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Analyses of wave-phase variation of Reynolds
shear stress underneath surface wave using
streamline coordinates
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The dependence of Reynolds shear stress on wave phase is investigated for initially
isotropic turbulence distorted by a progressive surface wave through direct numerical
simulations. A wave-following streamline coordinate frame is used to analyse the
turbulence dynamics such that the information of the varying direction of wave orbital
motions is embedded into the coordinate system, which helps capture the effect of flow
curvature on the turbulence and quantify momentum exchange between the near-surface
and deep regions in the wavy domain accurately. It is found that the Reynolds shear
stress is enhanced under the backward slope of the wave and can be scaled by the wave
steepness and the streamwise velocity fluctuations. Analyses of the budget of Reynolds
shear stress indicate that such a variation with the wave phase is caused by the variation in
the production of the Reynolds shear stress and the effect of pressure fluctuations. Further
investigation shows that the production of the Reynolds shear stress is closely associated
with the wave surface curvature. A model that includes a correction term for the curvature
effect for the pressure–strain correlation term is examined and is found to agree reasonably
well with the simulation result. The correction term is found to make an appreciable
contribution to the model, further supporting our finding that the wave curvature plays
an important role in the turbulence dynamics near the surface.

Key words: wave-turbulence interactions, turbulent boundary layers

1. Introduction

Surface gravity waves can exert significant influences on the structures and statistics of
the turbulence underneath. As a result, the interaction between waves and turbulence
is important to many geophysical and engineering applications. For example, Langmuir
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turbulence, generated when the wind-driven surface currents interact with waves, is a
well-known phenomenon that can enhance the turbulent mixing and transport in the
upper-ocean boundary layer (see e.g. Thorpe 2004; Sullivan & McWilliams 2010; Belcher
et al. 2012; Chamecki et al. 2019; Xuan, Deng & Shen 2019). In open-channel flows, it is
found that surface waves can influence the Reynolds stresses and current profile (see e.g.
Kemp & Simons 1982; Huang & Mei 2003).

Traditionally, the modelling of the wave–turbulence interaction uses the wave-phase-
averaged approach, which models the turbulence by performing averaging over waves
(Craik & Leibovich 1976). As a result, only the turbulent motions with time scales
longer than wave periods are resolved and the surface is treated as a rigid lid. Previous
studies (see e.g. Harcourt & D’Asaro 2008; Grant & Belcher 2009; Van Roekel et al.
2012; Deng et al. 2019; Kukulka & Veron 2019; Tejada-Martínez et al. 2020) found that
the wave-phase-averaged approach can successfully capture some dominant features of
the turbulent flows under waves, especially the structures with spatial and temporal scales
larger than the waves’ scales, such as Langmuir circulation.

However, a crucial feature of the wave–turbulence interaction is that the turbulence is
underneath the undulating curved profile of waves and undergoes the periodically varying
straining induced by the wave orbital motions. These processes occurring within each
wave period cannot be resolved by the wave-phase-averaged approach. Previous theoretical
(Teixeira & Belcher 2002), experimental (Kitaigorodskii et al. 1983; Jiang & Street 1991;
Rashidi, Hetsroni & Banerjee 1992) and numerical (Guo & Shen 2013, 2014; Chen et al.
2019; Xuan et al. 2019; Xuan, Deng & Shen 2020) studies have found that, within a wave
period, the turbulence is modulated by the wave orbital motions and the Reynolds normal
stresses are correlated with the wave phase. These findings indicate that the turbulent
motions at time scales shorter than wave periods can be important.

In the present study we aim to use direct numerical simulation (DNS) to investigate the
effect of waves on the Reynolds shear stress underneath, specifically the dependence of
the Reynolds shear stress on the wave phase. We consider an idealized problem set-up
where a monochromatic wave is imposed above an initially isotropic turbulence field
(figure 1). This problem was first studied by Teixeira & Belcher (2002) using the rapid
distortion theory (RDT), which predicts that the turbulence statistics vary with the wave
phase. The wave-phase dependency of the turbulence has been further investigated by
Guo & Shen (2013, 2014) and Chen et al. (2019) using DNS. Guo & Shen (2014) found
that their simulation result can support the RDT prediction of the wave-phase variation
of the Reynolds normal stresses. In addition, they identified the processes responsible for
these variations through the analyses of the budget of the Reynolds normal stresses. Chen
et al. (2019) investigated and quantified the subgrid-scale properties of the turbulence at
different wave phases for large-eddy simulation of wave–turbulence interaction. Despite
the substantial knowledge about the wave effect on turbulence obtained from these studies,
the mechanisms underlying the wave-phase variation of the Reynolds shear stress were
not addressed. Considering the importance of Reynolds shear stress in the turbulence
transport of momentum and the production of turbulent kinetic energy (Guo & Shen 2014;
Skyllingstad & Denbo 1995), there is a critical need for its study, which is presented in
this paper.

We note that the present canonical problem depicted in figure 1 is intended for studying
the fundamental mechanisms of wave–turbulence interaction (Teixeira & Belcher 2002).
To focus on the wave effect on turbulence, the wave is dynamically maintained (Guo &
Shen 2009) and the feedback effect of the turbulence on the wave evolution is suppressed,
such that we can obtain accurate turbulence statistics for different wave phases using time
averaging for a long duration without the wave getting dissipated or distorted (for detailed
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Phase variation of Reynolds shear stress under surface wave
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Figure 1. Sketch of the simulation set-up. The axis on the right illustrates the vertical variation of the
coefficient of the body force β (2.3). The wave propagates in the +x–direction.

discussions, see Guo & Shen 2013). Under realistic ocean conditions, in addition to the
non-breaking waves, the air–sea interface involves more complex processes, including
wind shear, Coriolis force, wave breaking, spray and bubbles. The turbulence in the
upper ocean can also be affected by motions at larger scales, such as the internal waves
and fronts. In the present set-up, absent of other types of forcing, it is ensured that
turbulence is affected by the wave only. Moreover, the isotropic turbulence is fundamental
to the understandings of many turbulence dynamics. Turbulence at small scales can be
considered to be reasonably isotropic and, therefore, the study of isotropic turbulence is
crucial to the development of turbulence theories (Tennekes & Lumley 1972; Sreenivasan
& Antonia 1997; Pope 2000; Ishihara, Gotoh & Kaneda 2009). Some realistic flows may
also be approximated by the isotropic turbulence. For example, the turbulence injected
by breaking waves can be considered nearly isotropic (Rapp & Melville 1990; Isler et al.
1994; Gemmrich & Farmer 2004) so the subsequent modifications of the turbulence by
the waves arriving later may be investigated by the present canonical model for the first
step of study. The canonical set-up of isotropic turbulence was also adopted in previous
theoretical studies (e.g. Teixeira & Belcher 2000) and experimental studies (e.g. Variano
& Cowen 2013) of the turbulence near a shear-free boundary.

This study also seeks to understand the effect of the curved surface of waves on
turbulence. To resolve the wave-phase dependence of the turbulent flows, it is no longer
appropriate to treat the surface as a rigid and flat lid as in the wave-phase-averaged model.
The effects of boundary curvature have been studied extensively for boundary layers over
stationary curved walls (see e.g. Bradshaw 1969; So & Mellor 1973; Hoffmann, Muck &
Bradshaw 1985; Moser & Moin 1987; Zeman & Jensen 1987; Baskaran, Smits & Joubert
1991; Hall & Horseman 1991; Holloway & Tavoularis 1992; Neves & Moin 1994). The
extra strain rates, which may arise from the curved flow direction and the converge or
diverge of the flow, can have a significant effect on the turbulence in addition to the
simple shear ∂U/∂y (Bradshaw 1973). Specifically for the curvature effect, it is found
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that a concave wall destabilizes the turbulence and enhances the Reynolds shear stress
whereas a convex wall has an opposite effect on the turbulence (So & Mellor 1973; Moser
& Moin 1987). The Taylor–Götler vortices that arise from the centrifugal instability are
also associated with the curvature effect (Saric 1994).

In the studies of the airflow in turbulent wind over water waves, the phase dependency
of the Reynolds stresses owing to the perturbations of the wave surface has also been
observed (see e.g. Belcher & Hunt 1993; Belcher, Newley & Hunt 1993; Yang & Shen
2009, 2010; Hara & Sullivan 2015; Buckley & Veron 2016; Husain et al. 2019; Yousefi,
Veron & Buckley 2020, 2021). The turbulent stress was found to be asymmetric about the
wave crest. For example, experimental (Buckley & Veron 2016; Yousefi et al. 2020) and
numerical studies (Yang & Shen 2010; Hara & Sullivan 2015) found that the turbulent
shear stress is reduced on the windward side of the waves and intensified on the leeward
side. The turbulent kinetic energy was found to be enhanced downwind of the wave crests
above the leeward side (Yousefi et al. 2021). In particular, Yousefi et al. (2021) were able
to obtain detailed measurements of the turbulence production and the energy transfer
between wave coherent motions and turbulence at different phases. The pressure is also
wave-phase dependent and asymmetric about the wave crest, contributing to the form drag
(Belcher & Hunt 1993; Belcher et al. 1993).

Comparatively, there are fewer studies focusing on the effect of curvature on the
turbulence under waves. Lucarelli et al. (2018) found that during the evolution of a spilling
breaker, the extra strain rate induced by the highly curved surface can have comparable
influence with the shear straining on the Reynolds shear stress in a near-surface turbulent
shear layer. The dynamics of vorticity and turbulent kinetic energy were also found to
be related to the curvature and rotation of this shear layer (Lucarelli et al. 2019). For the
non-breaking waves, the curvature of the wave surface is milder and periodically varies
with the wave phase. It would be desired to understand whether it can influence the water
turbulence.

The analyses of flows with a curved boundary are often made easier when evaluating
the governing equations of motions in curvilinear coordinates. Different curvilinear
coordinates have been employed in previous studies. One of the choices is the (s, n)
coordinates (Bradshaw 1973; Castro & Bradshaw 1976; Baskaran et al. 1991). The
s-coordinate lines reference a single selected curve, usually a boundary or a streamline,
and the n-coordinate lines are orthogonal to the s lines. Lucarelli et al. (2018, 2019)
successfully applied the (s, n) coordinate frame to the study of the spilling breakers
and examined the role of the extra strain rates associated with the curvature in the
turbulence dynamics. However, except for simple parallel rotating flows, there exists a
mean velocity component in the n-direction, which may introduce some complexities for
flows with varying curvature. There are also other generalized curvilinear coordinates
that are explicitly defined based on the boundary geometry. These coordinate systems
share some features with the (s, n) coordinates in that the cross-flows may be present but
the coordinate transformation is easy to define. For example, the boundary conforming
non-orthogonal coordinates that only map the vertical coordinate have been used for
various studies of turbulent flows over progressive waves (Hsu, Hsu & Street 1981; Sullivan
et al. 2008; Yang & Shen 2009, 2010; Hara & Sullivan 2015; Yang & Shen 2017; Hao
& Shen 2019) and turbulence under water waves (Guo & Shen 2013, 2014; Xuan &
Shen 2019; Xuan et al. 2019). Boundary conforming orthogonal coordinate mapping with
decaying curvature away from the surface proposed by Benjamin (1959) has also been
employed to investigate the wave effect on the turbulent wind (Belcher & Hunt 1993;
Sullivan, McWilliams & Moeng 2000; Buckley & Veron 2016; Yousefi & Veron 2020;
Yousefi et al. 2020, 2021). In particular, Yousefi & Veron (2020) derived the governing
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Phase variation of Reynolds shear stress under surface wave

equations with triple decomposition for the turbulent airflow over waves in the orthogonal
curvilinear coordinates and applied those to the analyses of the balance of momentum
and kinetic energy (Yousefi et al. 2020, 2021). They found for the first time that some
quantities, such as the wave-induced and turbulent shear stresses, can be drastically
different when evaluated under the curvilinear coordinates compared with under Cartesian
coordinates. Their analyses indicate that a proper choice of coordinate frame can help the
evaluation of flow statistics at the boundary and provide insightful interpretation of the
flow dynamics of the air–wave interactions.

