ON EXTENDING PROJECTIVES OF FINITE GROUP-GRADED ALGEBRAS

MORTON E. HARRIS

Abstract

Let G be a finite group, let k be a field and let R be a finite dimensional fully G-graded k-algebra. Also let L be a completely reducible R-module and let P be a projective cover of R. We give necessary and sufficient conditions for $\left.P\right|_{R_{1}}$ to be a projective cover of $L_{R_{1}}$ in $\operatorname{Mod}\left(R_{1}\right)$. In particular, this happens if and only if L is R_{1}-projective. Some consequences in finite group representation theory are deduced.

1. Introduction and Statements. Our notation and terminology are standard and tend to follow the conventions of [5]. In particular, in this article, all rings have identities, all modules over a ring are right. unital and finitely generated and all algebras over a commutative ring are finitely generated as modules over the commutative ring. Also if n is a positive integer and V is a module over a ring A, then $n V$ denotes the A-module direct sum of n copies of V and the head of V is $\mathcal{H}(V)=V / \operatorname{Rad}(V)$. Moreover if B is a subring of A, then, by assumption, the identity of A lies in B and $\left.V\right|_{B}$ denotes the restriction of V to B.

Throughout this article, k denotes a field, p denotes a prime integer, G and H are finite groups and N is a normal subgroup of H. Also O is a commutative ring and R denotes a fully G-graded O-algebra (i.e., R is an O-algebra and $R=\oplus_{g \in G} R_{g}$ in $\operatorname{Mod}(O)$ where R_{g} is a (finitely generated) O-submodule of R for each $g \in G$ and such that $R_{g} R_{h}=R_{g h}$ for all $g, h \in G$). Thus R_{1} is an O-subalgebra of R by [5, Proposition 1.4]. Here $J\left(R_{1}\right) R=$ $\oplus_{g \in G}\left(J\left(R_{1}\right) R_{g}\right)=\oplus_{g \in G}\left(R_{g} J\left(R_{1}\right)\right)=R J\left(R_{1}\right)$ and $J\left(R_{1}\right) R$ is a G-graded 2 -sided ideal of R contained in $J(R)$ by [4, Proposition 1.11] and [2, Corollary 4.2 and Theorem 4.4(1)]. Thus if V is an R-module, then $V J\left(R_{1}\right) R=V J\left(R_{1}\right)$ is an R-submodule of V contained in $V J(R)$. Also if K is a subgroup of G, then $R_{K}=\oplus_{g \in K} R_{g}$ is a fully K-graded O-subalgebra of R. As usual, $O[H]$ is the group algebra of H over O and if $G=H / N$, then $O[H]$ is a fully G-graded O-algebra with $O[H]_{g N}=\oplus_{x \in g N} O x$ for all $g N \in G=H / N$. Note here that $O[H]_{N}=\mathbf{O}[N]$.

Suppose that P is a projective cover of a completely reducible R-module L, so that $\left.P\right|_{R_{1}}$ is a projective R_{1}-module (cf. Lemma 2.3). It is natural to ask: when is $\left.P\right|_{R_{1}}$ a projective cover of $\left.L\right|_{R_{1}}$?

It is well-known that, in general, there may not exist any R-module X such that $\left.X\right|_{R_{1}}$ is a projective cover of $\left.L\right|_{R_{1}}$.

[^0]Example 1. Assume that char $(k)=p$, let H be a cyclic group of order p^{2}, let N denote the unique subgroup of H of order p and let L denote a trivial $k[H]$-module. Thus $\left.L\right|_{k[N]}$ is a trivial $k[N]$-module and $P=k[N]_{k[N]}$ (the regular $k[N]$-module) is a projective cover of $\left.L\right|_{k[N]}$ by [11, VII, Theorem 5.2]. We claim that there is no $k[H]$ module Q such that $\left.Q\right|_{k[N]} \cong P$ in $\operatorname{Mod}(k[N])$. To see this suppose that X is such a $k[N]$ module. Then X is indecomposable as $\left.X\right|_{k[N]} \cong P$ is indecomposable in $\operatorname{Mod}(k[N])$. Since $\operatorname{dim}(X / k)=\operatorname{dim}(P / k)=p$.[11, VII, Theorem 5.3] implies that every element of N acts trivially on X. As $\left.X\right|_{k[N]} \cong k[N]_{k[N]}$, we have a contradiction and our claim is demonstrated.

