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1. Introduction

One of the most elementary and well-known properties of non-commutative rings is the
non-functoriality of their prime spectra: there is apparently no natural way of assign-
ing, to an arbitrary ring homomorphism R → S, a function from the prime spectrum
of S into the prime spectrum of R. Nevertheless, there is an extensive and deep lit-
erature presenting, among many other things, topological and geometric contexts for
both non-commutative ring homomorphisms and their generalizations to certain functors
between module-like categories. These contexts appear, for example, in the earlier publi-
cations [1], [5], [18], [20] and [19], and the more recent ones [2], [10], [12], [11], [14], [13]
and [15]. In the present paper we continue a discussion begun in [1, § 4]. We focus on
topological properties of the correspondences of prime spectra associated with arbitrary
homomorphisms involving left Noetherian rings or affine polynomial identity (PI) alge-
bras.

1.1.

To fix notation, equip the set SpecR of prime ideals of a (not necessarily commutative)
ring R with the Zariski topology, by declaring the closed subsets to be those of the form

VR(X) = {P ∈ Spec R : P ⊇ X},
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for X ⊆ R. Our specific intent in this paper is to carefully examine non-commutative
generalizations of the following two trivially true but fundamentally important facts. If
f : R → S is a commutative ring homomorphism, then

(1) the set map r : Spec S
P �→f−1(P )−−−−−−−→ Spec R is Zariski continuous, and

(2) r−1VR(X) = VS(f(X)).

1.2.

Now let f : R → S be a homomorphism of non-commutative rings, and let

r : Spec S → Spec R

denote the correspondence assigning to each P ∈ Spec S the set of prime ideals of R

minimal over f−1(P ). Adapting [1, § 4], we will say that r is continuous provided

(1′)
r[−1]V := {P ∈ Spec S : rP ⊆ V }

is closed for all closed subsets V of SpecR.

It need not be true that r is continuous, even when R and S are Noetherian; see § 2.5.
Continuity does hold when R and S satisfy a polynomial identity; see [1, 4.6v] and (2.10).

One generalization of (2) might require that

r[−1]VR(X) = VS(f(X))

for all X ⊆ S. But it is easy to show that r can be continuous while not satisfying this
hypothesis; see § 2.4 (iii). Another possible generalization is

(2′) for all ideals I of R,

r[−1]VR(I) = VS(IS), where IS := annS(S/Sf(I)).

It follows, for example, from § 3.12 that (2′) is also strictly stronger than (1′). However,
condition (2′) will be useful in our ‘point-free’ approach, described next.

1.3.

Let SPECR denote the category whose objects are the Zariski closed subsets of Spec R

and whose morphisms are the inclusions; similarly define SPECS. In § 5 we consider the
functors

λ : SPECS
VS(J) �→VR(f−1(J))−−−−−−−−−−−−−→ SPECR and ρ : SPECR

VR(I) �→VS(IS)−−−−−−−−−−→ SPECR,

where I is a semiprime ideal of R and J is a semiprime ideal of S. When R and S are
commutative, it is easy to check that λ is left adjoint to ρ; this adjointness amounts,
essentially, to a reformulation of (2).
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In our main result, Theorem 3.5, we give precise criteria for λ to be a left adjoint to ρ,
under certain hypotheses (satisfied by left Noetherian rings and affine PI algebras); in
particular, this adjointness holds if and only if r is a single-valued continuous function
(allowing for a slight abuse of notation) and (2′) holds. When S is left Noetherian, further
equivalent conditions are given, amounting to a ‘nearly centralizing’ property. The moral
is that, other than for centralizing extensions, this adjointness is a rare occurrence.

1.4.

In the approach to non-commutative algebraic geometry in [11, 17], the ring homo-
morphism f : R → S provides only one example of an affine map between affine non-
commutative spaces. Indeed, some of our analysis below can be formulated for more gen-
eral morphisms between non-commutative spaces, and a greater portion can be restated
for the setting in which the homomorphism f : R → S is replaced by an appropriate
R–S-bimodule. While a few of the definitions and preliminary results in this paper are
presented within this broader context, we leave a more complete generalization to the
interested reader. Recent studies on non-commutative ring homomorphisms (and gener-
alizations) from this point of view include [13–15].