The streamline coordinates, which use the mean streamlines as coordinate lines,
ensure that the mean velocity is aligned with the coordinate axes everywhere. For
a two-dimensional irrotational flow, the equipotential lines and streamlines form an
orthogonal coordinate system. Finnigan (1983) developed the streamline coordinates for
generalized two-dimensional shear flows, which have been used for a variety of problems,
such as flows over hills (Finnigan 2004; Poggi & Katul 2007; Li, Zimmerman & Princevac
2008) and wake flows behind a barrier (Finnigan & Bradley 1983). Although streamline
coordinates can be laborious to define, they are sometimes desired because some analyses
are substantially simplified when the equations of motions are expressed in streamline
coordinates, e.g. the equations of the RDT describing the flow over bluff bodies (Durbin
& Hunt 1980).

In the present paper, the wave-following streamline coordinates are used to analyse the
wave motions and Reynolds shear stress for the canonical problem sketched in figure 1.
We find that the streamline coordinates are superior to the Cartesian coordinates for the
analyses of the Reynolds shear stress because the former gives a more accurate definition
of the Reynolds shear stress as the momentum flux between the surface region and the
deep region in the wave flows. By comparison, the definition of the Reynolds shear
stress in the Cartesian coordinate system is affected by the pseudo stress generated from
the kinematic effect of the wave surface. In addition, we discover that the streamline
curvature of the wave plays an important dynamical role in the wave-phase variation of
the Reynolds shear stress. The production of the Reynolds shear stress near the water
surface is mostly owing to the curvature effect, based on which we propose a scaling
law quantifying the wave-phase variation of the Reynolds shear stress. Moreover, the
modelling of the pressure–strain correlation is explored by combining classic models with
a correction accounting for the curvature effect. The new model, which can capture the
main features of the DNS results, not only shows that the curvature effect is important,
but also demonstrates the possibility of modelling the wave effect utilizing the curvature
information.

The present study intends to extend the knowledge about the effect of non-breaking
waves on the initially isotropic turbulence obtained in Guo & Shen (2013, 2014) by
addressing the lack of understanding about the Reynolds shear stress. This can help gain
more insights into the role of non-breaking waves in the turbulent momentum transport
and turbulent kinetic energy production, both of which are related to the Reynolds shear
stress. Previously, it was found that the cumulative tilting of turbulence vertical vortices
by waves towards the streamwise direction is connected to the generation of the mean
Reynolds shear stress in the initially isotropic turbulence (Guo & Shen 2013). Guo &
Shen (2014) found that the energy transfer from the wave to turbulence is related to the
phase correlation between the Reynolds shear stress and the wave straining. Despite its
importance, the dynamics of Reynolds shear stress in the flow were elusive in Guo &
Shen (2013, 2014). The present study provides an accurate definition and description of
the Reynolds shear stress, elucidates its underlying dynamics, and presents a new method
for modelling the wave–turbulence interaction. Furthermore, the previous works used
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the Cartesian coordinates whereas the present work uses the wave-following streamline
coordinates, which provides a different perspective of wave–turbulence interactions in
general. However, we shall note that not all turbulence statistics are sensitive to the choice
of coordinate frame. For example, the Reynolds normal stresses are only slightly affected
when transformed from Cartesian coordinates to the streamline coordinates. Considering
that the Reynolds normal stresses have already been investigated in depth by Guo & Shen
(2014), we mainly focus on the effect of the coordinate frame on the Reynolds shear stress
and its physical interpretation in the present paper.

The remainder of the paper is organised as follows. In § 2 the simulation set-up and
computational parameters are introduced. In § 3 the results of the Reynolds shear stress
defined under the Cartesian coordinates are discussed. Then in § 4 the analyses using
the wave-following streamline coordinates, including the wave-phase variation of the
Reynolds shear stress and its budget equation, are presented. The curvature effect on the
production of Reynolds shear stress and modelling of pressure–strain correlation are also
discussed in this section. In § 5 conclusions are summarised.

2. Computational set-up and parameters

As illustrated in figure 1, the computational domain is a rectangular box with a progressive
surface wave at the top. The Cartesian coordinates, (x, y, z), refer to the streamwise,
vertical and spanwise directions, respectively. The wave propagates in the +x–direction.
The x and z directions are periodic, and the origin of the y coordinate y = 0 is set at the
mean water level. The governing equations for the simulated flow are

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p + ν∇2u + f , (2.1)

∇ · u = 0, (2.2)

where u denotes the velocity; the velocity components in the x, y and z directions in
Cartesian coordinates are denoted by u, v and w, respectively; p = P + ρgz is the dynamic
pressure that removes the hydrostatic part from the total pressure P, where ρ is the density
and g is the gravitational acceleration; ν is the kinematic viscosity; f is a turbulent body
force that energizes the isotropic turbulence. We use a linear forcing method (Lundgren
2003; Rosales & Meneveau 2005) for the turbulence forcing term, given as

f = βu′. (2.3)

Here, β is the parameter controlling the forcing strength and u′ is the velocity fluctuations
with respect to the x-y plane-averaged velocity. The balance between the energy input by
the forcing term and the dissipation yields β−1 ∼ q/ε, with q being the turbulent kinetic
energy and ε being the rate of dissipation. Note that β−1 has a dimension of time and
determines a turnover time of the turbulence (Rosales & Meneveau 2005). To prevent the
linear forcing from interfering with the wave forcing, its strength changes in the vertical
direction as shown in the right half of figure 1. The coefficient β is a constant β = β0 in
the bulk region, which occupies the centre of the simulation domain, |y − yc| ≤ Hb with
yc being the y coordinate of the centre and Hb being the half-height of the bulk region.
Outside of the bulk region, β gradually decays to 0 over a height of Hd as

β = β0

2

[
1 − cos

(
π(|y − yc| − Hb − Hd)

Hd

)]
, Hb < |y − yc| ≤ Hb + Hd. (2.4)

The region with decaying β is referred to as the damping region. The free region, whose
height is Hf , has no turbulence body force. The turbulence generated in the bulk region
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Phase variation of Reynolds shear stress under surface wave

Case β0 ν urms,cf Recf
λ k ak Fr σ S

I 0.1 4 × 10−4 0.115 68 1 0.10 0.1 10 1
II 0.1 4 × 10−4 0.115 68 1 0.15 0.15 6.67 1
III 0.1 4 × 10−4 0.115 68 1 0.15 0.1 10 1.5

Table 1. Non-dimensional computational parameters for waves and turbulence in the present study. These
parameters are non-dimensionalized by the characteristic length scale L, 1/π of the streamwise domain size,
and the characteristic time scale T , which scales the forcing coefficient β0 to 0.1 (the forcing coefficient is
associated with the turnover time scale of the isotropic turbulence generated).

and damping region interacts with the surface wave in the free region near the surface.
The imposed monochromatic surface wave is dynamically maintained by a pressure
forcing method (Guo & Shen 2009) such that the amplitude and shape of the progressive
wave are kept statistically steady to yield converged turbulence statistics underneath after
performing time averaging. No tangential shear stress is applied on the free surface. The
free-slip boundary condition is also imposed at the bottom.

The evolution of the surface elevation η(x, z, t) and the stress balance across the surface
are governed by the free-surface kinematic and dynamic boundary conditions, respectively.
The free-surface flow simulations are conducted on a wave-boundary-fitted computational
grid (Yang & Shen 2011; Guo & Shen 2013; Xuan & Shen 2019), on which (2.1) and (2.2)
are transformed into the computational coordinates and solved. The horizontal derivatives
are calculated using the Fourier pseudo-spectral method and the vertical derivatives
are calculated using the finite-difference scheme. The fractional-step method is used to
advance the momentum equations (2.1) in time subject to the incompressibility condition
(2.2). The above numerical method has been tested extensively by Guo & Shen (2009) and
Yang & Shen (2011) and has been found effective in capturing the dynamics of turbulence
interacting with surface waves (Guo & Shen 2013, 2014; Chen et al. 2019; Xuan et al.
2019, 2020).

The simulations are performed using dimensionless quantities. The characteristic length
scale L is set to 1/2π of the streamwise domain size, i.e. the dimensionless streamwise
size Lx is 2π. The characteristic time scale T for the non-dimensionalization is chosen
such that the dimensionless β0 is 0.1 (note that the coefficient in the forcing term (2.3) is
associated with a turnover time scale as introduced above). Hereafter, the variables are all
non-dimensionalized by L and T unless specified otherwise. The parameters for the cases
considered in this study are listed in table 1. In all cases, the wavelength of the surface
wave is fixed to λ = 2π, i.e. the wavenumber k is set to 1. The steepness ak and angular
frequencies σ of the wave are varied in different cases, resulting in different strain rates
of the wave orbital motions S = akσ . The wave in case I has a steepness ak = 0.1 with a
characteristic strain rate S = 1. Case II is simulated with a larger steepness ak = 0.15 but
has the same strain rate as case I to show the effect of the wave slope on the turbulence
dynamics. Because the wave straining rate also relates to the turbulence dynamics, case III
is set up based on case II but with an increased straining rate S = 1.5. The above choices of
ak and S values were shown representative for wave–turbulence interaction studies (Guo
& Shen 2013).

Referring to figure 1, the dimensions of the domain are Lx × H̄ × Lz = 2π × 5π × 2π
with H̄ being the mean water depth. The heights of the bulk region, damping region
and free region are 3π,π/2 and π/2, respectively. The grid size is Nx × Ny × Nz =
256 × 660 × 256. The grid spacings in the horizontal directions are Δx = Δz = 0.0245.
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The vertical grid, which is condensed near the surface, has a maximum grid spacing of
Δy|max = 0.0245 in the bulk region and a minimum spacing of Δy|min = 8.74 × 10−4 at
the surface. The above grid spacings allow a resolution of Δx/ηK ≈ 1.69, where ηK =
(ν3/ε)1/4 is the Kolmogorov scale. This resolution, being smaller than 2, is considered
adequate for resolving most of the small-scale turbulent motions in DNS (Pope 2000;
Donzis, Yeung & Sreenivasan 2008).

The simulations are first run without the imposed surface wave. When the turbulent flow
reaches the quasi-equilibrium state, the turbulence statistics are evaluated at the centre of
the free region, ycf = −π/4. They are used as the reference properties of the turbulence
near the free surface without the distortion of the wave straining for cases I–III. At y = ycf ,
the root mean square of the turbulence velocity fluctuations urms,cf is 0.115 and the Taylor
microscale λcf

g is 0.235. The Reynolds number based on the Taylor scale, defined as Recf
λ =

urms,cf λ
cf
g /ν, is 68. The Kolmogorov scale ηK is 0.0145. The integral length scale defined

as Lcf
∞ = urms,cf (λ

cf
g )

2
/15ν is 1.06. The isotropy of the generated turbulence is validated

in Guo & Shen (2009). After the turbulence is fully developed, the wave is added to the
simulation using the pressure forcing method of Guo & Shen (2009) and the statistics are
collected after the simulation reaches the statistically steady state again. To ensure that the
conclusions are not affected by the uncertainties of the numerical results, we calculated
the uncertainties of the key statistics of interest using the method described by Oliver et al.
(2014), which gives an accurate estimation of the sampling error by using an autoregressive
model to account for the correlations in the sampled quantities from DNS. For Reynolds
normal stresses and shear stress, the estimated standard deviation is less than 5.5 % in the
free region (figure 1). Although the discretization error is also a source of the uncertainty,
the study by Mohan, Fitzsimmons & Moser (2017) indicates that the usual criteria for the
grid resolution for DNS of the homogeneous isotropic turbulence, which are satisfied in the
present study as described above, can ensure that the discretization error of the turbulent
kinetic energy is negligible. Therefore, the uncertainties owing to the discretization error
should not affect our analyses.