Note, in this example, that the regular $k[H]$-module $M=k[H]_{k[H]}$ is a projective cover of $L,\left.M\right|_{k[N]} \cong p P$ in $\operatorname{Mod}(k[N])$ and hence $M J(k[N]) \neq M J(k[H])$ and that P has precisely p descending Loewy factors all of which are isomorphic to $L_{k[N]}$ in $\operatorname{Mod}(k[N])$ in accordance with [9].

Our main result is:
Proposition 2. Suppose that $O=k$ is a field. Let L be a completely reducible R-module and let P be a projective cover of L in $\operatorname{Mod}(R)$. Then the following three conditions are equivalent:
(a) $\left.P\right|_{R_{1}}$ is a projective cover of the (completely reducible) R_{1}-module $\left.L\right|_{R_{1}}$:
(b) L is R_{1}-projective: and
(c) $\operatorname{PJ}(R)=P J\left(R_{1}\right)$.

Clearly [6, Proposition 3.3] yields:
CORollary 3. As in Proposition 2. assume that $O=k$ is a field and also that $|G| 1_{k}$ is a unit in k. Let L be a completely reducible R-module and let P be a projective cover of L in $\operatorname{Mod}(R)$. Then $\left.P\right|_{R_{1}}$ is a projective cover of $\left.L\right|_{R_{1}}$ in $\operatorname{Mod}\left(R_{1}\right)$.

REmark 4. As in Proposition 2, let $O=k$ be a field. Let W be an irreducible R_{1} module and let P be a projective cover of W in $\operatorname{Mod}\left(R_{1}\right)$, so that $P /\left(P J\left(R_{1}\right)\right) \cong W$ in $\operatorname{Mod}\left(R_{1}\right)$. Assume that Q is an R-module such that $\left.Q\right|_{R_{1}} \cong P$ in $\operatorname{Mod}\left(R_{1}\right)$. Then Q is indecomposable and $Q /\left(Q J\left(R_{1}\right)\right)=V$ is an R-module such that $\left.V\right|_{R_{1}} \cong W$. Thus V is an irreducible R-module and $Q J\left(R_{1}\right)=Q J(R)$. If also $|G| 1_{k}$ is a unit in k, then Q is a projective cover of V by [6, Proposition 3.3].

Next we present an application of our results to the classical case in Stable Clifford Theory in finite group representation theory (cf. [10, V, Satz 17.5]).

Let M be an irreducible $k[N]$-module. Assume that $c: H \times H \rightarrow k^{\times}$is a 2-cocycle with H acting trivially on k^{\times}such that $c: N \times N \rightarrow\{1\}$ and c is constant on $(g N, h N)$ for all $g, h \in H$. Let $k[H](c)$ denote the corresponding twisted group algebra, so that $k[N]$ is a subalgebra of $k[H](c)$. Since $k[H](c)$ can be viewed as a fully $G=H / N$-graded k-algebra with $(k[H](c))_{g H}=\oplus_{x \in g N} k x$ for all $g \in H$. Proposition 2 yields:

Corollary 5. Suppose that there is a $k[H](c)$-module L such that $\left.L\right|_{k[N]} \cong M$ in $\operatorname{Mod}(k[N])$. Let P be a projective cover of L in $\operatorname{Mod}(k[H](c))$. Then the following three conditions are equivalent:
(a) $\left.P\right|_{k[N]}$ is a projective cover of M;
(b) L is $k[N]$-projective; and
(c) $\operatorname{PJ}(k[H](c))=P J(k[N])$.

As another application, we observe that [12, Proposition 2.8] is a special case of our results. For, [12, Proposition 2.8(a)] is a special case of Corollary 5 and [6, Proposition 3.3], and [12, Proposition 2.8(b)] is a special case of Remark 4, Corollary 5 and [6, Proposition 3.3].

