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ON EXTENDING PROJECTIVES OF FINITE 
GROUP-GRADED ALGEBRAS 

MORTON E. HARRIS 

ABSTRACT. Let G be a finite group, let k be a field and let R be a finite dimensional 
fully G-graded fc-algebra. Also let L be a completely reducible /^-module and let P be 
a projective cover of R. We give necessary and sufficient conditions for P\RX to be a 
projective cover of L\RX in Mod (R\). In particular, this happens if and only if L is 
R\-projective. Some consequences in finite group representation theory are deduced. 

1. Introduction and Statements. Our notation and terminology are standard and 
tend to follow the conventions of [5]. In particular, in this article, all rings have identities, 
all modules over a ring are right, unital and finitely generated and all algebras over a 
commutative ring are finitely generated as modules over the commutative ring. Also if 
M is a positive integer and V is a module over a ring A, then nV denotes the A-module 
direct sum of n copies of V and the head of V is 9{{V) — V/ Rad (V). Moreover if B 
is a subring of A, then, by assumption, the identity of A lies in B and V\B denotes the 
restriction of V to B. 

Throughout this article, k denotes a field, p denotes a prime integer, G and H are finite 
groups and TV is a normal subgroup of H. Also O is a commutative ring and R denotes a 
fully G-graded O-algebra (i.e., R is an O-algebra and R = 0geG Rg in Mod (O) where Rg 

is a (finitely generated) O-submodule of R for each g G G and such that RgRh — Rgh for 
all g,h e G). Thus Rx is an O-subalgebra of R by [5, Proposition 1.4]. Here J(R\)R = 
©gGG (J(R\)Rg) = 0gGG (RgJ(R\)) = RJ(R\) and J(R\)R is a G-graded 2-sided ideal of 
R contained in J(R) by [4, Proposition 1.11] and [2, Corollary 4.2 and Theorem 4.4(1)]. 
Thus if V is an /^-module, then VJ(R\)R = VJ(R\) is an ^-submodule of V contained in 
VJ(R). Also if K is a subgroup of G, then RK = (&g(EK Rg is a fully AT-graded O-subalgebra 
of R. As usual, 0[H] is the group algebra of H over O and if G = H/ N, then 0[H] is a 
fully G-graded O-algebra with 0[H]gN = ®X£8N OX for all gN G G = H/ N. Note here 
that 0[H]N = 0[N]. 

Suppose that P is a projective cover of a completely reducible /^-module L, so that P|/?, 
is a projective Pi-module (cf. Lemma 2.3). It is natural to ask: when is P|/e, a projective 
cover of L|/?j? 

It is well-known that, in general, there may not exist any P-module X such that X\Rx 

is a projective cover of L\RX . 
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EXAMPLE 1. Assume that char (k) = p, let H be a cyclic group of order p2, let 
N denote the unique subgroup of H of order/? and let L denote a trivial k[H] -module. 
Thus L\k[N] is a trivial Jc[N]-modu\e and P = k[N]k[N] (the regular k[N]-module) is a 
projective cover of L\k[N] by [11, VII, Theorem 5.2]. We claim that there is no k[H]-
module Q such that Q\k[N] — P in Mod (k[N]). To see this suppose that X is such a k[N]-
module. Then X is indecomposable as X\t[N] = P is indecomposable in Mod (k[N]). 
Since dim (X/ k) — dim (Pj' k) = p. [11, VII, Theorem 5.3] implies that every element 
of N acts trivially on X. As X\k[N\ = k[N]k[N]> we have a contradiction and our claim is 
demonstrated. 

Note, in this example, that the regular k[H]-module M = k[H]k[H\ is a projective 
cover of L, M\k[N] ^ pP in Mod (k[N]) and hence MJ(k[N]) ^ MJ(k[H]) and that P has 
precisely p descending Loewy factors all of which are isomorphic to L\k[iv\ in Mod (k[N]) 
in accordance with [9]. 

Our main result is: 

PROPOSITION 2. Suppose that O — k is a field. Let L be a completely reducible 
R-module and let P be a projective cover of L in Mod (R). Then the following three 
conditions are equivalent: 

(a) P\RX is a projective cover of the (completely reducible) R\ -module L\RX : 
(b) Lis R\ -projective: and 
(c) PJ(R) = PJ(RX). 

Clearly [6, Proposition 3.3] yields: 

COROLLARY 3. As in Proposition 2. assume that O = kis afield and also that | G\ 1* 
is a unit in k. Let L be a completely reducible R-module and let P be a projective cover 
ofL in Mod (R). Then P\R} is a projective cover of L\RX in Mod (R\). 

