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Abstract

We prove that in the character group of an abelian topological group, the topology associated (in a
standard way) to the continuous convergence structure is the finest of all those which induce the topology
of simple convergence on the corresponding equicontinuous subsets. If the starting group is furthermore
metrizable (or even almost metrizable), we obtain that such a topology coincides with the compact-open
topology. This result constitutes a generalization of the theorem of Banach-Dieudonne, which is well
known in the theory of locally convex spaces.

We also characterize completeness, in the class of locally quasi-convex metrizable groups, by means
of a property which we have called the quasi-convex compactness property, or briefly qcp (Section 3).
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Introduction

Let (E, r) be a topological vector space, j£?E the vector space of all continuous linear
forms defined on E, and o{±£E, E) the topology on J£E of pointwise convergence
on the elements of E, or weak* topology. Let us denote by rf (j£f E, E) the topology
on j£?E finest of all those which coincide with a(^E, E) on every equicontinuous
subset of Jzf E. (The superscript/ stands for finest. In the literature it is frequent to
call it just xf.)
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70 Montserrat Bruguera and Elena Martin-Peinador [2]

Many authors have been concerned with the question of when is xf (J£E, E) a
locally convex topology. The Banach-Dieudonne theorem provides a positive answer if
(£", T) is a metrizable locally convex space; for it states that, under these circumstances,
xf (J£E, E) coincides with the topology of uniform convergence on the precompact
subsets of E.

The topology xf was first introduced by Collins, who gave it the name of equicon-
tinuous weak* topology or ew*-topology. He proved that in general it fails to be
a locally convex topology, even if the starting space E is locally convex. Komura
gave an example where the ew*-topology fails to be a vector topology, [16]. Wheeler
generalized the latter seeing that for a topological vector space E with uncountable
dimensional dual .if E, the ew*-topology corresponding to the weak topology in E is
not a vector topology, [22]. Finally, Valdivia produced a device to obtain non-regular
ew*-topologies, [21].

The mentioned notions can be defined and studied in the context of topological
abelian groups, and this is precisely the topic of this paper. An appropriate framework
to develop them is within the theory of convergence spaces, since r^(j£f£, E) is
the topology 'associated' in a standard way to the continuous convergence structure
defined directly in S£E. Although this is the point of view adopted by Jarchow in
his extensive and deep book on locally convex spaces [15], we think our approach—
focused only on one problem—is more direct.

In the first section we state a few elementary ideas about convergence theory in
order to make the reading of the paper easier. The main result in the second section is
a version of the Banach-Dieudonne theorem for abelian topological groups; its proof
leans on the fact that the character group of an abelian metrizable group is a k-space.
This was proved independently by Chasco and AuBenhofer [9, 1]. In the third section
we give a characterization of completeness for locally quasi-convex metrizable groups,
which resembles some properties of Banach spaces studied by Mazur and by Krein
and Smulian. The last section deals with some links between topological abelian
groups and topological vector spaces, which allow to claim that the results previously
obtained are the natural generalizations of the theorems so well known for the class
of topological vector spaces.

1. The continuous convergence structure

Before defining the continuous convergence structure, we give the notion of a
convergence structure in general.

Let X be a set and suppose that to each x in X is associated a collection E(x) of
filters on X satisfying:

(i) The ultrafilter {A C X : x e A] is in E(x).
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[3] Banach-Dieudonne theorem revisited 71

(ii) If^" e 3 (x)and# e 3(x), then the filter &r\<# = {FUG : F e &, G e
also belongs to a(x).

(iii) I f«^e S ( x ) a n d ^ D i r t h e n c e E(x).

The family 3 of all filters 3(JC) for* in X is called a convergence structure for X, the
pair (X, 3) a convergence space and the filters & in 3 (;t) are called convergent to JC .
We write J*" -» x instead of J*" € 3(x) (see [12, 4]).

Every filter gives rise to a net in a standard way and conversely [13]. Thus, by
translating the above properties to the equivalent ones for nets, we could introduce a
convergence structure by specifying the convergent nets restricted to some axioms (for
more details see [5]). The family of all nets on a set cannot be directly considered to
form a set. In order to avoid this inconvenience, we will assume that nets are derived
from filters and use them freely, since intuition is more on the side of nets.

