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Abstract
This work studies the average complexity of solving structured polynomial systems that are characterised by a
low evaluation cost, as opposed to the dense random model previously used. Firstly, we design a continuation
algorithm that computes, with high probability, an approximate zero of a polynomial system given only as black-
box evaluation program. Secondly, we introduce a universal model of random polynomial systems with prescribed
evaluation complexity L. Combining both, we show that we can compute an approximate zero of a random structured
polynomial system with n equations of degree at most 𝐷 in n variables with only poly(𝑛, 𝐷)𝐿 operations with high
probability. This exceeds the expectations implicit in Smale’s 17th problem.
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1. Introduction

Can we solve polynomial systems in polynomial time? This question received different answers in
different contexts. The NP-completeness of deciding the feasibility of a general polynomial system in
both Turing and BSS models of computation is certainly an important difficulty, but it does not preclude
efficient algorithms for computing all the zeros of a polynomial system or solving polynomial systems
with as many equations as variables, for which the feasibility over algebraically closed fields is granted
under genericity hypotheses. And indeed, there are several ways of computing all 𝐷𝑛 zeros of a generic
polynomial system of n equations of degree 𝐷 ą 1 in n variables with poly(𝐷𝑛) arithmetic operations
(e.g., [21, 30, 36]). Smale’s 17th problem [47] is a clear-cut formulation of the problem in a numerical
setting. It asks for an algorithm, with polynomial average complexity, for computing one approximate
zero of a given polynomial system, where the complexity is to be measured with respect to the dense
input size N, that is, the number of possible monomials in the input system. Recall that an approximate
zero of a polynomial system is a point from which Newton’s iteration converges doubly exponentially.
Smale’s question was given recently a positive answer after seminal work by [40–44], fundamental
contributions by [7, 8, 39], as well as our work [14, 28]. The basic algorithmic idea underlying all these
is continuation along linear paths. To find a zero of a system 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) of n polynomials in n
variables of degree at most 𝐷, we first construct another system G with a built-in zero 𝜁0 P C𝑛 and
consider the family 𝐹𝑡

.
= 𝑡𝐹 + (1 ´ 𝑡)𝐺 of polynomial systems. If G is generic enough, the zero 𝜁0 of G

extends as a continuous family (𝜁𝑡 ) with 𝐹𝑡 (𝜁𝑡 ) = 0, so that 𝜁1 is a zero of F. It is possible to compute an
approximation of 𝜁1 by tracking 𝜁𝑡 in finitely many steps. From the perspective of complexity analysis,
the focal points are the choice of (𝐺, 𝜁0) and the estimation of the number of steps necessary for a correct
approximation of 𝜁1 (the cost of each step being not an issue as it is 𝑂 (𝑁)). The problem of choosing
an initial pair (𝐺, 𝜁0) was for a long while a major obstacle in complexity analysis. It was solved by
[7], who introduced an algorithm to sample a random polynomial system G together with a zero 𝜁0 of
it and provided a poly(𝑛, 𝐷)𝑁2 bound for the average number of steps in the numerical continuation
starting from (𝐺, 𝜁0). This idea was followed in subsequent works, with occasional cost improvements
that decreased the exponent in N for the average number of steps. Note that for a system of n polynomial
equations of degree 𝐷 in n variables, 𝑁 = 𝑛

(𝐷+𝑛
𝑛

)
, and, therefore, 𝑁 � 2min(𝐷,𝑛) . Regarding Smale’s

question, an 𝑁𝑂 (1) bound on this number is satisfactory, but the question was posed, how much can the
exponent in this bound be reduced?

1.1. Rigid continuation paths

The first part of this work [29]1 gave an answer. It introduced continuation along rigid paths: the systems
𝐹𝑡 have the form 𝐹𝑡

.
= ( 𝑓1 ˝ 𝑢1(𝑡), . . . , 𝑓𝑛 ˝ 𝑢𝑛 (𝑡)), where the 𝑢𝑖 (𝑡) P 𝑈 (𝑛 + 1) are unitary matrices

that depend continuously on the parameter t, while 𝑓1, . . . , 𝑓𝑛 are fixed homogeneous polynomials.
Compared to the previous setting, the natural parameter space for the continuation is not any more the
full space of all polynomial systems of a given degree pattern but rather the group 𝑈 (𝑛 + 1)𝑛, denoted
U . We developed analogues of Beltrán and Pardo’s [8] results for rigid paths. Building on this, we could
prove a poly(𝑛, 𝐷) bound on the average number of continuation steps required to compute one zero of a
Kostlan random polynomial system,2 yielding a 𝑁1+𝑜 (1) total complexity bound. This is the culmination

1Hereafter referred to as ‘Part I’.
2A Kostlan random polynomial system is a dense polynomial system where all coefficients are independent Gaussian complex

random variables with an appropriate scaling, see I§4.
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Table 1. Comparison of previous complexity analysis of numerical continuation algorithms for solving systems of n polynomial
equations of degree 𝐷 in n variables. The parameter 𝑁 = 𝑛

(𝑛+𝐷
𝑛

)
is the dense input size. The parameter 𝜎 is the standard deviation

for a noncentred distribution, in the context of smoothed analysis. Some results are not effective in that they do not lead to a complete
algorithm to solve polynomial systems..

Distribution E[#steps] E[total cost]

[44] Kostlan essentially poly(𝐷𝑛) not effective
[43] Kostlan poly(𝑛, 𝐷)𝑁 3 not effective
[7] Kostlan poly(𝑛, 𝐷)𝑁 2 poly(𝑛, 𝐷)𝑁 3

[9] Kostlan poly(𝑛, 𝐷) not effective
[8] Kostlan poly(𝑛, 𝐷)𝑁 poly(𝑛, 𝐷)𝑁 2

[14] noncentred poly(𝑛, 𝐷)𝑁 /𝜎 poly(𝑛, 𝐷)𝑁 2/𝜎

[1] Kostlan poly(𝑛, 𝐷)𝑁
1
2 poly(𝑛, 𝐷)𝑁

3
2

[29] Kostlan poly(𝑛, 𝐷) poly(𝑛, 𝐷)𝑁

of several results in this direction, which improved the average analysis number of continuation steps
(see Table 1) for solving random dense polynomial systems.