3. Reynolds shear stress in Cartesian coordinates

In this section we examine the distribution of Reynolds shear stress defined under
Cartesian coordinates. We first define the mean velocity 〈u〉(x, y), which is obtained from
the averaging with respect to specific wave phases as

〈u〉(x, y) = 1
Ts

1
Lz

∫
Ts

∫
Lz

u(x + ct, y, z, t) dz dt, (3.1)

where Ts is the averaging period and c = σ/k is the wave phase speed. The mean velocity
defined above corresponds to the wave motions. The turbulent fluctuation is defined as

u′(x, y, z, t) = u − 〈u〉. (3.2)

The Reynolds shear stress, 〈−u′v′〉, is shown in figure 2. We can see that the interaction
of the turbulence with the wave induces a pronounced variation of 〈−u′v′〉 with the wave
phase. For all the cases considered in this work, strong Reynolds shear stress exists mainly
in three regions. The first region with large values of 〈−u′v′〉 is under the backward slope
near the wave crest. This region extends from the deep region and gradually decreases
towards the water surface. In addition, we can see two regions with high 〈−u′v′〉 located
under the surface and roughly symmetrically about the wave trough. The values of 〈−u′v′〉
931 A32-8
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Phase variation of Reynolds shear stress under surface wave

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2 c

0 π/2 π 3π/2 2π0 π/2 π 3π/2 2π0 π/2 π 3π/2 2π

kxkxkx

ky

–0.09 –0.03 0.03 0.09
(b)(a) (c)

Figure 2. Contours of the normalized Reynolds shear stress −〈u′v′〉/(urms,cf )
2 defined in Cartesian

coordinates for (a) case I (ak = 0.1,Fr = 0.1), (b) case II (ak = 0.15,Fr = 0.15) and (c) case III (ak =
0.15,Fr = 0.1). The increment of contours is 0.015. Note that the horizontal and vertical coordinates are plotted
on different scales.

in these two regions have opposite signs, i.e. positive under the forward slope side of
the wave and negative under the backward slope side, respectively. We also note that the
magnitudes of 〈−u′v′〉 in these two regions increase towards the surface, in contrast to
the behaviour of 〈−u′v′〉 in the first region. This difference indicates that the correlations
between u′ and v′ in the above regions are governed by different mechanisms.

To further understand the Reynolds shear stress, we use the joint probability density
function (JPDF) to quantify the correlations between u′ and v′ and analyse the turbulent
motions associated with the Reynolds shear stress. As an example, figure 3 plots the
contours of the JPDF under different wave phases near the surface for case I at a fixed
distance from the surface, k( y − η) = −0.01. According to which quadrant the velocity
fluctuations are located, the turbulent motions are classified into four categories: Q1
(u′ > 0, v′ > 0); Q2 (u′ < 0, v′ > 0); Q3 (u′ < 0, v′ < 0); Q4 (u′ > 0, v′ < 0) (Wallace,
Eckelmann & Brodkey 1972). The elliptically shaped contours of JPDF indicate that the
magnitude of v′ is smaller than that of u′, which is due to the suppression of the vertical
fluctuations near the surface. We find that the major axes of the JPDF contours are roughly
aligned with the wave surface under the backward slope (figure 3a) and the forward
slope (figure 3c) (the local slope is indicated by the dash–dotted line). This phenomenon
indicates that the velocity fluctuations near the surface tend to be parallel to the local wave
surface, i.e.

v′

u′ ≈ ηx. (3.3)

As a result, under the forward slope (ηx < 0), Q2 and Q4 motions are dominant, resulting
in positive 〈−u′v′〉 (figure 2). The negative 〈−u′v′〉 under the backward slope (ηx > 0)
results from the dominance of the Q1 and Q3 events. The above correlation between u′
and v′ can be explained by the blockage effect imposed by the free-surface boundary
conditions, which restrict the motions normal to the boundary and transfers kinetic energy
from the surface-normal fluctuations to surface-parallel motions (Perot & Moin 1995;
Walker, Leighton & Garza-Rios 1996; Shen et al. 1999; Guo & Shen 2010). Here, because
the wave surface is inclined, the constraint imposed by the boundary, i.e. u′ · n = 0,
reduces to the correlation given in (3.3), which leads to the two roughly symmetric
regions of 〈−u′v′〉 with opposite signs shown in figure 2. As the surface is approached
and the blockage effect becomes stronger, the correlation between u′ and v′ grows and,
thus, the strength of 〈−u′v′〉 in these two regions increases towards the surface (figure 2).
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Figure 3. Joint probability density function of u′ and v′ for case I under the (a) backward slope, (b) crest,
(c) forward slope and (d) trough of the wave at k( y − η) = −0.01. The wave slopes under the backward and
forward slopes are indicated using dash–dotted lines in (a) and (c). Note that the axes are stretched to highlight
the orientations of the contours. The smallest (outermost) contour level is 0.02 and the increment between
contours is 0.06. The velocity fluctuations are normalized by urms,cf .

Meanwhile, the energy transferred from surface-normal fluctuations to surface-parallel
fluctuations further contributes to the enhancement of 〈−u′v′〉.

Similar distribution of the Reynolds shear stress 〈−u′v′〉 caused by the blockage effect
has also been observed in other types of flows. For example, for the spilling breaking
waves, it was found that the Reynolds shear stress is positive at the front of the crest and
negative at the lee side within the turbulent shear layer induced by the breaker (figure 2
in Lucarelli et al. 2018). In the turbulent wind boundary layer over water waves, various
studies have also observed the negative–positive turbulent shear stress along the wave crest
(Yang & Shen 2010; Buckley & Veron 2016; Husain et al. 2019), which is also attributed to
the flow aligning with the sloped wave surface by Yousefi et al. (2020) after they compared
the results under different coordinate frames.

However, we shall note that the 〈−u′v′〉 induced by the wave surface boundary
conditions has a different meaning in terms of the momentum transport compared with
the Reynolds shear stress in flows over a flat boundary. In the turbulent boundary layer
over a flat boundary, the Reynolds shear stress represents the exchange of momentum
in the direction normal to the boundary. However, in a wave flow, the mean velocity
direction changes with the wave phase, leading to the rise and fall of the fluid elements.
In this scenario, the kinematic-induced 〈−u′v′〉 is a pseudo Reynolds shear stress that
just represents motions that are along the free surface and is not fully representative of
the momentum exchange between the deep and near-surface regions in the wave flow.
Therefore, a more accurate representation of the Reynolds shear stress is called for.

As shown in figure 2, the influence of the boundary conditions seems to extend down
to approximately k( y − η) = −0.1 below the surface, where the two regions with strong
〈−u′v′〉 around the wave trough disappear. Meanwhile, the region under the backward
slope still has large values of 〈−u′v′〉, indicating that there may exists an enhanced
momentum transport under the backward slope. However, with the contributions from the
pseudo Reynolds shear stress due to the kinematic constraint unquantified, it is difficult to
determine the ‘real’ momentum transport. To remedy this bias induced by the kinematic
effect in the interpretation of the Reynolds shear stress, the direction of the mean flow is
taken into consideration in § 4 using the wave-following streamline coordinates. Yousefi
et al. (2020) reached a similar conclusion for the turbulent wind flow over waves, i.e. the
turbulent shear stress evaluated under a curvilinear coordinate system accounts for the
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effect of the inclined surface directly. The Reynolds shear stress near and away from the
surface are analysed in the streamline coordinates in the sections below.

4. Analyses under wave-following streamline coordinates

In this section we introduce the streamline coordinates that account for the varying
mean flow direction to address the issue pointed out in § 3 that the 〈−u′v′〉 in Cartesian
coordinates does not faithfully quantify the momentum transport in a wavy domain. The
definition of the streamline coordinates is given in § 4.1. Then, the properties of the wave
motions viewed in the streamline coordinates are discussed in § 4.2. The Reynolds shear
stress in the wave-following frame and its budget are examined in § 4.3. Details about
the curvature effect on the production of Reynolds shear stress and the pressure–strain
correlation are discussed in § 4.4.

4.1. Definition of wave-following streamline coordinates
To facilitate the definition of the streamline coordinates, the flow is translated to the
wave-following frame such that the mean flow, i.e. the wave motions, becomes a
quasi-steady, two-dimensional flow in the x–y plane. The translated mean velocity field
(〈u〉 − c, 〈v〉) is plotted in figure 4(a) using vector arrows, which show that the flow
direction is opposite to the direction of wave propagation. Following Finnigan (1983), for
the two-dimensional steady mean flow that depends on x and y, the transformation from
the Cartesian coordinates (x, y, z) to the streamline coordinates (ξ1, ξ2, ξ3) is performed
only for the first two dimensions and does not affect the transverse direction z or ξ3, i.e.
z = ξ3. The coordinate lines of ξ1 and ξ2 are defined as the streamlines and the lines that
are orthogonal to the streamlines, respectively. The streamlines are given by the lines of
ψ(x, y) = constant, where ψ(x, y) is the streamfunction defined by the relations

∂ψ

∂y
= 〈u〉 − c,

∂ψ

∂x
= −〈v〉. (4.1a,b)

The other group of coordinate lines is given by the function φ(x, y), defined as

∂φ

∂x
= ζ(〈u〉 − c),

∂φ

∂y
= ζ 〈v〉. (4.2a,b)

Note that the lines of φ(x, y) = constant are orthogonal to the streamlines. The parameter
ζ in the above definition is calculated using

ζ = exp
(∫

Ω

U2 dψ
)
, (4.3)

where U = |(〈u〉 − c, 〈v〉)| is the mean velocity magnitude andΩ = ∂〈v〉/∂x − ∂〈u〉/∂y is
the vorticity of the mean flow. We remark that when the flow is irrotational, the parameter
ζ calculated from (4.3) is simply ζ = 1, and the function φ(x, y), (4.2a,b), reduces to the
velocity potential, i.e. ∇φ = (〈u〉 − c, 〈v〉). Although φ and ψ can be directly used as
the coordinates of an orthogonal coordinate system, the magnitudes of the base vectors of
the (φ, ψ) system vary from place to place with respect to the Cartesian frame, in addition
to the difference in dimensions, which makes it difficult to measure quantities using
these coordinates and compare them with those measured under Cartesian coordinates.

931 A32-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

97
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.972


A. Xuan and L. Shen

|(u – c, v)|/c = 1
0.9 1.0 1.1

0 π/2 3π/2

ξ2

ξ1

2ππ

0 π/2 3π/2 2ππ

−0.8

ky

kx

−0.6
−0.4
−0.2

0
0.2

−0.8

ky

−0.6
−0.4
−0.2

0
0.2

(b)

(a)

Figure 4. (a) The mean velocity vectors (〈u〉 − c, 〈v〉) and contours of the mean velocity magnitude U =
|(〈u〉 − c, 〈v〉)|. Note that the along-stream component of the mean velocity in streamline coordinates satisfies
Û = U. (b) The ξ1 and ξ2 coordinate lines of the streamline coordinates.