Every topology on a set X defines a convergence structure; the topology could be
recovered from previous knowledge of the convergent filters or nets. For a convergence
structure, restricted only to the above axioms (i)-(iii), there is an associated topology;
in fact, the 'convergence closed' subsets satisfy the axioms required to be the closed
sets of a topology. However this topology has more convergent filters than the 'a
priori' convergent ones. Topological notions, like continuity, compactness, being
Hausdorff, regularity, etc. also make sense for convergence spaces. The reader may
find a good survey in [4].

The continuous convergence structure is defined on the set of all continuous
functions between two convergence spaces, which in particular can be topological
spaces, as follows. Let X, Y be convergence spaces. A net of continuous functions
{fa)aeA C C(X, Y) is said to converge t o / e C(X, Y) in the continuous convergence
structure A (fa-+f) if for every net {xp}p€B in X convergent to JC, the combined
net {fa(xp)}(atp)eAxB converges to / (x ) in Y. Here the set A x B is directed by the
'product direction', that is, (a, fi) < (a', ft) if a <A a' and ft <B fi'. It can be
easily checked that the continuous convergence structure in C(X, Y) is the coarsest
convergence structure for which the evaluation mapping co : C(X, Y) x X —> Y,
defined by (f, x) —• / (JC), is continuous. It also makes sense for subsets of C(X, Y).

There is a standard way to define the topology associated to a convergence. In
particular, we describe the topology rA, associated to the continuous convergence
structure A, by the statement:

L c C(X, Y) is closed in rA if and only if
(*) A

for every net {fa} C L such that/a -> / it follows that/ e L.

A set satisfying (*) is also A-closed for the convergence theory; so, A and rA give
rise to the same closed sets. However, the convergent nets of rA only coincide with the
A-convergent nets when A derives from a topology, which in general is not the case.
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It is easy to check that /«—>•/ implies fa-+f • So it can be said that rA is a topology
coarser than A. In fact it is the finest topology among all those coarser than A.

We will be mainly concerned with the case when X is an abelian topological group,
and Y = T is the multiplicative group of complex numbers modulus one, endowed
with the euclidean topology. The homomorphisms from an abelian topological group
G into T are called characters; TG will denote the group of all continuous characters
(operation is defined pointwise). The dual group of G in the sense of Pontryagin is
TG endowed with the compact-open topology, rco; we call it just GA. The symbols
a (G, F G) and a (F G, G) stand for the topologies on G and on F G respectively, given
by uniform convergence on the elements of the second space in each pair.

The continuous convergence structure defined on F G gives rise to a convergence
group, from now on denoted by FCG and called the convergence dual of G. In fact,
it is straightforward to check that addition of elements and taking the inverse in F G
are A-continuous operations. The convergence dual of a topological group G is no
longer a topological group, unless G is locally compact.

2. The Banach-Dieudonne theorem for abelian topological groups

Let (G, r) be an abelian topological group. The finest topology on FG of all
those which induce cr(FG, G) in the equicontinuous subsets of FG will be called
the gew*-topology (g stands for 'group') or ^ ( F G , G). The result mentioned in
the title of this section will be obtained in two steps. First, we see that xf (FG, G)
coincides with the topology associated to the continuous convergence structure in FG
(Theorem 2.2). Next, we prove that in the class of almost metrizable groups, it is
precisely the compact-open topology (Theorem 2.5).

LEMMA 2.1. Let G be a topological group and {(pa, a e A} C FG a net whose
range is an equicontinuous subset. Then {<pa} converges to some cp € FG in A if and
only if it converges to cp in cr(FG, G).

PROOF. If <&,—•<? it is straightforward, without any conditions, that <pa
 a<JG'G). cp.

Conversely, let <pa
 CT(F ' ! cp. Take any net {JC ,̂ fi e B) in G such that xp —>• x. For

any W neighbourhood of 1 in T, we consider another one W such that W W c W.
Based on the equicontinuity condition, we determine V e JVG^S) with <pa( V) c W,
Wa e A. By the cr(FG, G)-convergence of {<pa}, there exists a0 € A such that
<pa(x) e (p(x)W' for a > a0. Pick now fi0 e B such that x? e x + V, V£ > /30.
Thus <pa(xg) e cpa(x + V) C <pa(x) W C <p(x) W, V(a, 0) > (a<>, A)); in other words,

A

<Pa(xp) -> <p(x) in T, which implies that <pa-+<p. •
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[5] Banach-Dieudonne theorem revisited 73

The following relationships hold among the indicated convergences in F G

If M c FG is equicontinuous, all of them coincide in M by Lemma 2.1; hence, the
continuous convergence structure on equicontinuous subsets of F G is topological.