1.2. Refinement of Smale’s question

What is at stake beyond Smale’s question is the understanding of numerical continuation as it happens
in practice with a heuristic computation of the step lengths.3 Experiments have shown that certified
algorithms in the Shub-Smale line perform much smaller steps—and consequently many more steps—
than heuristic methods for numerical continuation [4, 5]. In spite of progress in designing better and
better heuristics (e.g., [48, 49]), the design of efficient algorithms for certified numerical continuation
remains an important aspiration. With a view on closing the gap between rigorous step-length estimates
and heuristics, a first observation—demonstrated experimentally by [23] and confirmed theoretically
in Part I—highlights the role of higher-order derivatives. Shub and Smale’s first-order step-length
computation seems powerless in obtaining poly(𝑛, 𝐷) bounds on the number of steps: we need to get
closer to Smale’s 𝛾 to compute adequate step lengths. Smale’s 𝛾 can be seen as a measure of condition
for a system F. It captures some, but not all, of the properties of F captured by its classic condition
number 𝜇. In exchange, its expectation for random systems is smaller (see Section 2 for a more detailed
discussion).

However, estimating the higher-order derivatives occurring in 𝛾 is expensive. Thus, while using 𝛾
improves the average number of steps, it introduces a burden in the step-length computation. In Part I,
we obtained a poly(𝑛, 𝐷)𝑁 complexity bound for estimating the variant �̂�Frob of 𝛾 (Proposition I.32)
which, we showed, can be used to estimate step lengths. This cost is quasilinear with respect to the input
size, we can hardly do better. But is N the right parameter to measure complexity? From a practical
point of view, N is not so much relevant. Often N is much larger than the number of coefficients that
actually define the input system, for example, when the system is sparse or structured. This observation
is turned to practical account by treating the input system not as a linear combination of monomials
but as a black-box evaluation function, that is, as a routine that computes the value of the components
of the system at any given point. Most implementations of numerical continuation do this. In this
perspective, N does not play any role, and there is a need for adapting to this setting the computation
of 𝛾. Designing algorithms for black-box inputs and analysing their complexity for dense Gaussian
random polynomial systems is interesting but misses an important point. The evaluation complexity of
a random dense polynomial system is Θ(𝑁), whereas the benefit of considering a black-box input is
precisely to investigate systems with much lower evaluation complexity, and such systems have measure

3To heuristically determine a step length that is as large as possible, the principle is to try some step length and check if
Newton’s iteration seems to converge. Upon failure, the step length is reduced, and it is increased otherwise. Of course, this may
go wrong in many ways.
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zero in the space of all polynomial systems. It is conceivable, even from the restricted perspective
of numerical polynomial system solving, that intrinsically, polynomial systems with low evaluation
complexity behave in a different way than random dense polynomial systems. So Smale’s original
question of solving polynomial systems in polynomial time leads to the following refined question:

Can we compute an approximate zero of a structured polynomial system F given by black-box
evaluation functions with poly(𝑛, 𝐷) many arithmetic operations and evaluations of F on average?

We use algebraic branching programs (ABPs), a widely studied concept in algebraic complexity
theory (see Section 1.8), as a model of computation for polynomials with low evaluation complexity.
Further, we introduce a natural model of Gaussian random algebraic branching programs in order to
capture the aspect of randomisation. The main result of this paper is an affirmative answer to the above
refined question in this model.

1.3. Polynomial systems given by black-box evaluation

The model of computation is the BSS model, extended with rational exponentiation for convenience and
a ‘6th type of node’, as introduced by [44], that computes an exact zero in the complex projective line
P

1 of a bivariate homogeneous polynomial given an approximate zero (this is used in the sampling step)
(see Part I, Section 4.3.1 for a discussion). The term ‘black-box’ refers to a mode of computation with
polynomials where we assume only the ability to evaluate them at a complex point. Concretely, the poly-
nomials are represented by programs, or BSS machines. For a black-box polynomial 𝑓 P C[𝑧1, . . . , 𝑧𝑛],
we denote by 𝐿( 𝑓 ) the number of operations performed by the program representing f to evaluate f at
a point in C𝑛. For a polynomial system 𝐹 = ( 𝑓1, . . . , 𝑓𝑛), we write 𝐿(𝐹) .

= 𝐿( 𝑓1) + ¨ ¨ ¨ + 𝐿( 𝑓𝑛). It is
possible that evaluating F costs less than evaluating its components separately, as some computations
may be shared, but we cannot save more than a factor n, so we ignore the issue. More generally, in this
article, we will not enter the details of the poly(𝑛, 𝐷) factors. The ability to evaluate first-order deriva-
tives will also be used. For a univariate polynomial f of degree at most 𝐷, the derivative at 0 can be
computed from evaluations using the formula

𝑓 1 (0) =
1

𝐷 + 1

𝐷∑
𝑖=0

𝜔´𝑖 𝑓 (𝜔𝑖), (1.1)

where 𝜔 P C is a primitive (𝐷 + 1)th root of unity. Similar formulas hold for multivariate polynomials.
In practice, automatic differentiation (e.g., [2]) may be used. In any case, we can evaluate the Jacobian
matrix of a black-box polynomial system F with poly(𝑛, 𝐷)𝐿(𝐹) operations. Since this is below the
resolution that we chose, we do not make specific assumptions on the evaluation complexity of the
Jacobian matrix. Moreover, the degree of a black-box polynomial can be computed with probability 1
in the BSS model by evaluation and interpolation along a line4, so there is no need for the degree to be
specified separately.

1.4. The 𝚪( 𝒇 ) number

Beyond the evaluation complexity 𝐿(𝐹), the hardness of computing a zero of F in our setting depends
on an averaged 𝛾 number. For a polynomial 𝑓 P C[𝑧0, . . . , 𝑧𝑛], we define

𝛾( 𝑓 , 𝑧)
.
= sup

𝑘�2

(
‖d𝑧 𝑓 ‖´1�

�

1
𝑘! d𝑘𝑧 𝑓

�

�

) 1
𝑘´1

, (1.2)

4If the values of a univariate polynomial f at 𝑑 + 2 independent Gaussian random points coincide with the values of a degree
at most d polynomial at the same points, then f has degree at most d with probability 1, so we can compute, in the BSS model,
the degree of a black-box univariate polynomial. Furthermore, the degree of a multivariate polynomial F is equal to the degree of
the univariate polynomial obtained by restricting F on a uniformly distributed line passing through the origin, with probability 1.
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where the triple norm ~𝐴~ of a k-multilinear map A is defined as sup ‖𝐴(𝑧1 ,...,𝑧𝑘 ) ‖
‖𝑧1 ‖¨¨¨‖𝑧𝑘 ‖

. We note that this
definition coincides with the one in [44] and [16, §4] since we deal here with a single polynomial, not
a system (see Section 2.3 for the relations between different definitions of 𝛾).