REMARK 4. As in Proposition 2, let O = k be a field. Let W be an irreducible R\ -
module and let P be a projective cover of W in Mod (R\), so that Pj (PJ(R\)) = W in 
Mod (Ri). Assume that Q is an fl-module such that Q\Rl = P in Mod (Ry). Then Q is 
indecomposable and Qj (QJ(R\)) = V is an fl-module such that V|̂ , = W. Thus V is 
an irreducible /^-module and QJ(R\) = QJ(R)- If also |G\ 1* is a unit in fc, then Q is a 
projective cover of V by [6, Proposition 3.3]. 

Next we present an application of our results to the classical case in Stable Clifford 
Theory in finite group representation theory (cf. [10, V, Satz 17.5]). 

Let M be an irreducible [̂ATj-module. Assume that c: H x H —• kx is a 2-cocycle 
with H acting trivially on kx such that c: N x N —• { 1} and c is constant on (gN, hN) for 
all g,h G H. Let k[H](c) denote the corresponding twisted group algebra, so that k[N] 
is a subalgebra of k[H](c). Since k[H](c) can be viewed as a fully G = Hj TV-graded 
fc-algebra with (k[H](c))gH = (BxegN kx for all g € H. Proposition 2 yields: 

COROLLARY 5. Suppose that there is a k[H](c)-module L such that L|*[#] — M in 
Mod (k[N]). Let P be a projective cover ofL in Mod (k[H](c)). Then the following three 
conditions are equivalent: 
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(a) P\k[N] is a projective cover ofM; 
(b) L is k[N]-projective; and 
(c) PJ(k[H](c)) = PJ(k[N]). 

As another application, we observe that [12, Proposition 2.8] is a special case of our 
results. For, [12, Proposition 2.8(a)] is a special case of Corollary 5 and [6, Proposition 
3.3], and [12, Proposition 2.8(b)] is a special case of Remark 4, Corollary 5 and [6, 
Proposition 3.3]. 

REMARK 6. Suppose that O is a complete discrete valuation ring and let k = 
0/J(0). Then 

J(0)R = RJ(O) = 0g G G (J(0)Rg) = ©gGG (RgJ(0)) 

is a G-graded 2-sided ideal of R contained in J(R) (cf. [7, I, Lemma 8.15]) and R — 
Rj (RJ(O)) is a fully G-graded finite dimensional fc-algebra with (R)g = (Rg + RJ(O))/ 
(RJ(O)) for all g G G. Let L be a finitely generated completely reducible ^-module and 
let/ : P —-> L be a projective cover of L in Mod (R) where F is a projective /^-module and 
/ G HomR(P, L) is essential (cf. [3, Section 6C]). Since LJ(O) Ç U(R) = (0), L may be 
viewed as a completely reducible ^-module and PJ(O) Ç Ker(/). Also P = Pj (PJ(O)) 
is a projective ^-module and/ induces the projective cover/ : P —• L in Mod (^). Here 
(Â)i = (/?i + ̂ 7(0))/ (RJ(O)) ^ Ri/(RiJ(0)) as rings and, using [3, Section 6C], it is 
easy to see that/: P —• L is a projective cover of L in Mod (#i) if and only if/: P —> L 
is a projective cover of L in Mod ((/?)i). 

Section 2 presents some basic results that are required in our proof of Proposition 2 
that is given in section 3. 

2. Preliminary Results. For the convenience of the reader we present the following 
two well-known results (cf. [9, Lemma 2.6] and [1, II, Proposition 6.1]: 

LEMMA 2.1. (a) for each g G G,Rg is a finitely generated projective R\ -module and 
a finitely generated projective left R\ -module; and (b) R is a finitely generated projective 
R\ -module and a finitely generated projective left R\ -module. 

LEMMA 2.2. Let K be a subgroup of G and let P be a finitely generated projective 
RK — @geK Rg-module. Then P (&RK R is a finitely generated projective R-module. 

LEMMA 2.3. Let K be a subgroup of G and let Q be a finitely generated projective 
R-module. Then Q\RK is a finitely generated projective RK-module. 

PROOF. Let T be a transversal for the left cosets of K in G. Then R = ®x € r RxK in 
Mod (RK)- Clearly RgK is a finitely generated projective R\ -module for each g G G by 
Lemma 2.1. (a). Fix g G G. It suffices to prove that RgK is a projective /^-module. Note 
that Rg <g)Ri RK = ©te* (Rg ®Rl Rk) in Mod (Rx) and that a : Rg 0 ^ RK —* RgK defined 
by: a(r ®R1 S) = rs for all r G Rg and all s G RK is well-defined /^-epimorphism. 
Since the restriction of a to Rg (8)/?, RK is one-to-one by [6, (1.4)] for all k G K, a is an 
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isomorphism. Since Rg <8>R] RK is a projective ^-module by Lemma 2.1(a) and [1, II, 
Proposition 6.1], we are done. • 

For the remainder of this section, we assume that O = k is a field. 