A distinguished class of equicontinuous subsets of F G is the one formed by the
polars of the family ^c(O) of all neighbourhoods of zero. The polar of a subset
U c G is defined by

lT:=l(perG:<p(U)cT+},

where T+ := {JC e T : Re(x) > 0}, and Re stands for real part. Evidently {If :
U e <SYG(Q)} is a fundamental family of equicontinuous sets, which means that every
equicontinuous subset of F G is contained in one of those. Note that the sets If are
closed in a(FG, G).

We are ready to prove the following:

THEOREM 2.2. Let G be an abelian topological group. The topology associated to
the continuous convergence structure rA is the finest of all topologies on F G which
induce cr(FG, G) on all equicontinuous subsets ofTG.

PROOF. By Lemma 2.1 rA induces cr(FG, G) on all equicontinuous subsets of FG.
In order to prove that it is the finest topology with that property, we must check that

C C F G is closed in rA if and only if
(**) C fl M is closed in M with respect to rA|M, for every equicontinuous M.

Since rA is the topology associated to A, the proof can be reduced to show the
following: if C C FG satisfies (**), and {(pa}aeA C C is such that <pa-+(p, then
(p e C.

Let us consider the classical net of neighbourhoods of 0 in G. Its index set is
B := {p = (JC, U) e G x c/rG(0) : x e U), directed under (x, U) < (JC', U') if
and only if U' c {]. The net defined by 5(x,^ = x, converges to 0, and therefore
<Pa(Sp) -» 1. In particular, there exist a0 e A and /30 = (xQ, Uo) e B such that
(PaiSp) e T+, V(a, fi) > (a0, A))- This implies that <pa(U0) C T+, and, since {(pa)
converges pointwise to cp, also (p(U0) C T+. So, for a > ct0, (pa e 1%. Now U% is
an equicontinuous subset of FG such that (pa e C C\ U%, and (pa -> cp e L%. By the
condition (**) imposed on C, we obtain that <p e C. •

REMARK. In Theorem 2.2 the family of all equicontinuous subsets can be substi-
tuted by any fundamental family of equicontinuous sets.
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In [6] it is proved that the topology associated to the continuous convergence
structure in a dual group is not necessarily a group topology. After Theorem 2.2, we
conclude that the gew*-topology in F G is not in general a group topology. In order to
find conditions under which it is a group topology, as a first approach, we study when
it coincides with the compact-open topology. To this end we establish the following
lemma.

LEMMA 2.3. Let G be an abelian topological group, and let aG : G -» (GA)A

be the natural mapping (defined by occ(g)(x) = X(s) for every g e G and every
X € GA). The following assertions hold:

(a) If M C FG is equicontinuous and closed in A, then M is A-compact and
conversely.
(b) aG : G —> GAA is continuous if and only if any xco-compact subset ofTG is

equicontinuous.
(c) If otc is continuous, then the A-compact and the xco-compact subsets ofTG

coincide.

PROOF, (a) Assume M c TG is equicontinuous. Its closure in cr(FG, G), ~M°\ is
also equicontinuous, and by Ascoli's lemma it must be Tco-compact. Thus for every net
{<Pa}a€/i C M there is a convergent subnet, call it again (pa-^-(p € M .By Lemma 2.1,
<Pa^<P, and being M A-closed, cp e M. Therefore M is A-compact.

Conversely, let M be A-compact. If M were not equicontinuous, for some W e
c/^(l) and for every V e c/f^(O), there would exist an element <pv € M with
<Pv( V) <£ W. The net {<pv ' V e ./^(O)}, where the direction is the usual 2-relation,
does not have any A-convergent subnet (clearly, every <pv can be matched with an
element x v e V such that <pv(xv).& W). This contradicts the compactness of M in A.
(b) This is proved in [1, (5.10)].
(c) Take into account (a) and (b) and the Ascoli lemma stating that every equicontin-
uous closed subset of F G is rco-compact. E

PROPOSITION 2.4. Let G be an abelian topological group such that the natural
mapping aG : G -> GAA is continuous. The following are equivalent:

(a) TG is a k-space with respect to the compact-open topology.
(b) The compact-open topology on VG is the finest of all those topologies which

induce a(rG, G) on the equicontinuous subsets ofTG.
(c) The compact-open topology on FG coincides with the topology rA associated

to the continuous convergence structure.

