD(A) sD(B)

where k(r) and c(r) are as above, 0 ̂  d < 1 is a constant. This extends the result in [3]
mentioned above. Note that this condition automatically holds with fc(||x||) = l and d=\.
The other condition we give involves the duality mapping F:X-*X* defined by:

F is monotone and maximal monotonicity of a monotone operator A can be determined
using F. We assume that

for every xe£>(/4)s/)(£), x*eAx,

where 0 ̂  k(r) < 1, c(r) ̂  0, h(r) ^ 0, and p(r) ^ 0 are nondecreasing functions of r, and

- V -*0(r-»ao), ^-^ is bounded when r->oo.
r2 rr

This looks similar to the condition given in Theorem 1 of [6], but is, in fact, quite
different. It seems that our results cannot be proved using only the methods of proof in
[3] and [6], nor can the results of [6] be obtained from ours. Moreover, we also give
conditions of the same type under which R(A -+B) is almost equal to R(A) + R(B) in that
these sets have the same interiors and the same closures, using ideas similar to that of
Pazy [4, Appendix] and Reich [9].

2. Results

2.1. Perturbations of maximal monotone operators

Let us recall the following results which may be found in Barbu [2, Section 1 of
Chapter 2], Brezis-Crandall-Pazy [3] and Browder [5]. Let X and X* be reflexive and
strictly convex, then a monotone operator B: X-+X* is maximal monotone if, and only
if, R{F + B) = X*. KB is maximal monotone, the equation

F(xA-x) + AxJ =0, xxeD(B), xJeBxA,

has a unique solution (xA,xJ) for every xeX and A>0. We define Jx and Bx by
Jxx = xx, Bxx = xf (xeX) respectively. It is well-known that BxxxeBJxxx. If A:X-*X*
is another maximal monotone operator, A + Bx is maximal monotone.
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The following proposition gives our first result, which is then used to derive our main
theorems.

Proposition 1. Let X be a reflexive Banach space, let A and B be maximal monotone
operators from X to X*, with B single-valued and with D(A)^D(B). If either

\\Bx\\^a\\x*\\ + b\\x* + Bx\\ + c(\\x\\), for every xeD(A),x*e Ax (1)

or

\\Bx\\ g a | Ax\ + b\(A + B)x\ + c(||x||), for every x eD{A) (2)

holds, where 0 ^ a < l , O ^ b < l are constants, and c(r)^0 is a nondecreasing function ofr,
then A + B is maximal monotone.

Proof. Obviously, inequality (1) holds whenever inequality (2) holds. It is therefore
sufficient to prove the proposition under condition (1). For every O ^ a ^ l , xeD(A), and
x*eAx, from (1) we have

where d = max (a, b). Therefore

Hence

as x* is an arbitrary element of Ax. Let N be a positive integer such that

a + b

then
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When <x = 0, we get A+(l/N)B is maximal monotone; when a=l/N, we get A+(2/N)B
is maximal monotone;...; when x = (N — l)/N, we get A + B is maximal monotone, due
to Theorem 2.3 in [3].

The following two corollaries allow either a = 1 or b= 1.

Corollary 1. In Proposition 1, if b = \ and also ||Bx||gM|/lx| + e(||x||) (xeD(A)),
where M^O is a constant, and e{r) is a nondecreasing function of r, then A + B is
maximal monotone.

Proof. Let £=(l-a)/2(M +1). For every xeD(A) and x*eAx, from (1) (b = l) and
| | | | | x | + c ( | | x | | ) , we have

||Bx|| ^ a||x*|| + ||x* + Bx\\ + c(\\x\\)

By Proposition 1, the result follows.

Corollary 2. In Proposition 1, if a = \ then A + fiB is maximal monotone for 0^

Proof. For every xeD(A) and x*eD(A), from (1) (a= 1), we have

As 0^/S< 1, the result follows from Proposition 1.

The following two theorems give the main results in this paper, and establish
conditions under which the sum of two maximal monotone operators is maximal
monotone.

Theorem 1. Under the conditions of Proposition I, if inequality (1) (or (2)) is replaced
by

(3)
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where O£k(r)<l and c(r)^0 are nondecreasing functions of r, and O ^ d < l is a constant,
then A + B is maximal monotone.