Remark 6. Suppose that O is a complete discrete valuation ring and let $k=$ $O / J(O)$. Then

$$
J(O) R=R J(O)=\oplus_{g \in G}\left(J(O) R_{g}\right)=\oplus_{g \in G}\left(R_{g} J(O)\right)
$$

is a G-graded 2 -sided ideal of R contained in $J(R)$ (cf. [7, I, Lemma 8.15]) and $\bar{R}=$ $R /(R J(O))$ is a fully G-graded finite dimensional k-algebra with $(\bar{R})_{g}=\left(R_{g}+R J(O)\right) /$ $(R J(O))$ for all $g \in G$. Let L be a finitely generated completely reducible R-module and let $f: P \rightarrow L$ be a projective cover of L in $\operatorname{Mod}(R)$ where P is a projective R-module and $f \in \operatorname{Hom}_{R}(P, L)$ is essential (cf. [3, Section 6C]). Since $L J(O) \subseteq L J(R)=(0), L$ may be viewed as a completely reducible \bar{R}-module and $P J(O) \subseteq \operatorname{Ker}(f)$. Also $\bar{P}=P /(P J(O))$ is a projective \bar{R}-module and f induces the projective cover $\bar{f}: \bar{P} \rightarrow L$ in $\operatorname{Mod}(\bar{R})$. Here $(\bar{R})_{1}=\left(R_{1}+R J(O)\right) /(R J(O)) \cong R_{1} /\left(R_{1} J(O)\right)$ as rings and, using [3, Section 6C], it is easy to see that $f: P \rightarrow L$ is a projective cover of L in $\operatorname{Mod}\left(R_{1}\right)$ if and only if $\bar{f}: \bar{P} \rightarrow L$ is a projective cover of L in $\operatorname{Mod}\left((\bar{R})_{1}\right)$.

Section 2 presents some basic results that are required in our proof of Proposition 2 that is given in section 3 .
2. Preliminary Results. For the convenience of the reader we present the following two well-known results (cf. [9, Lemma 2.6] and [1, II, Proposition 6.1]:

LEMMA 2.1. (a) for each $g \in G, R_{g}$ is a finitely generated projective R_{1}-module and a finitely generated projective left R_{1}-module; and $(b) R$ is a finitely generated projective R_{1}-module and a finitely generated projective left R_{1}-module.

Lemma 2.2. Let K be a subgroup of G and let P be a finitely generated projective $R_{K}=\oplus_{g \in K} R_{g}$-module. Then $P \otimes_{R_{K}} R$ is a finitely generated projective R-module.

LEMMA 2.3. Let K be a subgroup of G and let Q be a finitely generated projective R-module. Then $\left.Q\right|_{R_{K}}$ is a finitely generated projective R_{K}-module.

Proof. Let T be a transversal for the left cosets of K in G. Then $R=\oplus_{x \in T} R_{x K}$ in $\operatorname{Mod}\left(R_{K}\right)$. Clearly $R_{g K}$ is a finitely generated projective R_{1}-module for each $g \in G$ by Lemma 2.1. (a). Fix $g \in G$. It suffices to prove that $R_{g K}$ is a projective R_{K}-module. Note that $R_{g} \otimes_{R_{1}} R_{K}=\oplus_{k \in K}\left(R_{g} \otimes_{R_{1}} R_{k}\right)$ in $\operatorname{Mod}\left(R_{1}\right)$ and that $\alpha: R_{g} \otimes_{R_{1}} R_{K} \rightarrow R_{g K}$ defined by: $\alpha\left(r \otimes_{R_{1}} s\right)=r s$ for all $r \in R_{g}$ and all $s \in R_{K}$ is well-defined R_{K}-epimorphism. Since the restriction of α to $R_{g} \otimes_{R_{1}} R_{K}$ is one-to-one by [6, (1.4)] for all $k \in K, \alpha$ is an
isomorphism. Since $R_{g} \otimes_{R_{1}} R_{K}$ is a projective R_{K}-module by Lemma 2.1(a) and [1, II, Proposition 6.1], we are done.

For the remainder of this section, we assume that $O=k$ is a field.
LEMMA 2.4. Let N be an R_{1}-module. Then:
(a) $\mathcal{H}(N) \otimes_{R_{1}} R \cong\left(N \otimes_{R_{1}} R\right) /\left(\left(N \otimes_{R_{1}} R\right) J\left(R_{1}\right)\right)$ in $\operatorname{Mod}(R) ;$ and (b) $\mathcal{H}\left(\mathcal{H}(N) \otimes_{R_{1}} R\right) \cong \mathcal{H}\left(N \otimes_{R_{1}} R\right)$ in $\operatorname{Mod}(R)$.