1.5.

Our emphasis on categories of closed, rather than open, subsets of topological spaces
is a matter of convenience and personal preference. All of the results and observations
below have dual versions involving the categories of open subsets of topological spaces,
with inclusions again providing the morphisms.

1.6. Conventions and notation

(i) Let A be a ring. We will always assume that the Zariski topology has been applied
to Spec A, and we will continue to use the notation SPEC as in § 1.3. If I is an ideal
of A, we will use

√
I to denote the prime radical of I, and if U is a set of prime

ideals in A, we will use I(U) to denote their intersection; note that VA(I(U)) is the
closure of U in SpecA.

(ii) Let A and B be rings. We will use AM as an abbreviation for ‘the left A-module
M ’. We will similarly use MA for right A-modules and AMB for A–B-bimodules.
We will use annA M to denote the annihilator of AM and annMA to denote the
annihilator of MA. The category of left A-modules will be denoted ModA.

(iii) The reader is referred to [6,9] for further ring-theoretic background information.

2. Continuous correspondences

In this section we consider ring homomorphisms and continuity. This discussion can
be regarded as a continuation of [1, § 4], where correspondences between the maximal
spectra of affine PI algebras are considered.

Throughout this section, f : R → S will be a homomorphism of rings.
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2.1.

(i) Let X and Y be sets. By a correspondence c : X → Y we mean a function from X

into the set of subsets of Y . Following common practice, we will define

cU :=
⋃

u∈U

cu and c−1V := {u ∈ U : cu ∩ V �= ∅},

for subsets U of X and V of Y . However, it will be more convenient for our purposes
to use the following generalization of the inverse of a function,

c[−1]V := {u ∈ U : cu ⊆ V }.

Note that X − c−1V = c[−1](Y − V ). Also,

c[−1]cU ⊇ U, cc[−1]V ⊆ V, cU ⊆ cU ′ and c[−1]V ⊆ c[−1]V ′,

for all U ⊆ U ′ ⊆ X and V ⊆ V ′ ⊆ Y .

(ii) Let X and Y be topological spaces. Following [1, § 4], we will say that the corre-
spondence c : X → Y is continuous provided c−1W is open for all open subsets W

of Y , or, equivalently, provided c[−1]Z is closed for all closed subsets Z of Y .

2.2.

The correspondences of spectra of interest to us appear within the following more
general framework. Let α : ModB → ModA be a covariant functor, for rings A and B.
Given an ideal J of B, set

Jα := annA α(B/J).

We obtain a correspondence r(α) : Spec B → Spec A, sending each P ∈ Spec B to the
set of prime ideals of A minimal over Pα. (It may be the case that Pα = A, in which
case r(α)P will be empty. However, using Zorn’s lemma, if J is an ideal of A contained
within at least one Q ∈ Spec A, then there exists a Q′ ∈ Spec A such that Q′ ⊆ Q and
such that Q′ is minimal over J .)

2.3.

Applying § 2.2 to the restriction of scalars functor ModS → ModR, we obtain the
correspondence (which we will denote) r : Spec S → Spec R, sending each P ∈ Spec S to
the non-empty set

{Q ∈ Spec R : Q is minimal over f−1(P ) = annR(S/P )}.

If Q is a prime ideal of R, then r−1Q is commonly referred to as the set of prime ideals
of S ‘lying over’ Q.
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2.4.

Let I be an ideal of R.

(i) Note that
r[−1]VR(I) = {P ∈ Spec S :

√
f−1(P ) ⊇ I}.

(ii) When R and S are commutative, r is the continuous function from SpecS to Spec R

mapping each prime ideal P of S to the prime ideal f−1(P ) of R, and

r[−1]VR(I) = r−1VR(I) = VS(f(I)).

(iii) When S is not commutative, the equality in (ii) need not hold. For example, set

S =

[
k k

k k

]
, R =

{[
α β

0 α

]
: α, β ∈ k

}
⊆ S and I =

[
0 k

0 0

]
⊆ R,

where k is a field. Let f be the inclusion of R in S. Then SpecS = {0}, Spec R =
{I}, r is continuous, and

r[−1]VR(I) = {0} �= ∅ = VS(f(I)).