Therefore, we further normalize the basis vectors by their local magnitudes and the
resulting coordinates ξ1 and ξ2 satisfy

dξ1 = (ζU)−1dφ, dξ2 = U−1dψ. (4.4a,b)

In this way, the quantities in the streamline coordinates (ξ1, ξ2, ξ3) defined above are
properly scaled and have the same physical dimensions as the Cartesian coordinates.

A ξ1–ξ2 plane of the wave-following streamline coordinates is plotted schematically in
figure 4(b). The wave surface, as a material boundary, is a streamline in the wave-following
frame. The other streamlines (ξ2 = constant) are roughly parallel to the wave surface, with
decreasing curvature as the distance from the surface increases. This is expected because
the wave motions decay with the depth and the streamlines should become straight in
deep waters with the influence of the wave diminishing. We note that the directions of the
axes of the above streamline coordinates are different from those of Cartesian coordinates.
The along-stream coordinate ξ1 increases in the −x-direction, consistent with the mean
flow direction shown in figure 4(a). The positive direction of the cross-stream coordinate
ξ2 roughly points downward to the interior of the flow and the right-hand system is
maintained.

4.2. Mean flow properties
In this section we discuss properties of the wave using the wave-following streamline
coordinate system for the subsequent analyses of the wave–turbulence interaction. For
more intuitive interpretation of the figures, hereafter, the results are plotted in the
physical domain using Cartesian coordinates (x, y, z) but the dependent variables, such
as the velocity, are defined based on the streamline coordinates. The values evaluated
in streamline coordinates are denoted by (̂·). For example, the velocity components in
the ξ1, ξ2 and ξ3 directions of the streamline coordinates are denoted by û, v̂ and ŵ,
respectively.

In the streamline coordinates, the only non-zero component of the mean velocity Û
is the along-stream component Û, which is equal to the velocity magnitude U. The
cross-stream mean velocity is zero by definition. The dimensionless mean momentum
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Figure 5. Contours of (a) γ−1 and (b) R−1 for case I. The values are normalized by ak2. The yellow line with
arrows represents a streamline and the direction of the mean flow.

equation in the ξ1-direction is written as (Finnigan 1983)

∂Û
∂t

+ Û
∂Û
∂ξ1

= −∂〈p〉
∂ξ1

− ∂〈û′2〉
∂ξ1

+ 〈û′2〉 − 〈v̂′2〉
γ

− ∂〈û′v̂′〉
∂ξ2

+ 2〈û′v̂′〉
R

+ 1
Re

[
∂Û

∂ξ2
1

+ ∂Û

∂ξ2
2

− 2
γ

∂Û
∂ξ1

− 1
R
∂Û
∂ξ2

− Û
R2

]
. (4.5)

In the above equation, γ and R are two length scales arising naturally from the definitions
of the wave-following streamline coordinates and their physical meanings are detailed
below.

Figure 4(a) plots the contours of Û for case I with ak = 0.1 and S = 1 as an example.
We can see that the maximum and minimum velocity occurs under the wave trough and
crest, respectively. Under the forward slope, the flow slows down along the streamlines,
accompanied by the elevation of the water surface. The reverse process, i.e. the flow
acceleration, occurs under the backward slope as the surface elevation decreases. Such
periodic acceleration and deceleration along the streamlines can be quantified using a
length scale γ defined as

γ−1 = 1

Û

∂Û
∂ξ1

= ∂ln Û
∂ξ1

. (4.6)

According to the above definition, γ is the ‘e-folding’ length of the streamwise velocity
Û. A larger γ−1 indicates that the local relative acceleration rate of the flow is larger.
The contours of γ−1 are shown in figure 5(a). The negative and positive γ−1 under the
wave forward and backward slopes correspond to the flow deceleration and acceleration,
respectively. This parameter is also associated with the streamwise stretching and
compression imposed on the fluid elements by the wave motions. As the flow accelerates,
the fluid elements are stretched along the streamline. On the contrary, the deceleration
of the flow leads to the effect of streamwise compression. It should be noted that for
steady progressive waves, the mean flow does not detach from the wave surface even
with the deceleration. In a more violent scenario, such as in a spilling breaker (Dabiri &
Gharib 1997) or hydraulic jump (Misra et al. 2008), a sharp deceleration of the mean flow
can occur and the associated flow separation can induce intense generation of turbulence
vorticity.

Another important parameter introduced by the streamline coordinate system is the local
curvature of the streamlines, R−1, defined using the mean vorticity Ω and streamwise
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velocity Û as

R−1 = 1

Û

(
Ω + ∂Û

∂ξ2

)
. (4.7)

It can be shown that the definition above is equivalent to the geometric curvature of the
streamline (or the coordinate lines of ξ1), for which the details are given in Appendix A.
The contours of the streamline curvature for case I are plotted in figure 5(b). The figure
shows that the maximum and minimum curvatures occur under the wave crest and trough,
respectively. In our definition (4.7), R−1 is positive when the centre of the curvature lies in
the +ξ2-direction. Therefore, the concave streamlines under the wave crest have positive
curvature values whereas the convex flow under the trough has negative curvatures. We
note that the flow curvature is associated with the centripetal acceleration of the flow and
can be used to quantify the straining effect on the fluid elements caused by the rotation of
the mean flow. This is important to the wave-phase variation of the Reynolds shear stress
as discussed in the subsequent sections.

Both the acceleration length scale γ and the curvature R−1 can be estimated using the
linear irrotational wave theory as detailed in Appendix B. The results (B10) and (B11) are
written below,

γ−1 = ak2 eky cos kx + O(a2k2), (4.8)

R−1 = ak2 eky sin kx + O(a2k2). (4.9)

As discussed below, the viscous wave considered in the present study is not perfectly
irrotational but the rotational region is confined to a thin viscous layer below the surface.
Therefore, the use of the irrotational wave theory can be justified for most of the region
away from the surface. Nonetheless, we find that γ−1 and R−1 can still be accurately
estimated even in the viscous layer using the irrotational wave velocity because the viscous
effect does not significantly affect the along-stream acceleration nor the geometry of the
streamlines. The numerical results of γ−1 and R−1 (figure 5) are consistent with the above
theoretical estimates (not plotted). Both quantities vary sinusoidally with the wave phase
and the magnitudes of their variations scales with ak2 and decays exponentially with the
depth. This indicates that these two quantities are correlated for the wave orbital motions.
However, it should be noted that they are associated with different mechanisms, i.e.
streamwise acceleration for γ and centripetal acceleration for R but with a phase difference
of π/2. As a result, they appear in different budget terms in the transport equation of the
Reynolds shear stress, as shown below in § 4.4. If we assume that the characteristic length
scale of the energy-containing eddies is the integral length scale Lcf

∞, we can define a
relative curvature as Lcf

∞/R. The relative curvature, representative of the curvature effect
on the turbulence (Moser & Moin 1987; Baskaran et al. 1991), is 0.11 for case I and 0.16
for cases II and III. These correspond to comparatively large curvature that can induce
significant modifications in a curved channel (Moser & Moin 1987, 1984). As a result, we
may expect an appreciable effect of the wave motions on the turbulence.

Now that, in the wave-following frame, the wave motions are interpreted as nearly
parallel flows with alternating concave and convex curvatures under the wave crest and
trough, respectively, it should be noted that a crucial difference of the wave flow from
the flow over a curved no-slip wall is that the wave is nearly irrotational. This means
that, based on (4.7), in most of the region below the surface, the cross-stream gradient
of the mean velocity, ∂Û/∂ξ2, is approximately equal to the straining associated with
the curvature, Û/R. By comparison, the shear flow over a curved no-slip boundary
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Figure 6. Contours of (a) mean vorticity Ω and (b) cross-stream gradient ∂Û/∂ξ2, which show the Stokes
layer at the surface. The values are normalized by akσ . Case I is plotted.

has strong mean vorticity and the rotational shearing is dominant. For viscous waves,
there still exists a viscous layer at the surface where the wave deviates from irrotational
motions (Longuet-Higgins 1953; Guo & Shen 2013). It has been shown that, for a curved
surface with vanishing tangential shear stress, the vorticity generated at the surface is
2Û/R (Longuet-Higgins 1992), which is O(2akσ) to the leading order, as illustrated
in figure 6(a). Consequently, based on (4.7), the cross-stream gradient in the Stokes
layer satisfies ∂Û/∂ξ2 ≈ −Û/R. Therefore, ∂Û/∂ξ2 changes rapidly as the surface is
approached and becomes negative under the wave crest and positive under the wave trough
(figure 6b). As the vorticity arises from the oscillating wave surface, the thickness of this
viscous layer is of the same order of magnitude of the Stokes layer, δS = √

2ν/σ . For
example, for case I, the dimensionless thickness of the Stokes layer is kδS = 8.9 × 10−3

and that of the vorticity layer is approximately 2kδS (figure 6a). Therefore, the region
where the rotational shearing effect of the wave takes place is quite limited. Another
difference of the wave motions from the curved wall-bounded flows is that the free-surface
boundary condition allows surface-tangential velocity fluctuations. This can lead to
differences in the mechanisms responsible for the production of the Reynolds shear stress
as discussed below.

At last, we shall point out some differences between the definition of the streamline
curvature in the present paper and those used in the literature. The present definition
(4.7), which represents the geometric curvature of the streamlines (Appendix A), uses
the cross-stream gradient of the mean velocity ∂Û/∂ξ2 and the mean vorticity Ω . On the
other hand, many studies of the curved shear layer define the streamline curvature and
the associated strain rates using ∂〈v〉/∂x or ∂〈v〉/∂ξ1 (see e.g. Bradshaw 1973; Lucarelli
et al. 2018). These definitions use the rate of change of the velocity component normal
to the coordinate lines to approximate the rotation of the mean flow and can only be
calculated for Cartesian coordinates and non-streamline coordinates such as the (s, n)
coordinates. As shown by (B6) in Appendix B, ∂〈v〉/∂x only contributes partially to
the geometric curvature of the streamlines R−1. However, for the wave flow considered
here, the contribution from ∂〈v〉/∂x is dominant, indicating that the streamline curvature
defined using ∂〈v〉/∂x is a good approximation for the streamline curvature in the
present study. Because of the difference in the definitions of the streamline curvature,
the curvature-induced strain rates in Bradshaw (1973) and Lucarelli et al. (2018) cannot be
directly compared with the curvature straining in the present study. In Bradshaw (1973)
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Figure 7. Contours of the normalized Reynolds shear stress, 〈−û′v̂′〉/(urms,cf )
2, defined in the streamline

coordinates for (a) case I (ak = 0.1,Fr = 0.1), (b) case II (ak = 0.15,Fr = 0.15) and (c) case III (ak =
0.15,Fr = 0.1). The increment of contours is 0.015. The yellow lines represent the streamlines of kξ = 0.01
(– – –) and kξ = 0.2 (— · —) that are used in figure 8. The arrows on the streamlines indicate the direction of
the mean flow in the wave-following frame.

and Lucarelli et al. (2018) there are two extra strain rates that are related to different
curvatures. The first one, U/R−1, is considered to be the strain rate due to geometric
curvature, which refers to the curvature of the coordinate lines. The second strain rate
is related to ∂v̂/∂ξ1, which is considered to be the strain rate caused by the streamline
curvature. The distinction of the geometric and streamline curvatures in Bradshaw (1973)
and Lucarelli et al. (2018) is due to the use of a general curvilinear coordinate system
where the coordinate lines and the flow direction are not aligned. As a result, the velocity
vector have both the components tangential and normal to the coordinate lines, which are
both rotating and lead to a straining effect on turbulence. By contrast, in the streamline
coordinates, the rotation of the coordinate line is the same as the rotation of the mean flow
direction and, thus, there is only one unified curvature-induced strain rate Û/R, which
simplifies the interpretation of the strain rates of the mean flow.