PROOF. Observe that by Lemma 2.3 (b) the family of rco-compact subsets of TC
coincides with that of equicontinuous rco-closed subsets, and those form a fundamenta
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family of equicontinuous subsets. Thus, statement (a) means that the compact-open
topology in FG is the finest of all those which induce cr(FG, G) in the rco-compact
subsets of FG. So, the equivalence between (a) and (b) is proved. The equivalence
between (b) and (c) is obtained from Theorem 2.2. D

A natural question now is to find those abelian topological groups G whose dual
GA is a k-space. In [9] it is proved that if G is an abelian metrizable group, GA is
a k-space. The same assertion holds for the dual of an almost metrizable group [1,
(5.20)]. An abelian topological group G is almost metrizable if and only if it contains
a compact subgroup K such that G/K is metrizable. The class of almost metrizable
groups includes all abelian metrizable groups, all locally compact abelian groups, and
more generally, all Cech-complete abelian groups [1, (2.21)]. The above comments
together with Proposition 2.4 prove the following:

THEOREM 2.5. If G is an almost metrizable abelian topological group, then the
finest of all those topologies which induce cr(FG, G) on the equicontinuous subsets
ofFG coincides with the compact-open topology in F G and therefore it is a group
topology.

REMARK. The continuity of aG is implicitly required in Theorem 2.5. In fact, for
an almost metrizable group G, a c is already continuous [1, (5.21)]. The weaker
assumption of equality between the families of rco-compact and rA -compact subsets
of F G would also yield the equivalence of (a) and (b) in Proposition 2.4.

It may happen that aG be continuous and GA, endowed with the compact-open
topology, be not a k-space. In that case rA is the k-extension of rc"-CO"

For the sake of completeness we reproduce here the example of [6], which, ac-
cording to Theorem 2.2, proves that the gew*-topology may not be a group topology.
Furthermore, it shows that the gew*-topology for the product of two groups is not in
general the product of the corresponding gew*-topologies of the factors. In the vector
spaces context, it is known that the ew*-topology of a product E x F is the product of
the respective ew*-topologies if E is locally convex and F is finite-dimensional [22,
(3.3)].

EXAMPLE 1. Take G := IRW, a countable product of real lines with the Tychonoff
topology T and G' := o>IR C IR"* its direct sum endowed with r', the restriction of the
box topology of R™.

The groups G and G' are duals of each other [2, (14.11)]; that is, the following
identifications are valid GA = G' and G/A == G.

Since G is metrizable, by Theorem 2.5 the compact-open topology on G' coin-
cides with the topology xj (FG, G). On the other hand, since G is a k-space, by
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Proposition 2.4 the compact-open topology coincides with x'f (FG', G'). The product
group H := G x G' is selfdual, thus aw is a topological isomorphism, and r' x T
coincides with the corresponding compact-open topology for / / . In [2, (17.9)], it
is proved that H is not a k-space; again by Proposition 2.4, r ' x r is not equal to
(r x T'Y(G'X G, G x G').

REMARK. It remains open to characterize those groups G for which the gew* is
a group topology in TG. M. J. Chasco has informed us that, for such groups, the
corresponding gew*-topology may not coincide with the compact-open topology.

3. A property of Mazur-type for abelian topological groups

After [19], we will say that a locally convex space E has the convex compactness
property (shortly, ccp) if the closed circled convex hull of every compact subset K c E
is again compact. Mazur proved that a Banach space has the ccp; later, Krein and
Smulian proved that a Banach space endowed with its weak topology has the ccp. In
this line, it is proved in [19] the following:

'A metrizable locally convex space is complete
if and only if it has the ccp'

We shall extend statement (A) to the larger class of locally quasi-convex metrizable
groups. We recall first some definitions connected with quasi-convexity; observe that
all these concepts, as well as the names used, correspond to analogous notions in
locally convex spaces. A subset M of an abelian topological group G is quasi-convex
if for every x e G\M there exists a continuous character <p such that (p(M) c T+ and
<p(x) g T+. The quasi-convex hull Q(H) of a subset H c G is the intersection of
all quasi-convex subsets of G containing H. It can be easily checked that it coincides
with the bipolar