(iv) When
√

f−1(P ) is nilpotent modulo f−1(P ) for all P ∈ Spec S, the equality in (ii)
can be replaced by

r[−1]VR(I) = {P ∈ Spec S : f−1(P ) ⊇ It for some positive integer t}
= {P ∈ Spec S : P ⊇ f(I)t for some positive integer t}

=
⋃
t�1

VS(f(I)t).

2.5.

We can see as follows that r need not be continuous, even when R and S are Noetherian.
Let k be a field of characteristic zero, and suppose that S has been chosen to be the

enveloping algebra of sl2(k). Let {E, F, H} be the standard k-basis for sl2(k) ⊂ S (see,
for example, [4, § 1.8]), with [H, E] = 2E, [H, F ] = −2F and [E, F ] = H. Assume that
R = k{E} ⊂ S and that f is the inclusion map. Let I = 〈E〉. It is well known that R

is a polynomial ring in E and that S is Noetherian. Moreover, if P is the kernel of a
finite-dimensional irreducible representation of S, then It ⊂ P for some positive integer t.
(This last assertion immediately follows, e.g. from [4, § 1.8].)

We can now see that U = r[−1]VR(I) ⊂ Spec S contains the kernel of every finite-
dimensional irreducible representation of S. It is well known that the intersection of
these kernels is zero. Therefore, I(U) = 0, a prime ideal of S. However, the ideal 0 of S

cannot be contained in U , and so U �= VS(I(U)). Therefore, U is not closed, and f is not
continuous.
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2.6.

Continuity does hold in the following commonly occurring special case. Suppose that
f−1(P ) is a semiprime ideal of R for every prime ideal P of S. (See, for example, [9,
Chapter 10] for settings in which this hypothesis holds.) Then, if I is an ideal of R,

r[−1]VR(I) = {P ∈ Spec S : f−1(P ) ⊇ I} = {P ∈ Spec S : P ⊇ f(I)} = VS(f(I)).

Hence r is continuous.

2.7.

In the remainder of this section we establish continuity in the presence of a bound on
Goldie ranks.

(i) Let A be a ring for which every prime factor is left or right Goldie. Set

Specn A = {P ∈ Spec A : rank(A/P ) � n},

where ‘rank’ means ‘Goldie rank’ and where n is a positive integer. Equip Specn A

with the relative Zariski topology.

(ii) Suppose that all of the prime factors of R and S are left or right Goldie. Let
P ∈ Specn S. It follows from [21] that rP ∈ Specn R.

Lemma 2.1. Let A be a subring of a prime left or right Goldie ring B. Suppose that
the Goldie rank of B is t, and let N denote the prime radical of A. Then N t = 0.

Proof. Let F be the Goldie quotient ring of B. By assumption, F has length t as a
left F -module, and so there exists an F–A-bimodule composition series

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fs = F,

for some s � t. For 1 � i � s, set

Qi = ann(Fi/Fi−1)A.

Then F · Qs · · ·Q1 = 0, and it is easy to check that Q1, . . . , Qs are prime ideals of A. In
particular, Qs · · ·Q1 = 0 in A, and so N t ⊆ Ns = 0. �

Proposition 2.2. Let n be a positive integer, and assume that all of the prime factors
of R and S are left or right Goldie. Then r : Specn S → Specn R is continuous.

Proof. Without loss of generality, we may assume that R is a subring of S and that
f is the inclusion map. Let I be an ideal of R, and set V = VR(I). It now follows from
Lemma 2.1, and our earlier observations, that

(r[−1](V ∩ Specn R)) ∩ Specn S = (r[−1]V ) ∩ Specn S

= {P ∈ Specn S : P ⊇ In}
= (VS(In)) ∩ Specn S.

The proposition follows. �
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Corollary 2.3 (see 4.6v in [1]). If S is a PI ring, then r is continuous.