4.3. Reynolds shear stress in streamline coordinates
By projecting the instantaneous velocity onto the wave-following streamline coordinates
defined in § 4.1 and subtracting the mean velocity Û from it, we can obtain the
along-stream and cross-stream velocity fluctuations, û′ and v̂′, respectively. Using this
definition, 〈−û′v̂′〉, the correlations between the along-stream and cross-stream velocity
fluctuations is indicative of the momentum transport across the curved streamlines, i.e.
the momentum exchange between the free-surface boundary and the interior in the
wave-following frame.

The contours of Reynolds shear stress 〈−û′v̂′〉 defined above are plotted in figure 7. We
can see that the variation of 〈−û′v̂′〉 defined in the streamline coordinates is drastically
different from that defined in Cartesian coordinates (figure 2). This confirms that the
Reynolds stress defined in Cartesian coordinates can be misleading for the analyses of
the transport of momentum near the wave surface due to the strong influence of the
surface kinematic blockage effect. To be specific, immediately below the surface, 〈−û′v̂′〉
is negative under the forward slope of the wave (figure 7), in contrast to the positive
Reynolds shear stress under Cartesian coordinates (figure 2). The disappearance of the
positive–negative regions around the wave trough as observed in Cartesian coordinates
indicates that the kinematic effect is removed by the use of the wave-following streamline
coordinates.
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Phase variation of Reynolds shear stress under surface wave

Near the surface, 〈−û′v̂′〉 increases sharply along the mean flow direction under the
wave crest and then gradually decreases under the wave trough. The values of 〈−û′v̂′〉 are
slightly negative under the forward slope of the wave, which seems to be a counter-gradient
momentum flux with ∂Û/∂ξ2 > 0 (figure 6b). This may be attributed to the deceleration
of the mean flow from a kinematic point of view. Considering a flow particle with v̂′ > 0
that moves in the +ξ2 direction (away from the surface), despite the fact that ∂Û/∂ξ2 > 0
(figure 6b), the particle also moves in the ξ1 direction with Û decreasing (figure 5a). When
the velocity difference between the origin and the end location of the particle is mostly
due to the flow deceleration, the particle carries high momentum into the low momentum
region with û′ > 0, leading to −û′v̂′ < 0. Under the wave trough, the negative 〈−û′v̂′〉
near the surface can be due to the negative ∂Û/∂ξ2. The results above indicate that the
physics of the Reynolds shear stress in the wave flow is complex involving processes other
than the simple shear straining.

Away from the surface, the distribution of 〈−û′v̂′〉 becomes similar to that under
Cartesian coordinates, which is expected because the effect of the wave surface weakens as
the depth increases. The values of 〈−û′v̂′〉 become positive at all wave phases because the
shear straining of the Stokes drift of the wave cumulatively tilts turbulence vortices towards
the streamwise direction (Teixeira & Belcher 2002; Guo & Shen 2014). Meanwhile, the
wave-phase dependency of the Reynolds shear stress is still obvious. Along the mean flow
direction, the values of 〈−û′v̂′〉 increase rapidly under the wave crest and reach maximum
under the backward slope of the wave. This indicates that the momentum exchange is more
active under the backward slope. This result is similar to the phenomenon that the concave
curvature has a destabilizing effect on turbulence and can intensify the Reynolds shear
stress (Hoffmann et al. 1985; Moser & Moin 1987).

We note that in the momentum equation (4.5), in addition to the cross-stream stress
flux term ∂〈−û′v̂′〉/∂ξ2, the Reynolds shear stress has an extra contribution to the
momentum balance in the ξ1-direction owing to curvature, 2〈û′v̂′〉/R. However, we find
that the magnitude of this term is at least one order of magnitude smaller compared with
∂〈−û′v̂′〉/∂ξ2, which is consistent with the analysis of the boundary layer formulation
for shear layers in the literature where this curvature-related Reynolds shear stress term
is often neglected by the order-of-magnitude analysis (Bradshaw 1973; Yousefi & Veron
2020). With ∂〈−û′v̂′〉/∂ξ2 being the dominant term through which 〈−û′v̂′〉 contributes to
the momentum balance, the Reynolds shear stress defined under the streamline coordinates
can still be considered as the momentum flux across the streamlines in the present study.

Although the choice of the Cartesian or streamline coordinate system can significantly
change the values of the Reynolds shear stress, we find that the values of Reynolds normal
stress are only weakly affected by the change of the coordinate frame. The reason why
the Reynolds shear stress is more sensitive to the choice of the coordinate frame than
the Reynolds normal stresses for the cases considered in the present study is discussed in
detail in Appendix C. Considering that the wave-phase variation of the Reynolds normal
stress has been discussed extensively in Guo & Shen (2014), we continue focusing on the
behaviour of the Reynolds shear stress.

To illustrate the wave-phase variation of Reynolds shear stress more clearly, we plot
in figure 8 the fluctuations of 〈−û′v̂′〉 along streamlines, defined as ˜〈−û′v̂′〉 = 〈−û′v̂′〉 −
〈−û′v̂′〉 with 〈−û′v̂′〉 being the mean 〈−û′v̂′〉 averaged along the streamline. We can see
that, after subtracting the mean shear stress, the wave-phase variation of the Reynolds
shear stress is qualitatively similar in both the near-surface viscous layer (figure 8a) and
away from the surface (figure 8b). The variation is not a simple sinusoidal shape. Under the
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Figure 8. Normalized variation of the Reynolds shear stress, ˜〈−û′v̂′〉/ak〈û′2〉, along the streamlines of (a)
kξ2 = 0.01 (the yellow dashed line in figure 7) and (b) kξ2 = 0.2 (the yellow dash–dotted line in figure 7) for
case I (——–), case II (– – –) and case III (— · —). The arrow indicates that the mean flow direction points
from right to left.

wave crest, the Reynolds shear stress increases sharply. By contrast, under the wave trough,
its variation is milder. This suggests that the physical processes governing the wave-phase
variation of the Reynolds shear stress are different under the wave crest and trough, which
are investigated in § 4.4.

We have also found that, despite the notable difference in the magnitudes of 〈−û′v̂′〉
among cases I–III, as shown in figure 7, the variation of 〈−û′v̂′〉 under the wave crest
can be normalized by ak〈û′2〉. Figure 8 shows that the normalized shear stress collapses
well for different cases. In other words, the variation of the Reynolds shear stress is
proportional to the streamwise fluctuations and the wave steepness. Under the wave trough,
this normalization is slightly less than ideal. However, since the variation of 〈−û′v̂′〉 is
relatively small under the trough, especially when compared with under the crest, we can
still consider the above normalization as acceptable for the description of the wave-phase
variation of the Reynolds shear stress. The mechanism underlying the variation and scaling
is further analysed below in § 4.4.

4.4. Reynolds stress budget
Next, we examine the budget of the Reynolds shear stress to investigate the mechanism
responsible for the wave-phase variation of the stress. The budget equation in the
streamline coordinates is Finnigan (1983),

D〈−û′v̂′〉
Dt

= ∂〈−û′v̂′〉
∂t

+ Û
∂〈−û′v̂′〉
∂ξ1

= P +Π + T + T p + V . (4.10)

In the above equation, the right-hand side terms are production P , pressure–strain
correlation Π , turbulent diffusion T , pressure diffusion T p and viscous effect
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Phase variation of Reynolds shear stress under surface wave

V , respectively. These terms are defined as

P = 2〈û′2〉 Û
R

− 〈v̂′2〉Ω, (4.11)

Π = −
〈
p′ ∂v̂′

∂ξ1
+ p′ ∂ û′

∂ξ2

〉
, (4.12)

T =
(
∂〈û′2v̂′〉
∂ξ1

+ ∂〈û′v̂′2〉
∂ξ2

)
− 1
γ
(2〈û′2v̂′〉 − 〈v̂′3〉)− 1

R
(2〈û′v̂′2〉 − 〈û′3〉), (4.13)

T p =
〈
∂p′v̂′

∂ξ1
+ ∂p′û′

∂ξ2

〉
, (4.14)

V = − 1
Re

[
〈û′∇2v̂′〉 + 〈ŵ′∇2û′〉 + ∂

∂ξ1

( 〈û′2〉 − 〈v̂′2〉
R

)
− ∂

∂ξ2

( 〈û′2〉 − 〈v̂′2〉
γ

)
− 1
γ

∂〈û′v̂′〉
∂ξ1

− 1
R
∂〈û′v̂′〉
∂ξ2

− 2〈û′v̂′〉
(

1
γ 2 + 1

R2

)]
. (4.15)

Because of the statistically steady state in the wave-following frame, the unsteady term,
∂〈−û′v̂′〉/∂t, is approximately zero. The convection term, Û∂〈−û′v̂′〉/∂ξ , represents the
rate of change of the Reynolds shear stress along the streamline. The positive–negative
variation of Û∂〈−û′v̂′〉/∂ξ with the wave phase, which corresponds to the increase
and decease of the Reynolds shear stress, is contributed by the various effects on the
right-hand side of (4.10). We also note that most of the above terms contain components
that are related with γ and R, the two length scales associated with the streamline
coordinates defined by (4.6) and (4.7), respectively. These components are not present
in the corresponding budget equation in Cartesian coordinates and appear as the result of
the curved coordinate lines in the streamline coordinates defined based on the wave flow.
These R- and γ -containing terms directly quantify the impacts of the flow curvature and
acceleration caused by the wave on the budget of the Reynolds shear stress.

From the simulation data, we found that the dominant effects that contribute to the
variation of 〈−û′v̂′〉 with the wave phase are the production P , the pressure diffusion T p

and the pressure–strain correlation Π . Because the balance of the budget is qualitatively
similar for all the cases, here we only discuss these terms for case I, which are plotted
in figure 9. Compared with other terms, these three terms have much larger magnitudes
and all show substantial variations with the wave phase and, thus, lead to the wave-phase
variations of 〈−û′v̂′〉.

As shown in figure 9(a), the production term, P , is positive and negative under the
wave crest and trough, respectively. This indicates that the production by the interaction of
turbulence with the mean flow increases the Reynolds shear stress 〈−û′v̂′〉 when a wave
crest passes by and decreases it as a trough passes by. The magnitude of the variation of
the production increases towards the surface, leading to a larger rate of change of 〈−û′v̂′〉
near the surface. This behaviour of the production is closely related to the curvature effect,
which is discussed in detail later in this section and § 4.5.1.

The effects associated with the turbulence pressure fluctuations are quantified by the
pressure diffusion and pressure–strain correlation terms (figures 9b and 9c, respectively).
The pressure–strain correlation, Π , is negative under the wave crest and positive under
the wave trough. The vertical variation of Π is not monotonic. Towards the surface, the
magnitude of Π first increases and then decreases approximately within the region kξ2 <
0.05. The decrease is due to the reduction of the strain rate, ∂v̂′/∂ξ1 + ∂ û′/∂ξ2, within the
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Figure 9. Contours of the dominant budget terms of 〈−û′v̂′〉 (4.10): (a) production P , (b) pressure diffusion
T p and (c) pressure–strain correlation Π . The results of case I are shown and are normalized by (urms,cf )

2ck.
The yellow lines represent the streamlines of kξ = 0.2 (— · —) and kξ = 0.01 (– – –) that are used in figure 10.
The arrows on the streamlines indicate the direction of the mean flow.

surface layer to satisfy the shear-free boundary condition (Shen et al. 1999; Guo & Shen
2013).