If f is homogeneous and [𝑧] P P𝑛 is a projective point, we define 𝛾( 𝑓 , [𝑧]) .
= 𝛾( 𝑓 , 𝑧), for some

representative 𝑧 P S(C𝑛+1). The definition does not depend on the representative. By Lemma I.11
(in Part I), 𝛾( 𝑓 , 𝑧) ě

1
2 (𝐷 ´ 1) if f is homogeneous of degree 𝐷, and 𝛾( 𝑓 , 𝑧) = 0 if 𝐷 = 1. For

computational purposes, we prefer the Frobenius 𝛾 number introduced in Part I:

𝛾Frob ( 𝑓 , 𝑧)
.
= sup

𝑘�2

(
‖d𝑧 𝑓 ‖´1 �� 1

𝑘! d𝑘𝑧 𝑓
��

Frob

) 1
𝑘´1

, (1.3)

where ‖ ´ ‖Frob is the Frobenius norm of a multilinear map (see I, Section 4.2). The two variants are
tightly related (Lemma I.29):

𝛾( 𝑓 , 𝑧) � 𝛾Frob ( 𝑓 , 𝑧) � (𝑛 + 1)𝛾( 𝑓 , 𝑧). (1.4)

We will not need to here define, or use, the 𝛾 number of a polynomial system. For a homogeneous
polynomial 𝑓 P C[𝑧0, . . . , 𝑧𝑛] of degree 𝐷 ě 2, we define the averaged 𝛾 number as

Γ( 𝑓 )
.
=E𝜁

[
𝛾Frob ( 𝑓 , 𝜁)

2] 1
2 P [ 1

2 ,8], (1.5)

where 𝜁 is a uniformly distributed zero of f in P𝑛. Recall that P𝑛 has a unique (up to scaling) Riemannian
metric that is invariant under the action of the unitary group 𝑈 (𝑛 + 1): it is the Fubini–Study metric. It
induces, by restriction, a Riemannian metric on the zero set of f (minus the singular points, if any). This
Riemannian metric induces, in turn, a measure on the zero set of f with finite total volume, which makes
the uniform distribution well-defined (for more details, see [22, pp. 27ff]). As shown in Corollary I.9,
this distribution can also be obtained by sampling a uniformly distributed line L in P𝑛 and then sampling
a uniformly distributed point in 𝑉 ( 𝑓 ) X 𝐿 (which is a finite set with probability one).

For a homogeneous polynomial system 𝐹 = ( 𝑓1, . . . , 𝑓𝑛), we define

Γ(𝐹)
.
=

(
Γ( 𝑓1)

2 + ¨ ¨ ¨ + Γ( 𝑓𝑛)
2
) 1

2
�

𝑛∑
𝑖=1

Γ( 𝑓𝑖). (1.6)

While 𝐿(𝐹) reflects an algebraic structure, Γ(𝐹) reflects a numerical aspect. In the generic case, where
all the 𝑓𝑖 have only regular zeros, Γ(𝐹) is finite (see Remark 2.1).

Let 𝑑1, . . . , 𝑑𝑛 be integers � 2, and let H be the space of homogeneous polynomial systems
( 𝑓1, . . . , 𝑓𝑛) with 𝑓𝑖 P C[𝑧0, . . . , 𝑧𝑛] homogeneous of degree 𝑑𝑖 . Let 𝐷 .

= max𝑖 𝑑𝑖 . Let U be the group
𝑈 (𝑛 + 1)𝑛 made of n copies of the group of unitary matrices of size 𝑛 + 1. For u = (𝑢1, . . . , 𝑢𝑛) P U and
𝐹 = ( 𝑓1, . . . , 𝑓𝑛) P H, we define the action

u ¨ 𝐹 =
(
𝑓1 ˝ 𝑢´1

1 , . . . , 𝑓𝑛 ˝ 𝑢´1
𝑛

)
. (1.7)

It plays a major role in the setting of rigid continuation paths. Note that Γ is unitarily invariant:
Γ(u ¨ 𝐹) = Γ(𝐹) for any u P U . Concerning L, we have 𝐿(u ¨ 𝐹) � 𝐿(𝐹) + 𝑂 (𝑛3), using (1.7) as a
formula to evaluate u ¨ 𝐹 (note that the matrices 𝑢𝑖 are unitary, so the inverse is simply the Hermitian
transpose).

1.5. Main results I

In our first main result, we design the randomised Algorithm BoostBlackBoxSolve in the setting
of rigid continuation paths (see Section 4.3) for computing with high probability an approximate zero
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of a black-box polynomial system F. We say that 𝑧 P P𝑛 is an approximate zero of a homogeneous
polynomial system F, if there is a zero 𝜁 P P𝑛 of F, such that for any 𝑘 � 0,

𝑑P

(
N 𝑘

𝐹 (𝑧), 𝜁
)
� 21´2𝑘 𝑑P(𝑧, 𝜁),

where 𝑑P is the geodesic distance in P𝑛 and N𝐹 the projective Newton iteration [15, §16.6].

Theorem 1.1 (Termination and correctness). Let 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) be a homogeneous polynomial system
with only regular zeros. On input F, given as a black-box evaluation program, and 𝜀 ą 0, Algorithm
BoostBlackBoxSolve terminates almost surely and computes a point 𝑧˚ P P𝑛, which is an approximate
zero of F with probability at least 1 ´ 𝜀.

Algorithm BoostBlackBoxSolve is a randomised algorithm of Monte Carlo type: the output is only
correct with given probability. Nonetheless, this probability is bounded below, independently of F. This
is in strong contrast with, for example, the main result of [44], where the probability of success is relative
to the randomness of the input: on some set of input of measure 1 ´ 𝜀, their algorithm always succeeds,
while on the complement, it always fails. The algorithm presented here succeeds with probability at least
1 ´ 𝜀 for any input with regular zeros (it may not terminate if this regularity hypothesis is not satisfied).