Proof. We have an exact sequence

$$
(0) \longrightarrow N J\left(R_{1}\right) \xrightarrow{i} N \xrightarrow{\pi} \mathcal{H}(N)=N / N J\left(R_{1}\right) \longrightarrow(0)
$$

in Mod (R_{1}) where i denotes the inclusion map and π is the canonic epimorphism. Since R is a projective and hence flat left R_{1}-module,

$$
(0) \rightarrow N J\left(R_{1}\right) \otimes_{R_{1}} \quad R \xrightarrow{i \otimes I_{R}} N \otimes_{R_{1}} \quad R \xrightarrow{\pi \otimes I_{R}} \mathcal{H}(N) \otimes_{R_{1}} \quad R \rightarrow(0)
$$

is exact in $\operatorname{Mod}(R)$. Then [8, Lemma 2.4(d)] yields (a) and (b) follows from (a) and the fact that $R J\left(R_{1}\right)=J\left(R_{1}\right) R \subseteq J(R)$.

LEMMA 2.5. Let N be an R_{1}-module and let Q be a projective cover of N in $\operatorname{Mod}\left(R_{1}\right)$. Let $\operatorname{Irr}(R)$ be a set of representatives for the types of irreducible R-modules and for each $X \in \operatorname{Irr}(R)$, let $P(X)$ denote a projective cover of X in $\operatorname{Mod}(R)$. Then:
(a) $Q \otimes_{R_{1}} R \cong \oplus_{X \in \operatorname{Irr}(R)}\left(\operatorname{mult}\left(X\right.\right.$ in $\left.\left.\mathcal{H}\left(N \otimes_{R_{1}} R\right)\right)\right) P(X)$ in $\operatorname{Mod}(R) ;$
(b) $\left(Q \otimes_{R_{1}} R\right) /\left(\left(Q \otimes_{R_{1}} R\right) J\left(R_{1}\right)\right) \cong \oplus_{X \in \operatorname{Irr}(R)}\left(\operatorname{mult}\left(X\right.\right.$ in $\left.\mathcal{H}\left(N \otimes_{R_{1}} R\right)\right)\left(P(X) / P(X) J\left(R_{1}\right)\right)$ in $\operatorname{Mod}(R) ;$ and
(c) $\mathcal{H}(N) \otimes_{R_{1}} R \cong \oplus_{X \in \operatorname{Irr}(R)}\left(\operatorname{mult}\left(X\right.\right.$ in $\mathcal{H}\left(N \otimes_{R_{1}} R\right)\left(P(X) / P(X) J\left(R_{1}\right)\right)$ in $\operatorname{Mod}(R)$.

REMARK 2.6. Let M be an irreducible R_{1}-module and let L be an irreducible R module. Then $\left.L\right|_{R_{1}}$ is a completely reducible R_{1}-module since $L J\left(R_{1}\right) \leqq L J(R)=(0)$ and

$$
\mathcal{H} \operatorname{om}_{R}\left(\mathcal{H}\left(M \otimes_{R_{1}} R\right), L\right) \cong \mathcal{H} \operatorname{om}_{R}\left(M \otimes_{R_{1}} \quad R, L\right) \cong \mathcal{H} \operatorname{om}_{R_{1}}(M, L)
$$

as k-spaces by $\left[1, \mathrm{II}\right.$, Section $\left.6,\left(3^{\prime}\right)\right]$. Thus

$$
\begin{aligned}
& \operatorname{dim}\left(\operatorname{End}_{R}(L) / k\right)\left(\operatorname{mult}\left(L \text { in } \mathcal{H}\left(M \otimes_{R_{1}} R\right)\right)\right)= \\
& \operatorname{dim}\left(\operatorname{End}_{R_{1}}(M) / k\right)\left(\operatorname{mult}\left(M \text { in }\left.L\right|_{R_{1}}\right)\right)
\end{aligned}
$$

Proof. Here $\mathcal{H}(N) \cong \mathcal{H}(Q)$ in $\operatorname{Mod}\left(R_{1}\right)$ (cf. [11, VII, Section 10]) and hence

$$
\begin{aligned}
\mathcal{H}\left(Q \otimes_{R_{1}} R\right) & \cong \mathcal{H}\left(\mathcal{H}(Q) \otimes_{R_{1}} R\right) \cong \mathcal{H}\left(\mathcal{H}(N) \otimes_{R_{1}} R\right) \\
& \cong \mathcal{H}\left(N \otimes_{R_{1}} R\right) \text { in } \operatorname{Mod}(R)
\end{aligned}
$$

by Lemma 2.4(b). Now [11, VII, Section 10] implies (a) and (b) is immediate. Also (b), Lemma 2.4(a) and the fact that $\mathcal{H}(N) \cong(Q)$ in $\operatorname{Mod}\left(R_{1}\right)$ yield (c) and we are done.
3. A Proof of Proposition 2.. In this section, we present a proof of Proposition 2 and consequently we assume its hypotheses and we set $M=\left.L\right|_{R_{1}}$, so that $\mathcal{H}(M)=M$ in $\operatorname{Mod}\left(R_{1}\right)$.