The behaviour of the pressure diffusion, T p, is more complex. Under the wave crest,
the pressure diffusion is positive. We find that the positive T p is mostly contributed
by ∂( p′û′)/∂ξ2 (not plotted), indicating that 〈−û′v̂′〉 is diffused from the deep region
towards the surface by the pressure effect. Under the wave trough, the pressure diffusion
exhibits a two-layer structure. This term is negative except in a thin layer in the immediate
vicinity of the surface. Within this thin layer, T p changes drastically to positive values.
Therefore, the pressure diffusion of 〈−û′v̂′〉 under the wave trough occurs much closer
to the surface, from the near-surface region into the thin surface layer. We find that this
thin layer has a thickness of the same order of magnitude as the Stokes layer (figure 6)
and, therefore, the appearance of this positive region is likely related to the viscous
effect.

To show the balance of the budget of the Reynolds shear stress more clearly, we plot
in figure 10 the variations of the above dominant budget terms along the streamlines to
discuss the mechanisms of the wave-phase variation. Considering the two-layer structures
of the pressure diffusion, two representative streamlines, one outside the Stokes layer and
one inside the Stokes layer, are chosen.

The three dominant budget terms and their net effect along the streamline of kξ2 = 0.2
outside of the Stokes layer are plotted in figure 10(a). We can see that, under the wave
crest, the pressure diffusion is approximately balanced by the pressure–strain correlation.
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Figure 10. Along-stream variation of the dominant budget terms, the production P (——–), pressure diffusion
T p (– – –), pressure–strain correlation Π (— · —) and the net effect (..........) at (a) kξ2 = 0.2 (the dash–dotted
yellow line in figure 9) and (b) kξ2 = kδS/2 (the dashed yellow line in figure 9). The results of case I are shown
and are normalized by (urms,cf )

2ck.

As a result, the net effect is dominated by the production, which is positive and increases
the values of 〈−û′v̂′〉 under the crest. Under the wave trough, the two pressure effects
are no longer balanced. We can see that the pressure–strain correlation overweights the
pressure diffusion. As a result, the combined pressure effects are positive and offset the
negative production under the wave trough. The combined effect of the three terms is still
negative and decreases 〈−û′v̂′〉 under the trough. This leads to the maxima and minima
of the Reynolds shear stress under the backward and forward slope, respectively (figures 7
and 8). However, due to the offset effect of the pressure terms, the rate of change of 〈−û′v̂′〉
under the wave trough does not vary as much as under the crest, which is consistent with
the observations in § 4.3.

The processes occurring inside the Stokes layer, represented by the streamline of
kξ2 = kδS/2 (kδS = k

√
2ν/σ = 8.9 × 10−3 for case I as shown in § 4.2), are plotted in

figure 10(b). Under the wave crest, the two pressure terms are small compared with those
outside of the Stokes layer (figure 10a) and, therefore, the production term dominates.
Under the wave trough, the production term is still dominant but is partially offset by the
positive pressure diffusion and pressure–strain correlation. Note that the offset effect of
the two pressure terms is mainly from the positive pressure diffusion in the Stokes layer
(figure 9b) whereas the pressure–strain correlation is more important outside of the Stokes
layer. Overall, the net effect of the three major budget terms inside the Stokes layer is
qualitatively similar to that outside of the Stokes layer, i.e. the net effect increases the
Reynolds shear stress 〈−û′v̂′〉 rapidly under the wave crest and decreases it with a mild
rate under the wave trough.

Based on the analyses above, we can see that the production by the wave straining
plays a crucial role in determining the wave-phase variation of the Reynolds shear stress,
especially under the wave crest. Under the wave trough, even though the dynamics of
the Reynolds shear stress are complicated by the pressure effects, the main source of its
variation is still the production. We can use this conclusion to explain the scaling of the
Reynolds shear stress proposed in § 4.3 (figure 8). Under the wave crest, because the net
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effect is dominated by the production, we have

Û
∂〈−û′v̂′〉
∂ξ1

≈ P . (4.16)

Because the wave is almost irrotational (Ω = 0), the production (4.11) can be estimated as

P ≈ 2〈û′2〉 Û
R
. (4.17)

Even though the assumption of the irrotationality is invalid inside the Stokes layer,
the cross-stream fluctuations are significantly suppressed at the surface and, thus,
the second part in (4.11) is still negligibly small compared with the first part. Using the
theoretical estimation of the curvature (4.9), the variation of 〈−û′v̂′〉 under the wave crest
is approximately

∂〈−û′v̂′〉
∂ξ1

≈ 2〈û′2〉
R

≈ 2(ak) ekyk sin(kx)〈û′2〉. (4.18)

Utilizing the approximation that dξ1 ≈ −dx to the leading order in the wave slope (B 14),
we can integrate the above equation with respect to ξ1 and obtain that the magnitude of
the along-stream variation of 〈−û′v̂′〉 is proportional to the wave steepness ak and the
streamwise fluctuations 〈û′2〉, which supports the scaling we find in § 4.3.

4.5. Discussions on curvature effect
In this section the role of the streamline curvature in the dynamics of Reynolds shear stress
is further investigated. We first discuss the detailed mechanisms underlying the production
of the Reynolds shear stress in § 4.5.1. Then in § 4.5.2 we explore using the curvature to
model the pressure–strain correlation.

4.5.1. Mechanisms of curvature effect on production term
As seen from the results in § 4.4, the production term is closely related to the streamline
curvature. For a more clear physical explanation, we expand the production term P (4.11)
into an alternative form using the definition of the curvature (4.7) as

P = 〈û′2〉 Û
R

+ 〈v̂′2〉 ∂Û
∂ξ2

+ (〈û′2〉 − 〈v̂′2〉) Û
R
. (4.19)

The above three-part form is often used in previous studies of the curvature effect on
wall-bounded turbulent flows (see e.g. Castro & Bradshaw 1976; Moser & Moin 1987).

The first term, 〈û′2〉Û/R, is shown in figure 11(a) and represents the generation of
the Reynolds shear stress due to the straining associated with the curvature effect. As
the mean flow rotates along the streamline, the varying direction imposes a straining on
the streamwise fluctuations and produces Reynolds shear stress. The sign of this term is
determined by the sign of the curvature, i.e. the direction of the rotation (figure 5b). As
shown in figure 11(a), the production due to this mechanism decreases 〈−û′v̂′〉 under the
wave trough and increases it under the crest.

The second term, 〈v̂′2〉∂Û/∂ξ2, represents the generation of 〈−û′v̂′〉 by the cross-stream
shearing ∂Û/ξ2 from 〈v̂′2〉. As shown in figure 11(b), this production by the mean shear is
overall positive under the wave crest and negative under the wave trough. However, within
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Figure 11. Contours of the different mechanisms for the production of 〈−û′v̂′〉 from (4.19): (a) the production
by the curvature effect 〈û′2〉Û/R, (b) the production by the cross-stream shearing effect 〈v̂′2〉∂Û/∂ξ2 and (c)
the pseudo production due to the rotation of the axes (〈û′2〉 − 〈v̂′2〉)Û/R. The results of case I are shown and
are normalized by (urms,cf )

2ck. The yellow line with arrows represents a streamline and the flow direction.

the Stokes layer, the mean shear ∂Û/∂ξ2 changes sign (figure 6b), which also changes the
sign of this production term.

The last term, (〈û′2〉 − 〈v̂′2〉)Û/R, represents the rate of change of 〈−û′v̂′〉 owing to the
rotation of the coordinate axes assuming that the Reynolds stress tensor remains unchanged
(Castro & Bradshaw 1976; Baskaran et al. 1991) (figure 11c). Therefore, this term is
called a pseudo generation term, which, in some works (e.g. Moser & Moin 1987) is
considered as a convection term rather than a production term because it is not related
to the straining of the mean flow but is only due to the change of the local axes. Because
〈û′2〉 is always greater than 〈v̂′2〉 in the near-surface region owing to the energy transfer
from the surface-normal to surface-parallel fluctuations by the surface blocking effect,
(〈û′2〉 − 〈v̂′2〉) is positive. As a result, we can see that the pseudo generation, the sign of
which is consistent with the curvature (figure 5b), reduces 〈−û′v̂′〉 under the wave trough
and increases it under the crest.

Comparing the above three mechanisms, we can see that the near-surface region is
dominated by the curvature effects. The curvature affects the production of the Reynolds
shear stress through two ways, the streamwise straining by rotation and the pseudo
production by the rotation of the coordinate axes, i.e. the first term (figure 11a) and the
third term (figure 11c) of (4.19), respectively. The magnitudes of both terms increase
towards the surface because of the increase of the curvature. Meanwhile, due to the
blocking effect, as the surface is approached, 〈û′2〉 increases and 〈v̂′2〉 decreases, further
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contributing to the increase of the rate of production. When moving away from the surface,
the turbulence turns more isotropic and 〈v̂′2〉 becomes comparable to 〈û′2〉. As a result, the
second term associated with the cross-stream shearing becomes more important while
the third term diminishes. In other words, the production of 〈−û′v̂′〉 in the deep region
is contributed by the rotation along the streamline (the first term) and the cross-stream
gradient of the mean flow (the second term).

We note that the mechanisms of the production near the free-surface boundary are
distinctly different from those near a curved wall. Because of the strong shear present
near no-slip boundaries, the second term in (4.19) is often the dominant mechanism in
curved wall-bounded flows. By comparison, for the interaction between the turbulence
and the wave flow discussed here, the cross-stream shearing is less important whereas
the curvature that represents the change of the mean flow direction plays an essential
role in the dynamics of the wave-phase variation of Reynolds shear stress. However, we
shall not extend this conclusion to all types of free-surface flows. For example, in the
spilling breakers, the effects of the shearing and curvature are found to be comparable
(we do not differentiate the geometric curvature and streamline curvature as in Lucarelli
et al. (2018) because these two are the same in the streamline coordinates as discussed
in § 4.2). We speculate that the shearing effect is relatively important in the spilling breaker
because the turbulent motions are more intense in the thin shear layer generated by the
breaker, which leads to stronger cross-stream fluctuations at the water interface than the
non-breaking wave considered in the present study. As a result, the interactions between
the cross-stream fluctuations and the shear strain becomes important to the Reynolds shear
stress. By comparison, the cross-stream fluctuations are suppressed and, hence, the effect
of the streamline curvature is more pronounced in the present study.

4.5.2. Discussion on modelling pressure–strain correlation with curvature
As analysed in § 4.4, the pressure–strain correlation Π is also a significant term in the
budget of Reynolds shear stress underneath the surface wave. It has been argued that
the curvature can influence the pressure–strain correlation. Therefore, accounting for the
curvature effect in this term can be important to the turbulence modelling in curved
wall-bounded flows (So 1975; Moser & Moin 1987). In this section we explore the
applicability of this modelling approach for wave–turbulence interactions by using the
curvature of the streamlines in the wave-following frame.