Let costBBBS(𝐹, 𝜀) be the number of operations performed by Algorithm BoostBlackBoxSolve on
input F and 𝜀. This is a random variable because the algorithm is randomised. As in many previous works,
we are unable to bound precisely costBBBS (𝐹, 𝜀), or its expectation over the internal randomisation for
a fixed F. Instead, we introduce a randomisation of the input polynomial system F. So we consider
a random input H and study instead the expectation of costBBBS(𝐻, 𝜀) over both H and the internal
randomisation. The randomisation that we introduce is a random unitary change of variable on each
equation of F. In other words, we consider 𝐻 = u ¨ 𝐹 for a random uniformly distributed u P U . Since
U is a compact group, the uniform distribution is characterised as the unique probability measure on U
which is invariant under left multiplication: the Haar measure. We say that a system 𝐹 = ( 𝑓1, . . . , 𝑓𝑛)
is square-free if 𝑓1, . . . , 𝑓𝑛 are square-free nonzero polynomials. Importantly, this implies that with
probability 1, u ¨ 𝐹 has only regular zeros when u P U is uniformly distributed.

Theorem 1.2 (Complexity analysis). Let 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) be a square-free homogeneous polynomial
system with degrees at most 𝐷 in 𝑛 + 1 variables. Let u P U be uniformly distributed, and let 𝐻 = u ¨ 𝐹.
On input H, given as a black-box evaluation program, and 𝜀 ą 0, Algorithm BoostBlackBoxSolve
terminates after

poly(𝑛, 𝐷) ¨ 𝐿(𝐹) ¨

(
Γ(𝐹) log Γ(𝐹) + log log 𝜀´1

)
operations on average. ‘On average’ refers to expectation with respect to both the random draws made
by the algorithm and the random variable u, but F is fixed.

In addition to the foundations laid in Part I, the main underlying tool is a Monte Carlo method for
estimating Smale’s 𝛾 number: with poly(𝑛, 𝐷) log 1

𝜀 evaluations of f, we can estimate 𝛾( 𝑓 , 𝑧) within a
factor poly(𝑛, 𝐷) with probability at least 1 ´ 𝜀 (see Theorem 3.3). This turns both the computation
of the step length and the whole zero-finding process into Monte Carlo algorithms themselves and, as
a consequence, BoostBlackBoxSolve departs from the simple structure of continuation algorithms
described above. During execution, BoostBlackBoxSolve draws real numbers from the standard
Gaussian distribution to compute the initial pair (𝐺, 𝜁) and estimate various 𝛾Frob. The average cost
in Theorem 1.2 is considered with respect to both this inner randomisation of the algorithm and the
randomness of the input u (or F in Corollary 1.3 below).

BoostBlackBoxSolve actually performs the continuation procedure several times, possibly with
different initial pairs, as well as a validation routine that drastically decreases the probability that the
returned point is not an approximate zero of F. Its complexity analysis reflects this more complicated
structure.
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In contrast with many previous works, BoostBlackBoxSolve does not always succeed: its result
can be wrong with a small given probability 𝜀, but the doubly logarithmic dependence of the complexity
with respect to 𝜀 is satisfactory. We do not know if it is optimal, but it seems difficult, in the black-box
model, to obtain an algorithm with similar complexity bounds, but that succeeds (i.e. returns a certified
approximate zero) with probability one: to the best of our knowledge, all algorithms for certifying
zeros need some global information—be it the Weyl norm of the system [24], evaluation in interval
arithmetic [38] or Smale’s 𝛼 number involving all higher derivatives—which we cannot estimate with
probability 1 in the black-box model with only poly(𝑛, 𝐷) evaluations. So unless we add an ad hoc
hypothesis (such as a bound on the coefficients in the monomial basis), we do not know how to certify
an approximate zero in the black-box model.

Theorem 1.2 can be interpreted as an average analysis on an orbit of the action of U on H. More
generally, we may assume a random input 𝐹 P H where the distribution of F is unitarily invariant,
meaning that for any u P U , u ¨𝐹 and F have the same distribution. This leads to the following statement.

Corollary 1.3. Let 𝐹 P H be a random polynomial system, which is almost surely square-free, with
unitarily invariant distribution. Let L be an upper bound on 𝐿(𝐹), and put Γ = E[Γ(𝐹)2]

1
2 . On input

F (given as a black-box evaluation program) and 𝜀 ą 0, Algorithm BoostBlackBoxSolve terminates
after

poly(𝑛, 𝐷) ¨ 𝐿 ¨

(
Γ log Γ + log log 𝜀´1

)
operations on average.

The quantity Γ(𝐹) strongly influences the average complexity in Theorem 1.2 and Corollary 1.3,
and while it is natural to expect the complexity to depend on numerical aspects of F, it is desirable to
quantify this dependence by studying random distributions of F [46]. It was shown in Part I that if 𝐹 P H
is a Kostlan random polynomial system, then E[Γ(𝐹)2] = poly(𝑛, 𝐷) (Lemma I.38). Together with the
standard bound 𝐿(𝐹) = 𝑂 (𝑁) (see [13, Exercise 21.9(1)]), we immediately obtain from Corollary 1.3
the following complexity analysis, similar to the main result of Part I (Theorem I.40) but assuming only
a black-box representation of the input polynomial system.

Corollary 1.4. Let 𝐹 P H be a Kostlan random polynomial system. On input F and 𝜀 ą 0, Algorithm
BoostBlackBoxSolve terminates after poly(𝑛, 𝐷) ¨ 𝑁 ¨ log log 𝜀´1 operations and evaluations of F
on average.

Our second main result (Theorem 1.5 below) states that exact same bound for polynomial systems
given by independent Gaussian random algebraic branching programs. We next introduce this model.

1.6. Algebraic branching programs

Following [32], an ABP of degree 𝐷 is a labeled directed acyclic graph with one source and one sink,
with a partition of the vertices into levels, numbered from 0 to 𝐷, such that each edge goes from level i
to level 𝑖 +1. The source is the only vertex at level 0, and the sink is the only vertex at level 𝐷. Each edge
is labelled with a homogeneous linear form in the input variables 𝑧0, . . . , 𝑧𝑛. The weight of a directed
path is defined as the product of the labels of its edges. By definition, an ABP computes the polynomial
obtained as the sum of the weights over all paths from the source to the sink. It is a homogeneous
polynomial of degree 𝐷. The width r of the ABP is the maximum of the cardinalities of the level sets.
The size s of the ABP, which is defined as the number of its vertices, satisfies 𝑟 ď 𝑠 ď (𝐷 ´ 1)𝑟 + 2.
Any homogeneous polynomial f can be computed by an ABP, and the minimum size or width of an
ABP computing f are important measures of the complexity of f (see Section 1.8).