( # T :={x eG: <p(x) e T+, V<p e / /*}•

Observe that the quasi-convex hull of a subset of G depends only on FG. If v denotes
another group topology on G such that F(G, v) = FG, we will say that v is compatible
for the duality (G, FG) (see [10] for a detailed description of group dualities). The
quasi-convex subsets of G are cr(G, FG)-closed, therefore closed in the topology
of G, and also closed in any group topology compatible for the duality (G, FG).

An abelian Hausdorff topological group G is locally quasi-convex if the quasi-
convex neighbourhoods of zero constitute a basis for the zero-neighbourhoods. Further
information on locally quasi-convex groups is given in [2].
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[9] Banach-Dieudonne theorem revisited 77

We will say that an abelian topological group G has the quasi-convex compactness
property (qcp) if the quasi-convex hull of every compact subset of G is again compact.
Let us call a topological abelian group von Neumann complete if its closed precompact
subsets are compact. Evidently, any complete group is von Neumann complete. Next,
we establish some results related with the qcp.

PROPOSITION 3.1. Let G be a locally quasi-convex topological group. If G is von
Neumann complete, or if the natural mapping aG '. G —> GAA is onto, G has the qcp.

PROOF. Let K c Gbe compact. Then AT" is a zero neighbourhood in GA, and K**
is compact in GAA. Being G locally quasi-convex, aG : G —>• GAA is injective and
open onto its image [2, (14.3)], that is, a^1 : aG(G) —>• G is continuous. Therefore
(K*)* = a^iK** fl aG(G)) is precompact in G. On the other hand, it is <x(G, FG)-
closed, and consequently closed in G. By the von Neumann completeness of G, we
have that (AT>)< is compact.

Notice also that, if aG : G —• GAA is onto, by the above arguments aG
l is

a continuous mapping. Thus or̂ 1 (#""*) = (K")* is compact for every compact
K c G. •

PROPOSITION 3.2. Let G be a locally quasi-convex group. The quasi-convex hull
of every precompact subset of G is again precompact.

PROOF. Let us call G the completion of G, which is a locally quasi-convex group
[3]. By Proposition 3.1, G has the qcp. Denote by M a precompact subset of G. After
identification of G and the corresponding dense subgroup of G, we can claim that
QG{M) C QG(M) (the subscripts G, G indicate the group in which the quasi-convex
hull is to be taken). Now M is compact, and QG(M) is also compact. We obtain that
QG(M) is precompact taking into account that QG(M) C QG(M) = QG(M). •

PROPOSITION 3.3. Let G be an abelian topological group and let X\, r2 be locally
quasi-convex topologies on G, compatible for the duality (G, FG), and such that
l̂ < T2. If(G,T\) has the qcp, so does (G, r2).

PROOF. Take K c G r2-compact. In particular it is xx -compact, and by the
assumption, Q(K) is also ii-compact. Thus it is Ti-complete. In order to prove that
(Q(K), r2) is also complete, take a r2-Cauchy net [xa,a e A}. Since T! < r2, it
is ti-Cauchy, and therefore Z\-convergent to some x e G. By [10, (3.9 b))], there
exists a zero neighbourhood basis for r2 formed by <r(G, FG)-closed subsets, which
consequently are also X\ -closed. Take V symmetric in such a basis, and let a0 G A
be such that xa — xp e V for all a, ft > a0. Fixing f3 > aQ, and taking into account
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that V is Ti-closed, we have that x e xp + V. Since this holds for all P > a0, we
obtain that {xa, a 6 A} is eventually in x + V, and thus it converges to* in r2.

On the other hand, by Proposition 3.2, Q(K) is precompact in r2. So Q(K) is
r2-compact. •

PROPOSITION 3.4. Let G be an abelian topological group for which the natural
mapping a a is continuous. Then GA has the qcp.

PROOF. First we prove that the quasi-convex hull of an equicontinuous subset of F G
is again equicontinuous. Let M C FG be equicontinuous. There exists V e ^c(O)
such that M C V>. Now Q(M) = M™ C (V*)** = V*, which implies that Q(M) is
equicontinuous. Finally, by Lemma 2.3 (b), we obtain that GA has the qcp. •

COROLLARY 3.5. Every reflexive group G has the qcp.