Proof. Assume that S is PI. It follows from Posner’s theorem that every prime factor
of R and S is Goldie. It follows from basic PI theory that there exists a finite upper
bound for the Goldie ranks of the prime factors of S. The corollary now follows from
Proposition 2.2. �

2.8.

In [1, 4.6v] it is noted that the correspondence r : max S → max R is continuous when
R and S are PI algebras affine over a field. However, the proof given there (in the last
paragraph on p. 307) appears to be incorrect.

2.9.

In [1, 4.7] it is shown that the homomorphism f : R → S can be chosen with the
following properties:

(i) R and S are PI algebras affine over a field,

(ii) there exists a closed subset V of SpecR for which r−1V is not closed in Spec S.

As noted in [1, 4.7], it follows that ‘r−1(open) is open’ continuity does not imply
‘r−1(closed) is closed’ continuity.

2.10.

We ask two questions.

(i) Must r be continuous when S is FBN?

(ii) Must r be continuous when S is finitely generated as an R-module?

3. Adjointness

Throughout this section, f : R → S will be a ring homomorphism, and r will denote the
correspondence from Spec S to Spec R described in § 2.3. In our main result, Theorem 3.5,
we determine—under additional hypotheses introduced in § 3.7—when adjointness holds
for the functors, between SPECR and SPECS, arising from restriction and extension of
scalars.

We begin with some preliminaries on functors, correspondences and topological spaces.

3.1.

Let X be a topological space, and let ClosedX denote the category whose objects are
the closed subsets of X and whose morphisms are the inclusions. If U is a subset of X,
we will denote the closure of U in X by Ū .
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3.2.

Let X and Y be topological spaces.

(i) Let ϕ be a covariant functor from ClosedX to Closed Y , and let ψ be a covariant
functor from ClosedY to Closed X. Then ϕ is a left adjoint to ψ exactly when

ϕU ⊆ V ⇐⇒ U ⊆ ψV,

for all U ∈ Closed X and V ∈ Closed Y . Now suppose that ψ and ψ′ are both right
adjoints to ϕ, and let V ∈ Closed Y . Then

ψV ⊆ ψV =⇒ ϕψV ⊆ V =⇒ ψV ⊆ ψ′V.

Similarly, ψ′V ⊆ ψV . It follows that ψ and ψ′ must be the same functor.

(ii) Let c : X → Y be a (not necessarily continuous) correspondence. We obtain covari-
ant functors

ϕc : Closed X
U �→cU−−−−→ Closed Y and ϕc : Closed Y

V �→c[−1]V−−−−−−−→ Closed X.

Moreover, ϕc is a left adjoint to ϕc exactly when

cU ⊆ V ⇐⇒ U ⊆ c[−1]V

for all closed subsets U of X and V of Y . Consequently, if c is continuous, it
immediately follows that ϕc is a left adjoint to ϕc. Conversely, if ϕc is a left adjoint
to ϕc, then

c[−1]V ⊆ c[−1]V =⇒ c(c[−1]V ) ⊆ V =⇒ c[−1]V ⊆ c[−1]c(c[−1]V ) ⊆ c[−1]V.

We conclude that ϕc is a left adjoint to ϕc if and only if c is continuous.

3.3.

We now introduce functors between spectra in a somewhat more general framework.
Assume that A and B are rings, and that α : ModB → ModA is a covariant functor.
Recall the notation of § 2.2.

(i) Following § 3.2 (ii), we obtain the functors

ϕr(α) : SPECB → SPECA and ϕr(α) : SPECA → SPECB.

(ii) Suppose that α is right exact. Then the assignment J �→ Jα preserves inclusions,
and thus induces a functor

θα : SPECB
V �→VA(I(V )α)−−−−−−−−−→ SPECA.
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3.4.

Retain the notation of § 3.3, and assume that there exists an A–B-bimodule M such
that αL = M ⊗B L, for each left B-module L. Recall, by Watts’s theorem (see, for
example, [16, IV.10.1]), that this assumption holds if and only if α possesses a right
adjoint.

(i) Observe that
Jα = annA(M/M.J),

for all ideals J of B.