While ABPs provide an elegant graphical way of formalising computations with polynomials, we
will use an equivalent matrix formulation. Suppose that the ith level set has 𝑟𝑖 vertices and let 𝐴𝑖 (𝑧)
denote the weighted adjacency matrix of format 𝑟𝑖´1 ˆ 𝑟𝑖 , whose entries are the labels of the edges
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between vertices of level 𝑖 ´ 1 and level i. Thus, the entries of 𝐴𝑖 (𝑧) are linear forms in the variables
𝑧0, . . . , 𝑧𝑛. The polynomial 𝑓 (𝑧) computed by the ABP can then be expressed as the trace of iterated
matrix multiplication, namely,

𝑓 (𝑧) = tr (𝐴1 (𝑧) ¨ ¨ ¨ 𝐴𝐷 (𝑧)) . (1.8)

Indeed, after expanding the matrix product, we see that the right-hand side is nothing but the sum of the
weights of all paths in the directed graph from the source to the sink.

It is convenient to relax the assumption 𝑟0 = 𝑟𝐷 = 1 to 𝑟0 = 𝑟𝐷 . Compared to the description in
terms of ABPs, this adds some flexibility because the trace is invariant under cyclic permutation of the
matrices 𝐴𝑖 (𝑧).

Using the associativity of matrix multiplication, we can evaluate 𝑓 (𝑧) efficiently by iterated matrix
multiplication with a total of 𝑂 (𝐷𝑟2 (𝑛 + 𝑟)) arithmetic operations. Indeed, each of the at most 𝐷𝑟2

entries of the matrices is a linear form in the variables 𝑧0, . . . , 𝑧𝑛, and thus, these entries can be evaluated
with a total of 𝑂 (𝐷𝑟2𝑛) operations. Then it remains to perform r matrix multiplications, which amount
to additional 𝑂 (𝐷𝑟3) operations.

1.7. Main results II

Given positive integers 𝑟1, . . . , 𝑟𝐷´1, we can form a random ABP (that we call Gaussian random ABP)
of degree 𝐷 by considering a directed acyclic graph with 𝑟𝑖 vertices in the layer i (for 1 � 𝑖 � 𝐷 ´ 1),
one vertex in the layers 0 and 𝐷 and all possible edges from a layer to the next, labelled by linear
forms in 𝑧0 . . . , 𝑧𝑛 with independent and identically distributed complex Gaussian coefficients. This is
equivalent to assuming that the adjacency matrices are linear forms 𝐴𝑖 (𝑧) = 𝐴𝑖0𝑧0 + ¨ ¨ ¨ + 𝐴𝑖𝑛𝑧𝑛 with
independent complex standard Gaussian matrices 𝐴𝑖 𝑗 P C𝑟𝑖´1ˆ𝑟𝑖 .

We call a Gaussian random ABP irreducible if all layers (except the first and the last) have at
least two vertices. The polynomial computed by an irreducible Gaussian random ABP is almost surely
irreducible (Lemma 5.1), and conversely, the polynomial computed by a Gaussian random ABP that is
not irreducible is not irreducible; which justifies the naming.

Recall the numerical parameter Γ entering the complexity of numerical continuation in the rigid
setting (see (1.5) and Theorem 1.2). The second main result in this article is an upper bound on the
expectation of Γ( 𝑓 ), when f is computed by a Gaussian random ABP. Remarkably, the bound does not
depend on the sizes 𝑟𝑖 of the layers defining the Gaussian random ABP, in particular, it is independent
of its width!

Theorem 1.5. If f is the random polynomial computed by an irreducible Gaussian random ABP of
degree 𝐷, then

E
[
Γ( 𝑓 )2] � 3

4𝐷
3 (𝐷 + 𝑛) log𝐷.

The distribution of the polynomial computed by a Gaussian random ABP is unitarily invariant so,
as a consequence of Corollary 1.3, we obtain polynomial complexity bounds for solving polynomial
systems made of Gaussian random ABPs.

Corollary 1.6. If 𝑓1, . . . , 𝑓𝑛 are independent irreducible Gaussian random ABPs of degree at most 𝐷
and evaluation complexity at most L, then BoostBlackBoxSolve, on input 𝑓1, . . . , 𝑓𝑛 and 𝜀 ą 0,
terminates after

poly(𝑛, 𝐷) ¨ 𝐿 ¨ log log 𝜀´1

operations on average.

This result provides an answer to the refined Smale’s problem raised at the end of Section 1.2, where
‘structured’ is interpreted as ‘low evaluation complexity in the ABP model’.
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The polynomial systems computed by ABPs of width r form a zero measure subset of H when n and
𝐷 are large enough. More precisely, they form a subvariety of H of dimension at most 𝑟2𝐷𝑛, while the
dimension of H grows superpolynomially with n and 𝐷. Note also that a polynomial f computed by a
Gaussian random ABP may be almost surely singular (in the sense that the projective hypersurface that
it defines is singular) (see Lemma 5.2). This strongly contrasts with previously considered stochastic
models of polynomial systems.

Lastly, it would be interesting to describe the limiting distribution of the polynomial computed by a
Gaussian random ABP as the size of the layers goes to infinity. Since this question is out of the scope
of this article, we leave it open.

1.8. On the role of algebraic branching programs

To motivate our choice of the model of ABPs, we point out here their important role in algebraic
complexity theory, notably in Valiant’s algebraic framework of NP-completeness ([51, 52]; see also [11]).
This model features the complexity class VBP, which models efficiently computable polynomials as
sequences of multivariate complex polynomials 𝑓𝑛, where the degree of 𝑓𝑛 is polynomially bounded
in n and the homogenisation of 𝑓𝑛 can be computed by an ABP of width polynomially bounded in n.
It is known [31, 50] that the sequence of determinants of generic 𝑛 ˆ 𝑛 matrices is complete for the
class VBP: this means the determinants have efficient computations in this model, and, moreover, any
( 𝑓𝑛) P VBP can be tightly reduced to a sequence of determinants in the sense that 𝑓𝑛 can be written as
the determinant of a matrix, whose entries are affine linear forms, and such that the size of the matrix is
polynomially bounded in n. The related complexity class VP consists of the sequences of multivariate
complex polynomials 𝑓𝑛, such that the degree of 𝑓𝑛 grows at most polynomially in n and such that
𝑓𝑛 can be computed by an arithmetic circuit (equivalently, straight-line program) of size polynomially
bounded in n. While it is clear that VBP Ď VP, it is a longstanding open question whether equality
holds. However, after relaxing ‘polynomially bounded’ to ‘quasi-polynomially bounded’5, the classes
collapse (e.g., see [31]). These results should make clear the relevance and universality of the model of
ABPs. Moreover, [51] defined another natural complexity class VNP, formalising efficiently definable
polynomials for which the sequence of permanents of generic matrices is complete. Valiant’s conjecture
VBP ≠ VNP is a version of the famous P ≠ NP conjecture.