Taking into account the ideas involved in Section 4, it is clear that the following
theorem is an extension of statement (A).

THEOREM 3.6. A locally quasi-convex metrizable group G is complete if and only
if the quasi-convex hull of every compact subset K C G is again compact (that is, if
G has the qcp).

PROOF. The direct implication holds even without the assumption of metrizability
(Proposition 3.1).

The converse implication can be derived from the following facts:

(1) For any abelian metrizable group G there exists a metrizable complete group G
which densely contains G.
(2) The compact-open topology for the dual of a complete or even of a von Neu-

mann complete, group H coincides with the topology of uniform convergence on the
precompact subsets of H.
(3) For any dense subgroup H of a metrizable topological group G, the dual mapping

of the inclusion is a topological isomorphism. Thus HA and GA can be algebraically
and topologically identified (See [9, 1]).
(4) If G is a metrizable abelian group and D c G a dense subspace, every neigh-

bourhood of zero V in GA contains the polar of an adequate null sequence in D, [1,
(4.3)].

Take a Cauchy sequence L := [xn : n e N} c G. Its range L is a precompact set in G,
thus V is a zero-neighbourhood in GA. By fact (4), there exists {an : n e N ) c Gwith
an -> 0 such that {an : n e M}" C L*. Now \an : n € N}** D L** D {xn : n e N}.
The set {an : n e N}>< is compact by the assumption, and, being metrizable, it is
also sequentially compact. This means that the Cauchy sequence {xn : n e N} has
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a subsequence convergent to some x e {an : n e M}*". Therefore, xn -> x and the
group G is complete. •

REMARK. If metrizability is dropped, the assertion of Theorem 3.6 does not hold in
general. The example given by Komura of a reflexive, non-complete topological vector
space E, considered as an abelian topological group, would suit as a counterexample.
The natural mapping aE '• E —• EAA is onto, therefore, by Proposition 3.1, E has
the qcp.

COROLLARY 3.7. The additive group of the rational numbers does not have the qcp.

Observe that a direct proof of the previous statement would entail tedious calcu-
lations of quasi-convex hulls. We point out that there are other totally inconnected
groups which do have the qcp. For instance, the additive group of integers, being the
dual group of T, by Proposition 3.4, has the qcp.

4. Topological vector spaces as abelian topological groups

Let E be a real topological vector space. If only addition is considered, E is an
abelian topological group. Let us call &CE the dual space of E endowed with the
continuous convergence structure. It is a convergence vector space in the natural
sense, and viewed as a group, J£CE is bicontinuously isomorphic to r c £ \ Let us
establish more precisely the parallelism between S£E and VE:

PROPOSITION 4.1. If E is a topological vector space, the exponential mapping
p : S£E -> YE defined by p(f)= exp(27r//"), satisfies the following assertions:

(a) p is an algebraic isomorphism.
(b) p : ££CE -> TCE is a bicontinuous isomorphism.
(c) p : (-£?£, r A )->(r£ ,T A )«f l topological homeomorphism.
(d) p : J?C0E —>• EA is a topological isomorphism.
(e) p : (-£?£, o(l£E, E)) —> (TE, a ( F £ , E)) is a continuous isomorphism, which

is not open (unless S£E = {0}).

PROOF. Observe that all isomorphisms mentioned are group-isomorphisms.
(a) and (d) are proved in [2, (2.3)].
(b) This is [8, Satz 1].
(c) The symbol rA has two different interpretations, but no confusion is likely. The
continuity of the natural identities j : TCE —• (TE, rA) and k : 3?CE -> (_£?£, rA),
together with (b) show that the mappings jp : &CE —> (TE, rA) and p~xk : FCE —>

, rA) are continuous. Now apply the following general principle whose proof
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is easy: A mapping / from a convergence space (X, S) into a topological space Y
is continuous if and only if it is continuous from X with the associated topology r2

into Y.
(e) The continuity is straightforward. If J?E ^ 0, p cannot be a topological iso-
morphism. In the simplest case of E = R, we can identify algebraically FU. and

with R. However (VR, o-(VR, R)) is a totally bounded subgroup of TR, while
, cr(Jif R, R)) can be topologically identified with the real line. •

It must also be stated that there is a 'good' correspondence between the equicon-
tinuous subsets of S£E and of VE; more precisely, from the next lemma we can
conclude that p carries a fundamental family of equicontinuous subsets of _£f E into a
fundamental family of equicontinuous subsets of VE.