Suppose that (c) holds. Then $P(L) /\left(P(L) J\left(R_{1}\right)\right)=P(L) / P(L) J(R) \cong L$ in $\operatorname{Mod}(R)$ and $\left.P(L)\right|_{R_{1}}$ is a projective R_{1}-module by Lemma 2.3. Since

$$
\left.\left.\mathcal{H}\left(\left.P(L)\right|_{R_{1}}\right) \cong\left(P(L) / P(L) J\left(R_{1}\right)\right)\right|_{R_{1}} \cong L\right|_{R_{1}} \text { in } \operatorname{Mod}\left(R_{1}\right),
$$

(a) follows. Also

$$
(0) \neq \operatorname{Hom}_{R_{1}}\left(M,\left.L\right|_{R_{1}}\right) \cong \operatorname{Hom}_{R}\left(M \otimes_{R_{1}} R, L\right) \cong \operatorname{Hom}_{R}\left(\mathcal{H}\left(M \otimes_{R_{1}} R\right), L\right)
$$

over k by [1, II, Section 6, ($\left.\left.3^{\prime}\right)\right]$. Hence

$$
\left.L \cong P(L) /(P(L) J(R))=P(L) / P(L) J\left(R_{1}\right)\right) \mid M \otimes_{R_{1}} R
$$

by Lemma 2.5(c). Thus (b) also holds. Assume (a) and observe that $(P(L) /$ $\left.\left(P(L) J\left(R_{1}\right)\right)\right)\left.\left.\right|_{R_{1}} \cong L\right|_{R_{1}}$ in $\operatorname{Mod}\left(R_{1}\right)$. Since $P(L) /(P(L) J(R)) \cong L$ in $\operatorname{Mod}(R)$ and $P(L) J\left(R_{1}\right) \subset_{=} P(L) J(R)$, a dimension argument forces (c). Assume (b). Thus

$$
L \mid\left(M \otimes_{R_{1}} R\right) \cong \oplus_{X \in \operatorname{Irr}(R)}\left(\operatorname{mult}\left(X \text { in } \mathcal{H}\left(M \otimes_{R_{1}} R\right)\right)\right)\left(P(X) /\left(P(X) J\left(R_{1}\right)\right)\right)
$$

by Lemma 2.5(c). The Krull-Schmidt Theorem implies that $\left.L \cong P(L) / P(L) J\left(R_{1}\right)\right)$ in $\operatorname{Mod}(R)$. Thus (c) follows and our proof is complete.

References

1. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University, Princeton, 1956.
2. M. Cohen and S. Montgomery, Group-Graded Rings, Smash Products, and Group Actions, Trans. A.M.S. 282 (1984), 237-258.
3. C. W. Curtis and I. Reiner, Methods of Representation Theory, vol. I, John Wiley and Sons, New York, 1981.
4. E. C. Dade, Isomorphisms of Clifford Extensions, Ann. of Math. 92 (1970), 375-433.
5. E. C. Dade, Group-Graded Rings and Modules, Math Z. 174 (1980), 241-262.
6. E. C. Dade, The equivalence of various generalizations of group rings and modules, Math. Z. 181 (1982), 335-344.
7. W. Feit, The Representation Theory of Finite Groups, North-Holland, Amsterdam, 1982.
8. M. E. Harris, Filtrations, Stable Clifford Theory and Group-Graded Rings and Modules, Math. Z. 196 (1987), 497-510.
9. M. E. Harris, Clifford theory and filtrations, J. of Algebra. 132 (1990), 205-218.
10. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
11. B. Huppert and N. Blackburn, Finite Groups II, Springer-Verlag, Berlin, 1982.
12. W. Willems, On the projectives of a group algebra Math. Z. 171 (1980), 163-174.

[^0]: This research was partially supported by National Security Grant MDA 90488-H2043.
 Received by the editors November 15, 1988 and, in revised form, June 6, 1989.
 AMS subject classification: 16A03, 16A26.
 (C) Canadian Mathematical Society 1991.