Proof. Without loss of generality, we may assume that OeD(A), OeAO and OeBO.
This can be achieved by shifting the domain and the range of A and B. For every a> 1,
there exists a strictly convex equivalent norm on X such that || llj on X* is strictly
convex and equivalent to || ||* and a 1||JC|| ^ |
all xeX, x*eX* (see Theorem 1.1 in [3]). It is well-known that if for every f*sX*
and ueX, there exists an n > l such that / * + Fa(u)eR{Fa + A + B), where Fa is the
duality mapping corresponding to || ||a, then A + B is maximal montone ([3, Lemma
1.1]). This can be shown by considering solutions of the equation

Ftt(xx) + x*x +Bixx = f* + F.(«), xx 6 D(A), xf e Axx, (4)

where B\ and J\ are defined as above but using the duality mapping Fa in place of F.
For every f*€X*, ueX and fixed a, this equation has a unique solution xx (see [5]). If
for some fixed a, {||B^xA||a} is bounded as k tends to zero, then / * +
Fa(u)eR(Fa + A + B) ([3, Theorem 2.1]). From (3) we have

Hence for every O<A<1, A + (l — k)B is maximal monotone due to Corollary 2. It
follows that, for any fixed a> 1, there exists yxeD(A), y*sAyx, such that

Fa(yx)+y*x+(l-QByx=f*+Fa(u)- (5)

So we have

Fa(yx)-Fa(xx) + y*x-xf + (l-X)Byx-B°xxx = O (6)

due to (4) and (5). Multiplying (6) by yx — xx yields

since Fa and A are monotone. This can be written

(Byx - B"xxx, yx - J"xxx) - X(Byx - Bfxxx, F " ' (B°xxx)) - X(Byx, yx - xx) g 0,

since xx = J"xxx + XF~l (B°xxx). Because B is monotone and B\xx e BJ\xx, this gives

(BJx, - Byx, F;l (BSxJ) g {By,, yx - xx). Hence

\\B°xxx\\
2
tt g{Byit F; *(BJxJ) + (Byx,yx-xj
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Multiplying (4) by xx yields

since B°x0 = 0. Multiplying (5) by yx yields

Let K = 2(||/*|| + ||u||) and choose an a such that l < a < 2 , and a2e<l, where e
max(k(R),d). From (3) and (5) we get

\\Byx\\.£a\\Byi\\

yx)\\ + \\f*\\ + \\Fa(u)

So ||Bya||.^Af0, where

_
l-a2e

Hence, using (7) we obtain

So {||B°xA||a} is bounded and the proof is completed.

Proposition 2. Let X be a reflexive Banach space with X and X* strictly convex, A
and B be maximal monotone operators from X to X*, with B single-valued and

(F--1*^,**)^—fc||jc*||2 —c(||x||)||x*||—rf(j|jc||), for every xeD(A),x*e Ax, (8)

and

| | x | + e(||x||), for every xeD(A),
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where 0^ fc< l and M ^ O are constants, and c(r)^0, d(r)^.O and e(r)^O are nondecreas-
ing functions of r, then A + B is maximal monotone.

Proof. From (8), we have

So

That is,

By Corollary 1, the result follows.

Theorem 2. Suppose the conditions of Proposition 2 hold, with (8) replaced by

(F-lBx, x*)i=-fc(||x||)||x*||2-C(||x*||)

-h(\\x\\)p(\\x*\\), for every xeD(A), x*eAx, (9)

where O^k(r)< 1, c(r)^0, /i(r)^0 and p(r)^O are nondecreasing functions of r, c(r)/r2 ->0
as r-» oo, and p(r)/r is bounded when r->oo. Then A + B is maximal monotone.