(ii) Note, for ideals J1 and J2 of B, that

Jα
1 Jα

2 · M ⊆ Jα
1 · M · J2 ⊆ M · J1J2,

and so Jα
1 Jα

2 ⊆ (J1J2)α.

(iii) Let J be an ideal of B, and suppose that Q is a prime ideal of A containing Jα.
Using Zorn’s lemma, we can choose an ideal P of B maximal such that P ⊇ J and
such that Pα ⊆ Q; it follows from (ii) that P must be prime. Therefore,

Q ⊇ Pα ⊇ (
√

J)α, and so
√

Jα ⊇ (
√

J)α ⊇ Jα.

It follows that
θαVB(J) = VA(Jα),

for all ideals J of B.

(iv) Let J be an ideal of B, and set

X = r(α)VB(J) ⊆ Spec A.

If Q ∈ X, then Q ⊇ Jα, and so X̄ ⊆ VA(Jα). Conversely, choose Q ∈ VA(Jα).
As in (iii), there exists a prime ideal P of B such that P ⊇ J and such that
Q ⊇ Pα. There then exists (by another Zorn’s lemma argument) a prime ideal Q′

of A minimal over Pα such that Q′ ⊆ Q. Because Q′ ∈ X, we see that Q ∈ X̄, and
so

ϕr(α)VB(J) = X̄ = VA(Jα) = θαVB(J).

We see, in the present setting, that θα and ϕr(α) are the same functor.

3.5.

Applying § 3.4 to the restriction of scalars functor ModS → ModR, we obtain the
functor λ : SPECS → SPECR, sending

VS(J) �→ VR(f−1(J)),

for ideals J of S. Again using § 3.4, we see that λ = ϕr.
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3.6.

(i) For each ideal I of R, set

IS = annS(S/Sf(I)).

Applying § 3.4 to the extension of scalars functor ModR → ModS, we now obtain
the functor ρ : SPECR → SPECS, sending

VR(I) �→ VS(IS),

for ideals I of R.

(ii) Suppose that R and S are commutative. Then r : Spec S → Spec R is a continuous
function, and, in the notation of § 3.4, ρ = ϕr. Moreover, following § 3.2 (ii) we see
that λ is a left adjoint to ρ.

3.7.

For the remainder of this section we will assume

(i) that all semiprime factors of R and S are left or right Goldie, and

(ii) that the prime radicals of all of the factors of R and S are nilpotent.

3.8.

(i) The hypotheses in § 3.7 hold, of course, when R and S are left or right Noetherian.

(ii) Suppose that R and S are each affine over a commutative Noetherian ring and sat-
isfy a polynomial identity. Then § 3.7 (i) follows from Posner’s theorem, and § 3.7 (ii)
follows from [3].

(iii) Let I be an ideal of R or S. It follows from § 3.7 (i) that
√

I is the intersection of
finitely many prime ideals and then from § 3.7 (ii) that I contains a finite product
of prime ideals. In particular, there are finitely many prime ideals minimal over I.

3.9.

In Lemmas 3.1, 3.2 and 3.3 and in § 3.10 we will further assume that R is a subring of
S and that f is inclusion.

Lemma 3.1.

(i) If J is an ideal of S, then λVS(J) = VR(J ∩ R).

(ii) If I is an ideal of R, then ρVR(I) = VS(IS).
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Proof.

(i) Let J be an ideal of S. For sufficiently large t,

(
√

J ∩ R)t ⊆ J ∩ R ⊆
√

J ∩ R,

and so
VR(J ∩ R) = VR(

√
J ∩ R) = λVS(J).

(ii) Let I be an ideal of R. By § 3.4 (ii), for sufficiently large t,

((
√

I)S)t ⊆ ((
√

I)t)S ⊆ IS ⊆ (
√

I)S ,

and so
VS(IS) = VS((

√
I)S) = ρVR(I).

(The preceding two arguments are symmetrical—note that J ∩ R = annR(S/SJ),
for ideals J of S.)

�

3.10.

We can now see, in the present situation, that λ is a left adjoint to ρ exactly when

VS(J) ⊆ VS(IS) ⇐⇒ VR(J ∩ R) ⊆ VR(I),

or, equivalently,
IS ⊆

√
J ⇐⇒ I ⊆

√
J ∩ R,

for all ideals I of R and J of S.