Commonly, two contributions to pressure–strain correlation are considered: the slow
pressure effect and the rapid distortion effect (see e.g. Launder, Reece & Rodi 1975;
Speziale, Sarkar & Gatski 1991). The slow pressure effect is owing to the self-interactions
of turbulent fluctuations, for which Rotta (1951) proposed a return-to-isotropic model as

Π
(s)
12 = −Cεb12. (4.20)

Here, b12 is a component of the normalized anisotropy tensor bij, defined as bij = 〈û′
iû

′
j〉/q

with q = 〈û′
iû

′
i〉/2 being the turbulent kinetic energy, and, thus, b12 is equal to 〈û′v̂′〉/q;

ε is the dissipation rate of the turbulent kinetic energy. The effect of the Rotta model is
to reduce the anisotropy of the turbulence. On the other hand, the rapid distortion effect
accounts for the response of the turbulence to the mean flow straining. Here, we employ
the model from Naot, Shavit & Wolfshtein (1970) and Launder et al. (1975) for the rapid
distortion effect, which is

Π
(r)
12 = −C2P12. (4.21)
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Phase variation of Reynolds shear stress under surface wave

In the above model, C2 is a positive coefficient; P12 is the production of 〈û′v̂′〉. The
combination of the above two models, ((4.20) and (4.21)), is called the LRR-IP model
(Launder et al. 1975), a classic model for the pressure–strain correlation.

To account for the curvature effect on the pressure–strain correlation, we adopt the
model proposed by Zeman & Jensen (1987), which includes an extra term Π (c),

Π
(c)
12 = C2

(
〈û′2〉 − 〈v̂′2〉

2

)
Û
R
. (4.22)

The above model is obtained by drawing the analogy between the local curvature and the
Coriolis effect. In this way, the local rotation of the mean flow direction is modelled as the
rotation tensor and is substituted into a generic pressure model (Zeman & Tennekes 1975).

Near boundaries, extra terms are usually required in the rapid pressure effect Π(r)

for correct predictions of Reynolds stresses (see e.g. Launder et al. 1975). This is also
the case for the free-surface boundary of wave based on our numerical experiments.
The above three effects alone, i.e. the LRR-IP model combined with the curvature
correction ((4.20)–(4.22)), cannot capture the effect of the free-surface boundary, which
reduces Π to approximately zero within the surface layer as discussed in § 4.4. Although
specific correction terms have been proposed for wall-bounded flows, these corrections
either do not perform well in practice (Belcher et al. 1993) or involve more empirical
constants (Zeman & Tennekes 1975). Therefore, in some analyses, the wall correction is
ignored (Belcher et al. 1993). Here, as our main focus is to assess the curvature effect in the
modelling of pressure–strain correlation, we simply multiply the above three terms with a
function of correction that decays to zero at the boundary to account for the effect of the
surface layer. This idea is similar to the damping functions used in low Re k–ω turbulence
models (Patel, Rodi & Scheuerer 1985). To be specific, the form of the correction function
is

α(ξ2) = 1 − e−ξ2/δ, (4.23)

where δ is associated with the thickness of the surface layer.
To summarise, the modelling of the pressure–strain correlation, Πm, is

Πm = α(Π(r) +Π(s) +Π(c)). (4.24)

The model contains three parameters, C from the return-to-isotropy part, C2 from the
rapid and curvature parts, and δ in the boundary correction term that is associated with
the thickness of the surface layer. The parameter C is known as the Rotta constant, with
C = 1.8 found to be the optimal value (Launder 1989; Pope 2000). The value of C2 can
vary among different flows. Therefore, both C2 and δ are determined from the simulation
results by minimizing the errors between the model Πm and the DNS result of Π . The
errors are calculated in L2-norm, defined as

‖Π −Πm‖ =
[∫∫

S
(Π −Πm)2 dξ1 dξ2

]1/2

. (4.25)

The optimal values of C2 for cases I, II and III are found to be 0.52, 0.56 and 0.55,
respectively. The optimal values of δ are 0.02, 0.022 and 0.019, respectively. We note
that C2 does not vary much among different cases, suggesting that this parameter is likely
not sensitive to the change of wave steepness and frequency. In the following discussions,
we choose C2 = 0.53 as a universal parameter for all cases. On the other hand, it can
be noted that δ is also approximately the same for all cases, indicating that the thickness
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Figure 12. Comparison of (a) the contribution from the curvature effect Π(c) and (b) the rapid distortion and
slow pressure effectΠ(r) +Π(s) in the modelled pressure–strain correlation. Case I is plotted here. The yellow
line with arrows represents a streamline and the flow direction.

of the surface layer does not vary among the cases. This result is expected because the
surface-layer thickness is proportional to the square root of the Reynolds number (Shen
et al. 1999; Magnaudet 2003), which has the same value among cases I–III.

We find that the proposed model is effective in capturing the essential features of
the pressure–strain correlation term. The performance of the model is measured by the
correlation coefficient between Π and Πm defined as

r =

∫∫
S
(Π ·Πm) dξ1dξ2

‖Π‖‖Πm‖ . (4.26)

The correlation coefficients are 0.94, 0.92 and 0.91 for cases I, II and III, respectively.
These results indicate that the proposed model can capture the dominant mechanisms
underlying the pressure–strain correlation.

The inclusion of an explicit curvature term (4.22) in the model allows us to quantify
the curvature effect directly, which gives us insight into the role of the curvature in the
proposed modelling. Figure 12 compares the contributions from the curvature effect Π(c)

and the traditional rapid and slow pressure effect model Π(r) +Π(s). It is obvious that
the curvature effect (figure 12a) mainly improves the rapid and slow pressure effects
(figure 12b) in the near-surface region. This is because of two reasons: the curvature
is larger near the surface, and the term (〈û′2〉 − 〈v̂′2〉/2) in (4.22) increases towards the
surface owing to the blocking effect. Although the rapid and slow pressure effects are still
important, the effect of the curvature also contributes a significant portion, as high as 30 %
near the surface, to the total pressure–strain correlation. This result further illustrates that
the curvature effect is important for the modelling of pressure–strain correlation.

As a summary of § 4.5, based on the detailed analyses of the production and
pressure–strain correlation in the budget of the Reynolds shear stress (4.10), we conclude
that the wave-phase modulation of the Reynolds shear stress is closely associated with
the curvature of the mean flow. From the results in § 4.5.1, we find that the production
of the Reynolds shear stress near the surface is mostly owing to the streamwise straining
associated with the curvature and the pseudo production by the rotation of the coordinate
system. In § 4.5.2 the modelling of the pressure–strain correlation term indicates that
the curvature effect plays a significant role in the dynamics of the Reynolds shear
stress, especially near the surface. We shall note that turbulence modelling for Reynolds
stresses is a topic having extensive studies in the literature. Finding the most suitable
and accurate model or developing new models is beyond the scope of this study.
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Phase variation of Reynolds shear stress under surface wave

Here, we only explore the modelling to further reveal the importance of wave
curvature effect on turbulence following the mechanistic studies in the preceding
sections. Using classic turbulence models, we elucidate the importance and promises
of capturing the wave effect in turbulence modelling using the wave profile curvature
information.

5. Conclusions

In this study we have investigated the wave effect on the wave-phase variation of the
Reynolds shear stress in turbulent flows underneath the surface. A canonical problem
with a precisely controlled set-up, where a progressive monochromatic wave is imposed
on a forced isotropic turbulence, is simulated using DNS on a wave-boundary-fitted
grid.

We have proposed to use a streamline coordinate system in the wave-following
frame to study the Reynolds shear stress. The streamline coordinates have advantages
over Cartesian coordinates in studying turbulence under waves. Because the turbulent
fluctuations strongly align with the wave surface owing to the kinematic blocking effect of
the boundary, there exists a strong correlation between u′ and v′ in Cartesian coordinates
that does not accurately represent the actual momentum transport in the flow. By contrast,
the wave-following streamline coordinates directly takes the flow direction into account
by aligning the coordinate curves with the mean wave flow velocity, thereby removing
the pseudo shear stress generated by the kinematic-induced correlations and providing a
more accurate quantification of the momentum flux between the interior and near-surface
regions in an undulating domain. Furthermore, the streamline coordinate system explicitly
introduces the wave surface curvature to the mathematical formulations to facilitate the
investigation of wave effects on turbulence.

In the wave-following streamline coordinate frame, two parameters are introduced to
quantify the wave effect, the length scale of the streamwise acceleration γ and the
streamline curvature R−1. Each of the two parameters alternates signs at different wave
phases, corresponding to the orbital motions of the wave. Theoretical estimates of the two
parameters based on the linear wave theory yield that both γ−1 and R−1 are of O(ak2) and
decay exponentially from the wave surface.

In the streamline coordinates, in contrary to Cartesian coordinates, the kinematic pseudo
Reynolds stress does not appear near the surface. We observe a sharp increase of 〈−û′v̂′〉
under the wave crest, an indication of the turbulence destabilization effect in a region with
concave streamlines. As a result, the maximum 〈−û′v̂′〉 occurs under the backwards slope
of the wave. Under the wave trough, the variation of 〈−û′v̂′〉 is comparatively weaker than
that under the crest. We also find that the wave-phase variation of 〈−û′v̂′〉 can be scaled
by the streamwise velocity fluctuations 〈û′2〉 and is proportional to the wave steepness ak.

The wave-phase variation of the Reynolds shear stress is further investigated using
the budget of 〈−û′v̂′〉 in the wave-following streamline coordinates. The enhancement of
the Reynolds shear stress under the wave backward slope is found to be associated with
the production by the wave straining, which increases 〈−û′v̂′〉 as the wave crest passes
by. Under the wave trough, the negative production is partially offset by the combined
effects of the pressure–strain correlation and the pressure diffusion, which results in a slow
decrease of 〈−û′v̂′〉. We have also shown that the scaling of the wave-phase variation of
〈−û′v̂′〉 can be explained by the production associated with the curvature. Further analyses
of the production term reveal that the curvature contributes to the production in two ways,
the straining on the streamwise fluctuations caused by rotation and the pseudo production
owing to the rotation of the local axes.
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We have explored the turbulence modelling of pressure–strain correlation to
demonstrate the importance of wave curvature. The classic LRR-IP model combined with
a correction term accounting for the curvature effect is found effective in reproducing
the essential features of the DNS results. It is discovered that the curvature effect has an
appreciable contribution to the total pressure–strain correlation in the near-surface region.