In order to distinguish 'polar sets' in topological vector spaces from polars in
topological groups, for M C E let us denote by

M° :={f e JfE : \f (m)| < 1, Vm e M)

and by

:={x €E:\f(x)\<l,Vf € M°).

LEMMA 4.2. Let Ube a circledneighbourhood ojzero in E. Then p({AU)°) = If.
Furthermore, °(U°)

PROOF. This is Proposition 1.11 of [10]. •

Clearly by Lemma 4.1 (d), p considered as a mapping from (4U)° into U* is a
homeomorphism if both of them are endowed with the corresponding compact-open
topology, which in turn coincides with cr(JfE, E) and with a(FE, E) respectively.

By the above comments, p is a homeomorphism from («£f E, rf (-£?£, E)) into
(Ff1, xf (TE, £")), and the following claims are the transcriptions of Theorem 2.2 and
Theorem 2.5.

COROLLARY 4.3. Let E be a topological vector space. The topology associated to
the continuous convergence structure on J£E is the finest of all those which induce
cr(JifE, E) on the equicontinuous subsets of^f

COROLLARY 4.4. Let E be a metrizable topological vector space. The compact-
open topology on S£E is the finest of all those which induce cr(JifE, E) on the
equicontinuous subsets of

Corollary 4.4 is essentially the Banach-Dieudonne theorem. However in the vast
literature existing, as far as we know, it is only stated for locally convex spaces.
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In the previous section we defined the qcp, a property for groups 'parallel' to the
convex compactness property (ccp) for locally convex spaces. We check now that
both notions coincide in the realm of locally convex spaces.

Let E be a topological vector space and A c E a subset. Denote by e(A) and
co(e(A)) the circled and the convex circled hull of A, respectively.

PROPOSITION 4.5. A locally convex space E has the qcp if and only ifE has the ccp.

PROOF. If AT is a compact subset of E, it is easy to see that e(K) is also compact.
By the bipolar theorem, co(e(K)) = °(K°) = °((e(/O)°), and, being c(K) circled,
°((e(/O)°) = ((e(JQ)T = <2(e(/Q).

If E has the qcp, then co(e(K)) = Q(e(K)) is compact.
Conversely, if E has the ccp, the quasi-convex hull Q{K) c Q(e(K)) = co(e(K))

is a closed subset of a compact set; thus Q(K) is compact. D

COROLLARY 4.6. A complete locally convex space E equipped with the Bohr topol-
ogy o{E, EA) has the qcp.

PROOF. According to Krein theorem, the space E endowed with its weak topology
o(E, E*) has the ccp. By Proposition 4.5, it also has the qcp. The assertion follows
now from the fact that, the a(E, EA)-compact subsets of E are exactly the o{E, i n -
compact subsets [10]. •

REMARK. A subtle difference between locally convex spaces and locally quasi-
convex groups: For a locally convex space E, aE is onto if and only if E has the ccp
or, equivalently, if it has the qcp. However the group of all almost everywhere integer
valued functions G :— L\([0, 1]), with the topology as a subspace of L2([0, 1]), is a
complete metrizable locally quasi-convex group. By Proposition 3.1, G has the qcp;
however aG is not onto [1, (11.14)]. In this respect, it would be interesting to obtain
the result of the last corollary for locally quasi-convex groups.

REMARK. Although the definition of the associated topology rA is rather misty,
a geometric description of a zero-neighbourhood basis for the dual of a separable
Hilbert space is given in [18]. Since the original paper may be difficult to read, we
reproduce here the mentioned basis.

Denote by J4? a separable Hilbert space, by B^ a ball of radius r in a subspace
L(p) of codimension p and, for s > 0, N£(A) stands for the e-neighbourhood in
of a subset A c Jff. The sets of the form

oo
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(Pi) and (/•,•) being increasing sequences of natural and real numbers respectively,
such that r, —> oo and e, > 0, for every /, constitute a neighbourhood basis of zero
for the topology rA in Jff.
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