Lemma 3.2.

(i) Let I be an ideal of R, let J be an ideal of S, and suppose that VR(J ∩R) ⊆ VR(I).
Then VS(J) ⊆ VS(IS).

(ii) λ is a left adjoint to ρ if and only if

VS(J) ⊆ VS(IS) =⇒ VR(J ∩ R) ⊆ VR(I),

for all ideals I of R and J of S.

Proof.

(i) Since I ⊆
√

J ∩ R, there exists a positive integer t such that It ⊆ J ∩ R. Hence
ItS ⊆ J , and so (It)S ⊆ J . Therefore, by Lemma 3.1,

VS(J) ⊆ VS((It)S) = ρVR(It) = ρVR(I) = VS(IS).

(ii) This follows immediately from (i) and § 3.10.

�
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Lemma 3.3. The following are equivalent.

(i) λ is a left adjoint to ρ.

(ii) For all P ∈ Spec S and Q ∈ Spec R,

QS ⊆ P =⇒ Q ⊆
√

P ∩ R.

Proof. It follows immediately from § 3.10 that (i) =⇒ (ii).
Conversely, assume that (ii) is true, that I is an ideal of R, that J is an ideal of S,

and that VS(J) ⊆ VS(IS). Then IS ⊆
√

J . Let P be a prime ideal of S minimal over J .
Using Zorn’s lemma we can choose an ideal Q of R maximal among the ideals I ′ of R

for which I ′ ⊇ I and IS ⊆ P . Because P is prime, § 3.4 (ii) ensures that Q is prime.
Therefore, by assumption, Q ⊆

√
P ∩ R, and so I ⊆

√
P ∩ R. Consequently, It ⊆ P ∩ R

for a sufficiently large positive integer t.
Since P was arbitrarily chosen among the finitely many prime ideals of S minimal

over J , we see that It ⊆
√

J ∩ R for sufficiently large t. However, (
√

J ∩ R)t ⊆ J ∩ R for
sufficiently large t, and so It ⊆ J ∩ R for sufficiently large t. Therefore, I ⊆

√
J ∩ R.

Hence VR(J ∩ R) ⊆ VR(I), and it follows from Lemma 3.2 (ii) that (ii) =⇒ (i). �

Lemma 3.4. Let P ∈ Spec S. Then there exists a Q ∈ Spec R such that Q is minimal
over P ∩ R and such that QS ⊆ P .

Proof. We may assume, without loss of generality, that P = 0. Next, by § 3.8 (iii),
there exists a prime ideal Q̂ of R such that Q̂ · N = 0 for some non-zero ideal N of R.
Choose a minimal prime ideal Q of R such that Q ⊆ Q̂, and let F denote the Goldie
quotient ring of S. Since F · Q · N = 0, and since annFS = 0, we see that F · Q �= F .
Consequently, F/FQ is a non-zero F–R-bimodule. By Goldie’s theorem, every left S-
submodule of F/FQ must have annihilator equal to P .

Now note that F/FQ contains a non-zero S–R-bimodule factor of S/SQ. In par-
ticular, there exists an S–R-bimodule factor B of S/SQ with annS B = 0. Thus
QS = annS(S/SQ) = 0, and the lemma follows. �

Theorem 3.5. Assume that f : R → S be a ring homomorphism, that all semiprime
factors of R and S are left or right Goldie, and that the prime radicals of all of the factors
of R and S are nilpotent.

(1) The following are equivalent.

(i) λ is a left adjoint to ρ.

(ii) The canonical correspondence r : Spec S → Spec R defined in § 2.3 is a single-
valued continuous function, and

r[−1]VR(I) = VS(IS),

for all ideals I of R.
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(2) If S is left Noetherian then (i), (ii) and the following are equivalent.

(iii) For each Q ∈ Spec R there is a positive integer t such that f(Q)tS ⊆ Sf(Q).

(iv) For each ideal I of R there is a positive integer t such that f(I)tS ⊆ Sf(I).

Proof. We may assume, without loss of generality, that R is a subring of S and that
f is inclusion.