LEMMA 2.4. Let N be an R\ -module. Then: 

(a)tt(N)®Rx R^(N®Rl R)/((N®Rl R)J(Ri )) in Mod (/?); and 
(b)M{M{N)®Rx R)^H{N®Rx R) in Mod (R). 

PROOF. We have an exact sequence 

( 0 ) - > N J ( R l ) - ^ i V ^ 9{(N) = N/NJ(R{) —• (0) 

in Mod (R\) where i denotes the inclusion map and n is the canonic epimorphism. Since 
R is a projective and hence flat left R\ -module, 

(0)-^>NJ(Ri)®Rl R^>N®R] R*-*5y{(N)®Rx R-+(0) 

is exact in Mod (/?). Then [8, Lemma 2.4(d)] yields (a) and (b) follows from (a) and the 
fact that RJ(Ri ) = J(R} )R C J(R). m 

LEMMA 2.5. Let NbeanR\ -module and let Qbea projective cover ofN in Mod (R\ ). 
Let Irr (R) be a set of representatives for the types of irreducible R-modules and for each 
X G Irr (R), let P(X) denote a projective cover ofX in Mod (R). Then: 

(a)Q®Rl R^^x&rr(R)(mult(Xin^(N^Rl R))) P(X) in Mod (/?); 
(bHQ®Rl R)/((Q®R> R)J(Ri)) = ©xeirr(/?)(mult(Xm^r(^/?1/?))(P(X)/P(X)y(/?1)) 

in Mod (/?); and 
(c) tt(N) ®Rx R 9* exeimR) (mult(X in H(N ®Rx R)(P(X)/ P(X)J(Rl )) in Mod (/?). 

REMARK 2.6. Let M be an irreducible R\ -module and let L be an irreducible R-
module. Then L\R] is a completely reducible R\-module since U(R\) ^ LJ(R) = (0) 
and 

9fomR{ti(M®Rx R),L)^ttomR{M®Rx R,L) ^ ttomRx(M,L) 

as ^-spaces by [1, II, Section 6, (3')]. Thus 

dim(End/?(L)/ fc)(mult(L in 9{(M <g>*, R))) = 

dimCEndj?, (A/)/ £)(mult(M in L\Rx )). 

PROOF. Here 9f(N) = 9f(Q) in Mod (Rx) (cf. [11, VII, Section 10]) and hence 

^(Q^R1R) = ^(^(Q)^R] R)^rt(rt(N)®Rl R) 

¥rt(N®Rl R)inMod(R) 

by Lemma 2.4(b). Now [11, VII, Section 10] implies (a) and (b) is immediate. Also (b), 
Lemma 2.4(a) and the fact that M(N) = (Q) in Mod (R\) yield (c) and we are done. • 
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3. A Proof of Proposition 2.. In this section, we present a proof of Proposition 2 
and consequently we assume its hypotheses and we set M = L\Rl , so that ^i{M) — M in 
Mod(fli). 

Suppose that (c) holds. Then P(L)/(P(L)J(RX)) = P(L)/P(L)J(R) ^ L in Mod (R) 
and P(L)\R] is a projective R\-module by Lemma 2.3. Since 

M(P[L)\Rx) <* (P{L)/P(L)J{Rx))\Rx ~ L\R] in Mod (Rx), 

(a) follows. Also 

(0) ^ Horn/?, (M, LI/?,) * Hom/?(M(g)/?, /?, L) ^ HomR(9{(M®Rx R),L) 

over A: by [ 1, II, Section 6, (3')]. Hence 

L * P{L)I (P(L)J(R)) = P{L)IP(L)J(RX))\M®Rx R 

by Lemma 2.5(c). Thus (b) also holds. Assume (a) and observe that (P(L)/ 
(P(L)J(Ri)))\R^L\Rl in Mod (R}). Since P(L)/(P(L)J(R)) ^ L in Mod (R) and 
P(L)J(R\)C=P(L)J(R), a dimension argument forces (c). Assume (b). Thus 

L\ (M ®Rl R) * (Bxem(R)(mu\t(X in H(M ®Rx R)))(P(X)/ (P(X)J(R, ))) 

by Lemma 2.5(c). The Krull-Schmidt Theorem implies that L ^ P(L)/P(L)J(RX)) in 
Mod (R). Thus (c) follows and our proof is complete. • 
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