1.9. Organisation of paper

In Section 2, we first recall the basics of the complexity analysis of numerical continuation algorithms
and summarise the results obtained in Part I. Section 3 is devoted to numerical continuation algorithms
when the functions are given by a black-box. We introduce, here, a sampling algorithm to estimate 𝛾Frob
with high probability in this setting. Section 4 is devoted to the complexity analysis of the new algorithm
on input u ¨ 𝐹 with random u. In particular, in Section 4.3, we consider the problem of certifying an
approximate zero in the black-box model, and we prove Theorem 1.2. Finally, Section 5 presents the
proof of Theorem 1.5, our second main result.

2. Numerical continuation with few steps

2.1. The classical setting

Numerical continuation algorithms have been so far the main tool for the complexity analysis of
numerical solving of polynomial systems. We present, here, the main line of the theory as developed by
[3, 7, 8, 40, 41, 43, 44]. The general idea to solve a polynomial system 𝐹 P H consists of embedding F
in a one-parameter continuous family (𝐹𝑡 )𝑡P[0,1] of polynomial systems, such that 𝐹1 = 𝐹 and a zero of

5Quasipolynomially bounded in n means bounded by 2(log𝑛)𝑐 for some constant c.
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𝐹0, say, 𝜁0 P P𝑛, is known. Then, starting from 𝑡 = 0 and 𝑧 = 𝜁0, t and z are updated to track a zero of
𝐹𝑡 all along the path from 𝐹0 to 𝐹1, as follows:

while 𝑡 ă 1 do 𝑡 Ð 𝑡 + Δ𝑡; 𝑧 Ð Newton(𝐹𝑡 , 𝑧) end while,
where Δ𝑡 needs to be defined. The idea is that z always stays close to 𝜁𝑡 , the zero of 𝐹𝑡 obtained by
continuing 𝜁0. To ensure correctness, the increment Δ𝑡 should be chosen small enough. But the bigger
Δ𝑡 is, the fewer iterations will be necessary, meaning a better complexity. The size of Δ𝑡 is typically
controlled with, on the one hand, effective bounds on the variations of the zeros of 𝐹𝑡 as t changes,
and on the other hand, effective bounds on the convergence of Newton’s iteration. The general principle
to determine Δ𝑡 is the following, in very rough terms because a precise argument generally involves
lengthy computations. The increment Δ𝑡 should be small enough so that 𝜁𝑡 is in the basin of attraction
around 𝜁𝑡+Δ𝑡 of Newton’s iteration for 𝐹𝑡+Δ𝑡 . This leads to the rule-of-thumb ‖Δ𝜁𝑡 ‖𝜌(𝐹𝑡+Δ𝑡 , 𝜁𝑡+Δ𝑡 ) � 1,
where Δ𝜁𝑡 = 𝜁𝑡+Δ𝑡 ´ 𝜁𝑡 and 𝜌(𝐹𝑡 , 𝜁𝑡 ) is the inverse of the radius of the basin of attraction of Newton’s
iteration. A condition that we can rewrite as

1
Δ𝑡
� 𝜌(𝐹𝑡 , 𝜁𝑡 )

����Δ𝜁𝑡Δ𝑡

���� , (2.1)

assuming that

𝜌(𝐹𝑡+Δ𝑡 , 𝜁𝑡+Δ𝑡 ) » 𝜌(𝐹𝑡 , 𝜁𝑡 ). (2.2)

The factor Δ𝜁𝑡
Δ𝑡 is almost the derivative �𝜁𝑡 of 𝜁𝑡 with respect to t. It is generally bounded using a condition

number 𝜇(𝐹𝑡 , 𝜁𝑡 ), that is the largest variation of the zero 𝜁𝑡 after a perturbation of 𝐹𝑡 in H, so that����Δ𝜁𝑡Δ𝑡

���� » ‖ �𝜁𝑡 ‖ � 𝜇(𝐹𝑡 , 𝜁𝑡 )‖ �𝐹𝑡 ‖, (2.3)

where �𝐹𝑡 (respectively, �𝜁𝑡 ) is the derivative of F (respectively, 𝜁𝑡 ) with respect to t, and the right-hand
side is effectively computable. The parameter 𝜌(𝐹𝑡 , 𝜁𝑡 ) is much deeper. Smale’s 𝛼-theory has been a
preferred tool to deal with it in many complexity analyses. The number 𝛾 takes a prominent role in the
theory and controls the convergence of Newton’s iteration [45]: 𝜌(𝐹𝑡 , 𝜁𝑡 ) � 𝛾(𝐹𝑡 , 𝜁𝑡 ) (for the definition
of 𝛾(𝐹, 𝜁), e.g. see Equation (8) in Part I.) So we obtain the condition

1
Δ𝑡
� 𝛾(𝐹𝑡 , 𝜁𝑡 )𝜇(𝐹𝑡 , 𝜁𝑡 )‖ �𝐹𝑡 ‖ (2.4)

that ensures the correctness of the algorithm. A rigorous argument requires a nice behaviour of both
factors 𝛾(𝐹𝑡 , 𝜁𝑡 ) and 𝜇(𝐹𝑡 , 𝜁𝑡 ) as t varies, this is a crucial point, especially in view of the assumption
(2.2). The factor ‖ �𝐹𝑡 ‖ is generally harmless; the factor 𝜇(𝐹𝑡 , 𝜁𝑡 ) is important, but the variations with
respect to t are generally easy to handle; however, the variations of 𝛾(𝐹𝑡 , 𝜁𝑡 ) are more delicate. This led
[40] to consider the upper bound (called ‘higher-derivative estimate’)

𝛾(𝐹, 𝑧) � 𝜇(𝐹, 𝑧), (2.5)

with the same 𝜇 as above, and the subsequent correctness condition
1
Δ𝑡
� 𝜇(𝐹𝑡 , 𝜁𝑡 )2‖ �𝐹𝑡 ‖. (2.6)