Proof. For every f*eX*, there exists xxeD(A), xje^x^, such that

/ * . (10)

We only need prove that {||BAxA||} is bounded when
For every 0<<5< 1, from (9), we have
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Since c(r)/r2 ->0 as r->oo there exists r0 such that c(r)/r2 <(l — <5)/2 for r>r0. Therefore

Since p(r)/r is bounded as r-K», there exists r t ^ 0 and M t ^ 0 such that p(r)/r^M1,
when r>rl. So we have p(||x*||)^p(r1) + M1||x*||. Hence

Therefore A + SB is maximal monotone by Proposition 2. For every A,O<A<1,
A + (l—X)B is maximal monotone, so there exists yxeD(A), yfeAy^, such that

F(yx)+yl+(i-VByx=f*. (li)

Without loss of generality we may assume that OeD(A), Oe.40 and OeBO. Similarly to
the proof of Theorem 1, we obtain

(12)

and

From (9), (11) and (13), we have

= (l-!)(F-lByx,f*-F(yx))-(l-X)(F-lByx,yl)
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which implies that {\\y*\\} is bounded as A-»0. Therefore {H^AII} is bounded due to (11),
and (llB^H} is bounded due to (12).

Remark 1. Our Theorems 1 and 2 generalize Theorems 2.3 in [3], although we
suppose that B is single-valued.

Remark 2. We can obtain corresponding results for m-accretive operators as follows:
Let X be a Banach space, with its dual X* uniformly convex, and let A and B be m-
accretive operators in X, with B single-valued and with D(A)^D(B). If either (3) or

{y,F(Bx))> -k(\\x\\)\\y\\2-c{\\y\\)-h(\\x\\)p{\\y\\), for every xeD(A),ye Ax,

(notice the similarity to (9)) and

hold, where k(r), c(r), p(r), e{r), M are the same as that in Theorem 2, then A + B is
m-accretive. If (1) holds when b=l, and ||Bx||gM|/lx| + e(||x||), then A + B is m-accretive.

Details concerning accretive operators and known results needed for the proof can be
found in Section 3 of Chapter 2 in [2] (e.g. Lemma 3.2 and Theorem 3.5). The method
of proof is quite similar to that for the monotone case, so we omit it.

In addition, for the linear case, the condition ||Bx||^M|/lx| + e(||x||) holds automati-
cally, because both A and B are closed ([2, Proposition 3.4 in Chapter 2]), so B is A-
bounded (see Theorem 3.3 in Chapter 5 of Goldberg [7]).

2.2. Ranges of sums of maximal monotone operators

For two subsets E and F of X or X*, we write E^F to denote that E and F have the
same interiors and the same closures. In [4], Brezis-Haraux gave various conditions
under which R(A + B)^ R(A) + R(B) for monotone operators A and B. The proof of our
results uses the method of Pazy ([4, Appendix]) and of Reich [9].

Theorem 3. Let X be a reflexive Banach space with X, X* strictly convex, A and B be
maximal monotone operators from X to X*, and B be single-valued with D(A)^D(B). If

||Bx||ga|/4x| + b|(/l + B)x| + c, for every x e D(A), (14)

where 0 ^ a < l , O^b<l, and c^O are constants, then R(A) + R(B)a;R(A + B).

Proof. By Theorem 1, A + B is maximal monotone. Therefore, for every f*eX* and
A>0, there exists xxeD(A), x%eAxx, such that

f*. (15)
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If for every f*eR(A) + R{B), {xj} is bounded as A-»0, then R(A) + R(B)^R(A + B) ([9,
Proposition 2.3]). For any fixed xoeD(A), let y%eAx0. Multiplying (15) by xx—x0 and
using the monotonicity of A and B, we get

Multiplying by X shows that {A||xA||} is bounded as A-»0. From (14) and (15) we have

So {Bxx} is bounded as A->0. As a result, {xj} is bounded as A-»0 due to (15).

Theorem 4. Under the conditions of Theorem 3, if (14) is replaced by

(F~*Bx,x*)^ -fc||x*||2 -c\\x*|| -d, for every xeD(A),x* e Ax (16)

and

\\Bx\\ ^ M\ Ax\ + e, for every x e D(A), (17)

where 0^k<l, c^O, d^O, M^O and e^O are constants, then R(A) + R(B) =*R(A + B).

Proof. Similarly to the proof of Proposition 2 and Corollary 1, we can prove that
(16) and (17) implies (14), so the conclusion is immediate.
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