In this study we take on a different view of the wave–turbulence interaction using the
wave-following streamline coordinates. The advantage of this approach is that the complex
orbital motions of the wave are taken into account by locally aligning the coordinate
axes with the velocity vector of the mean flow. The use of the streamline coordinate
system also interprets the wave motions as the curved streamlines and the associated
straining in the wave-following frame. The results indicate that this framework is effective
in removing the pseudo Reynolds shear stress in Cartesian coordinates associated with
the kinematics-induced velocity fluctuations and capturing the real turbulence dynamics
of the Reynolds shear stress in the wave flow. Our detailed analyses of the Reynolds shear
stress budget equation reveal its production mechanisms, and indicate that the dynamics of
the wave–turbulence interaction are closely related to the wave curvature effect. Moreover,
while turbulence modelling is not a focus of the present DNS-based mechanistic study,
our experiment of modelling pressure–strain correlation using the curvature information
points to a new possibility for modelling wave–turbulence interactions. That is, it may be
promising to leverage analysis and modelling tools for curved wall boundary layers for
the study of turbulent flows underneath surface waves, with cautions about the difference
between wall-bounded flows with strong shear and free-surface flows with vanishing
shear.
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Appendix A. Calculation of streamline curvature

For a plane curve, its unit tangential vector t(s) and unit normal vector n(s) satisfy the first
Frenet–Serret formula (see e.g. Moore 1978; do Carmo 2018) as

t′(s) = κn(s), (A1)

where s is the arclength of the curve and κ is the geometric curvature of the curve.
Considering a two-dimensional velocity field described by (u(x, y), v(x, y)) in Cartesian

coordinates, the unit tangential and normal vectors of a streamline are defined by

t =
( u

U
,
v

U

)
, n =

(−v
U
,

u
U

)
, (A2a,b)

where U = (u2 + v2)
1/2 is the velocity magnitude. Note that here we are considering a

general case. For the wave-following streamline coordinates, u and v can be set to 〈u〉 − c
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and 〈v〉, respectively. The derivative of t with respect to s can be calculated as

dt
ds

= ∇t · t

=
(

u
U
∂

∂x

( u
U

)
+ v

U
∂

∂y

( u
U

)
,

u
U
∂

∂x

( v
U

)
+ v

U
∂

∂y

( v
U

))
=
(
v

U
F,

−u
U

F
)
, (A3)

where

F = 1
U3

[
v2 ∂u
∂y

+ uv
(

−∂v
∂y

+ ∂u
∂x

)
− u2 ∂v

∂x

]
. (A4)

Recall that the vorticity is defined as Ω = ∂v/∂x − ∂u/∂y, the above equation can be
written as

F = 1
U3

[
−v2Ω + v2 ∂v

∂x
+ uv

(
−∂v
∂y

+ ∂u
∂x

)
− u2Ω − u2 ∂u

∂y

]
= − 1

U3

(
U2Ω − vU

∂U
∂x

+ uU
∂U
∂y

)
. (A5)

Note that the gradient of U in the direction of n, or equivalently, the ξ2-direction of the
streamline coordinates, is given by

∂U
∂n

= ∂U
∂ξ2

= ∇U · n = − v

U
∂U
∂x

+ u
U
∂U
∂y
. (A6)

Substituting the above equation into (A5), we obtain

F = − 1
U

(
Ω + ∂U

∂ξ2

)
. (A7)

Compare (A3) with (A1), we conclude that

κ = −F = 1
U

(
Ω + ∂U

∂ξ2

)
. (A8)

Therefore, with the streamwise component Û of the velocity in the streamline coordinates
being equal to the velocity magnitude U, the streamline curvature defined by (4.7) is
equivalent to the geometric curvature of the streamline.

Appendix B. Estimation of acceleration length scale γ and curvature R−1 for the wave

Based on the wave-following streamline coordinates, the acceleration length scale γ and
the curvature R−1 are defined as

γ−1 = 1

Û

∂Û
∂ξ1

, (B1)

1
R

= 1

Û

(
Ω + ∂Û

∂ξ2

)
. (B2)
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Here, the velocity gradients in the ξ1 direction and the ξ2 direction can be calculated
respectively as

∂Û
∂ξ1

= ∇Û · b1 = ∇U · b1, (B3)

∂Û
∂ξ2

= ∇Û · b2 = ∇U · b2, (B4)

where b1 = (〈u〉 − c)/Uex + 〈v〉/Uey and b2 = −〈v〉/Uex + (〈u〉 − c)/Uey are the unit
basis vectors of the streamline coordinates. Note that the above equations use the relation
that the streamwise component Û is equal to the velocity magnitude U.

By invoking the incompressibility condition ∂〈u〉/∂x = −∂〈v〉/∂y and the irrotationality
∂〈u〉/∂y = ∂〈v〉/∂x for an irrotational wave, we can substitute (B3) and (B4) into (B1) and
(B2) and obtain

γ−1 = (〈u〉 − c)2

U3
∂〈u〉
∂x

+ 〈v〉2

U3
∂〈v〉
∂y

+ 2〈v〉(〈u〉 − c)
U3

∂〈v〉
∂x

= (〈u〉 − c)2 − 〈v〉2

U3
∂〈u〉
∂x

+ 2〈v〉(〈u〉 − c)
U3

∂〈v〉
∂x

, (B5)

R−1 = −〈v〉(〈u〉 − c)
U3

∂〈u〉
∂x

+ 〈v〉(〈u〉 − c)
U3

∂〈v〉
∂y

+ −〈v〉2

U3
∂〈v〉
∂x

+ (〈u〉 − c)2

U3
∂〈v〉
∂x

= −2〈v〉(〈u〉 − c)
U3

∂〈u〉
∂x

+ (〈u〉 − c)2 − 〈v〉2

U3
∂〈v〉
∂x

. (B6)

To obtain an estimation of the above quantities, we can use the linear wave theory, which
gives the velocity

〈u〉 = aσ eky sin(kx − σ t), 〈v〉 = −aσ eky cos(kx − σ t). (B7a,b)

We can first perform an order-of-magnitude analysis for γ−1 and R−1. We note that the
magnitudes of 〈u〉 and 〈v〉 are O(ε) of the wave phase speed c = σ/k, with ε = ak being
the wave steepness. Therefore, it is easy to find that the first term in (B5) related to ∂〈u〉/∂x
dominates γ−1 and that the second term in (B6) related to ∂〈v〉/∂x dominates R−1.

Substitution of the velocity (B 7) into (B5) and (B6) gives the following estimation for
γ−1 and R−1:

γ−1 = εk eky cos kx(1 − ε2 e2ky)

(1 − 2ε eky sin kx + ε2 e2ky)
3/2 , (B8)

R−1 = εk eky[(1 + ε2 e2ky) sin kx − 2ε eky]

(1 − 2ε eky sin kx + ε2 e2ky)
3/2 . (B9)

We can obtain the leading-order term of γ−1 by expanding γ−1 with respect to ε as

γ−1 = εk eky cos kx + O(ε2). (B10)

The leading-order term of R−1 with respect to ε is

R−1 = εk eky sin kx + O(ε2). (B11)

The estimates of γ−1 and R−1 are in phase with ∂〈u〉/∂x and ∂〈v〉/∂x, respectively, which
is consistent with the above order-of-magnitude analysis. The above estimates can be
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written alternatively using the streamline coordinates (ξ1, ξ2, ξ3). Note that the streamline
coordinates satisfy

dξ1 = u − c
U

dx + v

U
dy, (B12)

dξ2 = −v
U

dx + u − c
U

dy. (B13)

To the zeroth-order with respect to ε, the following relations hold:

dξ1 ≈ −dx, dξ2 ≈ −dy. (B14a,b)

Then we have the following estimation:

γ−1 = εk e−kξ2 cos kξ1 + O(ε2), (B15)

R−1 = −εk e−kξ2 sin kξ2 + O(ε2). (B16)

Appendix C. Reynolds normal stresses in the wave-following streamline coordinates

We find that, for the cases considered in the present study, the values of the Reynolds
normal stresses are not significantly changed by the transformation from the Cartesian
coordinates to the wave-following streamline coordinates. As an example, the Reynolds
normal stresses defined in the two coordinates for case I are plotted in figures 13 and 14,
which show that the differences between 〈u′2〉 (or 〈v′2〉) and 〈û′2〉 (or 〈v̂′2〉) are negligible.
Note that the transformation as defined in § 4.1 does not affect the values of the spanwise
velocity, i.e. ŵ′ = w′. Therefore, the spanwise component of the Reynolds normal stresses
is not compared.

The reason that the Reynolds normal stresses are barely changed by the coordinate
transformation is as follows. The Reynolds stresses defined under the streamline
coordinates are related to the definitions under Cartesian coordinates as

〈û′2〉 = 〈u′2〉 cos2 θ + 〈u′v′〉 sin (2θ)+ 〈v′2〉 sin2 θ, (C1)

〈v̂′2〉 = 〈v′2〉 cos2 θ − 〈u′v′〉 sin (2θ)+ 〈u′2〉 sin2 θ, (C2)

〈û′v̂′〉 = 〈u′v′〉 cos 2θ − (〈u′2〉 − 〈v′2〉) sin θ cos θ, (C3)

where cos θ = (〈u〉 − c)/U and sin θ = 〈v〉/U. The above equations can be derived by
considering the coordinate transformation as rotating coordinate axes to align with the
mean velocity. When substituting the linear wave velocity into the above equations and
expanding them with respect to the wave steepness ε, we obtain the following estimation:

〈û′2〉 = 〈u′2〉 + 2ε〈u′v′〉 eky cos kx + O(ε2), (C4)

〈v̂′2〉 = 〈v′2〉 − 2ε〈u′v′〉 eky cos kx + O(ε2), (C5)

〈û′v̂′〉 = 〈u′v′〉 − ε(〈u′2〉 − 〈v′2〉) eky cos kx + O(ε2). (C6)

We can see that the leading-order difference between the two definitions is the second
term on the right-hand side of (C4)–(C6). We find that the magnitudes of 〈u′2〉 and 〈v′2〉
(figure 13) are larger than that of 〈u′v′〉 (figure 2). Therefore, for the Reynolds normal
stresses, the second term, being O(ε) of 〈u′v′〉, is small. As a result, the Reynolds normal
stresses are barely affected by the coordinate transformation. For the Reynolds shear stress,
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Figure 13. Contours of the normalized Reynolds normal stresses, (a) 〈u′2〉 and (b) 〈v′2〉 defined in Cartesian
coordinates. The results of case I (ak = 0.1,Fr = 0.1) are shown and are normalized by (urms,cf )
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Figure 14. Contours of the normalized Reynolds normal stresses, (a) 〈û′2〉 and (b) 〈v̂′2〉 defined in the
wave-following streamline coordinates. The results of case I (ak = 0.1,Fr = 0.1) are shown and are normalized
by (urms,cf )

2.

the magnitude of (〈u′2〉 − 〈v′2〉) in the second term on the right-hand side of (C6) is
sufficiently large that even a fraction of it significantly makes the difference noticeable.
This difference becomes increasingly significant as the free surface is approached because
the surface blockage effect transfers energy from the vertical velocity component to the
horizontal components and increases (〈u′2〉 − 〈v′2〉). Therefore, the difference between
〈û′v̂′〉 and 〈u′v′〉 can be further approximated as O(ε〈u′2〉) ≈ O(ε〈û′2〉), which confirms
that the difference in the Reynolds shear stress defined under the two coordinates is mostly
owing to the surface-parallel turbulence fluctuations.

Guo & Shen (2014) observed the dependence of the Reynolds normal stress on the wave
phase, which is particularly pronounced for the streamwise and spanwise components.
The underlying dynamics have been discussed extensively under Cartesian coordinates by
Guo & Shen (2014), who found that the dominant mechanisms underlying the wave-phase
variation of the Reynolds normal stresses are the production and the effects of pressure
fluctuations. We find that under the streamline coordinates, the dominant dynamics of the
Reynolds normal stresses closely resemble those under the Cartesian coordinates, which
is expected considering that their values are not changed significantly by the coordinate
transformation. For example, the production of 〈û′2〉 is found to be associated mainly
with the straining caused by the acceleration and deceleration of the flow along the
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streamline, ∂Û/∂ξ1 (not shown). This is consistent with the finding by Guo & Shen
(2014) that the production of 〈u′2〉 is due to the normal straining, ∂〈u〉/∂x. Note that
∂Û/∂ξ1 is approximately equal to ∂〈u〉/∂x, which can be seen from (B5), where the first
term involving ∂〈u〉/∂x is dominant. As a result, the interpretation of the dynamics of
the Reynolds normal stress under the wave-following streamline coordinates is relatively
straightforward based on the analyses under Cartesian coordinates by Guo & Shen (2014).
Therefore, the present paper focuses on the Reynolds shear stress, which is found to
differ significantly under the two coordinate systems and the use of the wave-following
streamline coordinates greatly facilitates the analyses and physical interpretation.
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