Choosing at each iteration Δ𝑡 to be the largest possible value allowed by (2.6), we obtain a numerical
continuation algorithm, with adaptive step length, whose number K of iterations is bounded, as shown
first by [39], by

𝐾 �
∫ 1

0
𝜇(𝐹𝑡 , 𝜁𝑡 )

2‖ �𝐹𝑡 ‖d𝑡. (2.7)
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It remains to choose the starting system 𝐹0, with a built-in zero 𝜁0, and the path from 𝐹0 to 𝐹1. For
complexity analyses, the most common choice of path is a straight-line segment in the whole space
of polynomial systems H. For the choice of the starting system 𝐹0, [6, 7] have shown that a Kostlan
random system is a relevant choice and that there is a simple algorithm to sample a random system with
a known zero. If 𝐹1 is also a random Gaussian system, then all the intermediate systems 𝐹𝑡 are also
random Gaussian, and using (2.7), we obtain a bound, following Beltrán and Pardo, on the expected
number of iterations in the numerical continuation from 𝐹0 to 𝐹1:

E𝐹0 ,𝜁0 ,𝐹1 [𝐾] » E𝐹,𝜁 [𝜇(𝐹, 𝜁)
2] » dimH, (2.8)

where 𝜁 is a random zero of F. The dimension of H is the number of coefficients in F, it is the input
size. For n equations of degree 𝐷 in n variables, we compute

dimH = 𝑛

(
𝑛 + 𝐷

𝑛

)
. (2.9)

This is larger than any polynomial in n and 𝐷 (as n and 𝐷 go to 8), but is much smaller than 𝐷𝑛, the
generic number of solutions of such a system. The cost of an iteration (computing the step size and
performing one Newton iteration) is also bounded by the input size. So we have an algorithm whose
average complexity is polynomial in the input size. This is a major complexity result because it breaks
the poly(𝐷𝑛) barrier set by algorithms that compute all solutions simultaneously. However, the bound
(2.8) on the expected number of iterations is still much larger than what heuristic algorithms seem to
achieve.

A first idea to design a faster algorithm would be to search for a better continuation path in order to
lower the right-hand side in (2.7). Such paths do exist and can give a poly(𝑛, 𝐷) bound on E[𝐾] [9].
Unfortunately, their computation requires, in the current state of the art, to solve the target system first.
A second approach focuses on sharpening the correctness condition (2.6), that is, on making bigger
continuation steps. The comparison of (2.6) with heuristics shows that there is room for improvement
[4, 5]. In devising this condition, two inequalities are too generous. Firstly, Inequality (2.3) bounds the
variation of 𝜁𝑡 by the worst-case variation. The average worst-case variation can only grow with the
dimension of the parameter space, dimH, and it turns out to be much bigger than the average value of
‖ �𝜁𝑡 ‖, which is poly(𝑛, 𝐷). This was successfully exploited by [1] to obtain the bound E[𝐾] �

?
dimH

for random Gaussian systems. They used straight-line continuation paths but a finer computation of the
step size. The other inequality that turns out to be too coarse is (2.5): the higher derivatives need to be
handled more accurately.

2.2. Rigid continuation paths

In Part I, we introduced rigid continuation paths to obtain, in the case of random Gaussian systems, the
bound E[𝐾] � poly(𝑛, 𝐷). To solve a polynomial system 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) P H in 𝑛 + 1 homogeneous
variables, we consider continuation paths having the form

𝐹𝑡
.
=

(
𝑓1 ˝ 𝑢´1

1 (𝑡), . . . , 𝑓𝑛 ˝ 𝑢´1
𝑛 (𝑡)

)
, (2.10)

where 𝑢1(𝑡), . . . , 𝑢𝑛 (𝑡) P 𝑈 (𝑛 + 1) are unitary matrices depending on the parameter t, with 𝑢𝑖 (𝑇) = id,
for some 𝑇 ą 0. We could choose 𝑇 = 1, but instead, we impose ‖ �𝑢1‖

2 + ¨ ¨ ¨ + ‖ �𝑢𝑛‖
2 � 1 (the path is

called 1-Lipschitz continuous), following Part I. Note that we can choose 𝑇 � 4𝑛 (see I, Section 4.3.2).
The parameter space for the numerical continuation is not H anymore but𝑈 (𝑛 + 1)𝑛, denoted U , a real
manifold of dimension 𝑛3. For u = (𝑢1, . . . , 𝑢𝑛) P U and 𝐹 P H, we denote

u ¨ 𝐹
.
=

(
𝑓1 ˝ 𝑢´1

1 , . . . , 𝑓𝑛 ˝ 𝑢´1
𝑛

)
P H. (2.11)
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We developed in this setting an analogue of Beltrán and Pardo’s algorithm. Firstly, we sample uniformly
v P U together with a zero of the polynomial system v ¨ 𝐹. The same kind of construction as in the
Gaussian case makes it possible to perform this operation without solving any polynomial system (only n
univariate equations). Then, we construct a 1-Lipschitz-continuous path (u𝑡 )𝑡P[0,𝑇 ] in U between v and
the unit 1U in U , and perform numerical continuation using 𝐹𝑡

.
=u𝑡 ¨ 𝐹. The general strategy sketched

in Section 2.1 applies, but the rigid setting features important particularities. The most salient of them
is the average conditioning, that is, the average worst-case variation of 𝜁𝑡 with respect to infinitesimal
variations of u𝑡 . It is now poly(𝑛) (see I, Section 3.2), mostly because the dimension of the parameter
space is poly(𝑛). Besides, the way the continuation path is designed preserves the geometry of the
equations. This is reflected in a better behaviour of 𝛾(𝐹𝑡 , 𝜁𝑡 ) as t varies, which makes it possible to
use an upper bound much finer than (2.5), that we called the split 𝛾 number. In the case of a random
Gaussian input, we obtained in the end a poly(𝑛, 𝐷) bound on the average number of iterations for
performing numerical continuation along rigid paths.