(1) (i) =⇒ (ii). Let P ∈ Spec S. By Lemma 3.4, we can choose Q ∈ Spec R such that
Q is minimal over P ∩ R and such that QS ⊆ P . By § 3.10, Q ⊆

√
P ∩ R, and so

Q =
√

P ∩ R. Hence rP = {Q}, and r is a single-valued function.

Now, let I be an ideal of R, and note that P ∈ r[−1]VR(I) if and only if I ⊆
√

P ∩ R.
Hence, by § 3.10, r[−1]VR(I) = VS(IS). In particular, r is continuous.

(ii) =⇒ (i). Assume that P ∈ Spec S, that Q ∈ Spec R, and that QS ⊆ P . In
other words, P ∈ VS(QS). By hypothesis, VS(QS) = r[−1]VR(Q), and hence P ∈
r[−1]VR(Q). Therefore, rP ⊆ VR(Q), and so Q ⊆

√
P ∩ R. It now follows from

Lemma 3.3 that λ is a left adjoint to ρ.

(2) Assume that S is left Noetherian.

(i) =⇒ (iii). Suppose that S/SQ �= 0; the desired conclusion immediately holds true
otherwise. Next, since S is left Noetherian, there exists a series of S–R-bimodules,

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = S/SQ,

such that, for each 1 � i � n,

Pi = annS(Mi/Mi−1) ∈ Spec S

(see, for example, [6, 2.13]). In particular, QS is contained in each of P1, . . . , Pn. In
view of § 3.10, it now follows from our assumptions that Q ⊆

√
Pi ∩ R, for 1 � i � n.

Therefore, for sufficiently large t, Qt ⊆ P1 · · ·Pn. Consequently, Qt · (S/SQ) = 0,
and so QtS ⊆ SQ.

(iii) =⇒ (i). Assume that Q ∈ Spec R, that P ∈ Spec S, and that QS ⊆ P . Choose
t such that QtS ⊆ SQ. Then SQtS ⊆ SQ, and so SQtS ⊆ QS . Hence, Qt ⊆
(SQtS) ∩ R ⊆ P ∩ R. Therefore, Q ⊆

√
P ∩ R. By Lemma 3.3, λ is a left adjoint

to ρ.

(iii)⇐⇒ (iv). Assume (iii), and let I be an arbitrary ideal of R. Choose Q1, . . . , Qn ∈
Spec R such that

√
I = Q1 ∩ · · · ∩ Qn and such that Q1 · · ·Qn ⊆ I. Then, by

assumption, for a sufficiently large positive integer t, IntS ⊆ SQ1 · · ·Qn ⊆ SI,
and (iv) holds true. The converse is trivial.

�
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3.11.

It is easy to see that conditions (iii) and (iv) of Theorem 3.5 are satisfied when the
homomorphism f : R → S is centralizing (i.e. S is generated as a left R-module by a
set X such that r · x = x · r for all r ∈ R and x ∈ X). Non-centralizing homomorphisms
for which Theorem 3.5 (iii), (iv) hold are more rare, although ring embeddings associated
with nilpotent Lie superalgebras provide such examples (see [7,8] for details). We can
view ring homomorphisms satisfying Theorem 3.5 (iv) as being ‘nearly centralizing’.

3.12.

It is not true that λ is a left adjoint to ρ if and only if r is a single-valued continuous
function. To provide an easy illustration, let k be a field of characteristic zero and let
S denote the first Weyl algebra over k: S is generated by x and y, subject only to the
relation yx−xy = 1. Let R be the commutative polynomial ring k[x], identified with the
subalgebra of S generated by x, and let f denote the inclusion homomorphism.

Let P denote the zero ideal of S. Then SpecS = {P} and P ∩ R ∈ Spec R. Hence r is
a single-valued continuous function.

Now let I be the ideal of R generated by x. Then SI = Sx is a proper left ideal of
S, and so S/SI �= 0. Since S is a simple ring, IS = 0. Also, IS ⊂ P and I �⊆

√
P ∩ R.

Therefore, by § 3.10, λ is not a left adjoint to ρ.
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