2.3. The split 𝜸 number

Computing a good upper bound of the 𝛾 number is the key to make bigger continuation steps. We recall,
here, the upper bound introduced in Part I. The incidence condition number of 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) at z is

𝜅(𝐹, 𝑧)
.
=

�

�(d𝑧𝐹𝑧):
�

�, (2.12)

where : denotes the Moore–Penrose pseudoinverse [15, p. 17] and 𝐹𝑧 the normalised system

𝐹𝑧
.
=

(
𝑓1

‖d𝑧 𝑓1‖
, . . . ,

𝑓𝑛
‖d𝑧 𝑓𝑛‖

)
. (2.13)

When z is a zero of F, this quantity depends only on the angles formed by the tangent spaces at z of
the n hypersurfaces { 𝑓𝑖 = 0} (see I, Sections 2.1 and 3 for more details). It is closely related to the
intersection condition number introduced by [12]. In the context of rigid paths, it is also the natural
condition number: the variation of a zero 𝜁 of a polynomial system u ¨ 𝐹 under a perturbation of u is
bounded by 𝜅(u ¨ 𝐹, 𝜁) (Lemma I.16). Moreover, F being fixed, if u P U is uniformly distributed and if
𝜁 is a uniformly distributed zero of u ¨ 𝐹, then E[𝜅(u ¨ 𝐹, 𝜁)2] � 6𝑛2 (Proposition I.17).

The split 𝛾 number (see I, Section 2.5 for more details) is defined as

�̂�(𝐹, 𝑧)
.
= 𝜅(𝐹, 𝑧)

(
𝛾( 𝑓1, 𝑧)

2 + ¨ ¨ ¨ + 𝛾( 𝑓𝑛, 𝑧)
2
) 1

2
. (2.14)

It tightly upper bounds 𝛾(𝐹, 𝑧) in that (Theorem I.13)

𝛾(𝐹, 𝑧) � �̂�(𝐹, 𝑧) � 𝑛𝜅(𝐹, 𝑧)𝛾(𝐹, 𝑧). (2.15)

Whereas 𝛾(𝐹, 𝑧) does not behave nicely as a function of F, the split variant behaves well in the rigid
setting: F being fixed, the function U ˆ P𝑛 Ñ R, (u, 𝑧) ÞÑ �̂�(u ¨ 𝐹, 𝑧)´1 is 13-Lipschitz continuous
(Lemma I.21).6 This makes it possible to perform numerical continuation. Note that we need not
compute 𝛾 exactly, an estimate within a fixed ratio is enough. For computational purposes, we rather
use the variant 𝛾Frob, defined in (1.3), in which the operator norm is replaced by a Hermitian norm. It
induces a split 𝛾Frob number

�̂�Frob (𝐹, 𝑧)
.
= 𝜅(𝐹, 𝑧)

(
𝛾Frob ( 𝑓1, 𝑧)

2 + ¨ ¨ ¨ + 𝛾Frob ( 𝑓𝑛, 𝑧)
2
) 1

2 (2.16)

6Note that the importance of such a Lipschitz property has been highlighted by [18]. It implies that 1/(13�̂�) is upper bounded
on U ˆ P𝑛 by the distance to the subset of all pairs (u, 𝜁 ) , where 𝜁 is a singular zero of u ¨ 𝐹 .

https://doi.org/10.1017/fmp.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.7


Forum of Mathematics, Pi 13

Algorithm 1. Rigid numerical continuation, original version.
Input: 𝐹 P H, u, v P U and 𝜁 P P𝑛

Precondition: 𝜁 is a zero of v ¨ 𝐹.
Output: 𝑧˚ P P𝑛 if algorithm terminates.
Postcondition: 𝑧˚ is an approximate zero of u ¨ 𝐹.

function NC(𝐹, u, v, 𝜁)
(w𝑡 )0�𝑡�𝑇 Ð a 1-Lipschitz-continuous path from v to u in U
𝑡 Ð 0
𝑧 Ð 𝜁
while true do

for 𝑖 from 1 to 𝑛 do
𝑤 Ð 𝑖th component of w𝑡

𝑔𝑖 Ð 𝛾Frob ( 𝑓𝑖 ˝ 𝑤´1, 𝑧) Ź See (1.3).
end for
𝑡 Ð 𝑡 +

(
240 𝜅(w𝑡 ¨ 𝐹, 𝑧)2 (∑𝑛

𝑖=1 𝑔
2
𝑖

) 1
2
)´1

Ź See (2.12) and (2.16).
if 𝑡 � 𝑇 then

return 𝑧˚ Ð 𝑧
end if
𝑧 Ð Newton(w𝑡 ¨ 𝐹, 𝑧) Ź Newton’s iteration

end while
end function

as in (2.14). Algorithm 1 describes the computation of an approximate zero of a polynomial system
u ¨ 𝐹, given a zero of some v ¨ 𝐹 (it is the same as Algorithm I.2, with �̂�Frob for g and 𝐶 = 15, which
gives the constant 240 that appears in Algorithm 1). As an analogue of (2.7), Theorem I.23 bounds the
number K of continuation steps performed by Algorithm 1 as an integral over the continuation path:

𝐾 � 325
∫ 𝑇

0
𝜅(w𝑡 ¨ 𝐹, 𝜁𝑡 )�̂�Frob (w𝑡 ¨ 𝐹, 𝜁𝑡 )d𝑡. (2.17)

Based on this bound, we obtained in Part I the following average analysis.
Let 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) P H be a square-free polynomial system. Then, for uniformly random u, v P U

and a uniformly random zero 𝜁 P P𝑛 of v ¨ 𝐹, Algorithm 1 terminates almost surely and outputs
an approximate zero of u ¨ 𝐹. Moreover, the number K of continuation steps it performs satisfies
E[𝐾] � 9000𝑛3 Γ(𝐹) (Theorem I.27 with 𝔤𝑖 = 𝛾Frob and 𝐶1 = 5—by Lemma I.31—which multiplies
the constant 1,800 in its statement). Here, Γ(𝐹) denotes the crucial parameter introduced in (1.6).

In case we cannot compute 𝛾Frob exactly, but instead an upper bound A, such that 𝛾Frob � 𝐴 � 𝑀𝛾Frob,
for some fixed 𝑀 � 1, the algorithm works as well, but the bound on the average number of continuation
steps is multiplied by M (see Remark I.28):

E[𝐾] � 9, 000𝑛3𝑀 Γ(𝐹). (2.18)

Remark 2.1. It is not completely clear for which systems F does Γ(𝐹) take finite or infinite value.
Since Γ(𝐹)2 = Γ( 𝑓1)2 + ¨ ¨ ¨+Γ( 𝑓𝑛)2, it suffices to look only at Γ( 𝑓 ) for some homogeneous polynomial
𝑓 P C[𝑧0, . . . , 𝑧𝑛]. Let 𝑋 = {𝜁 P P𝑛 | 𝑓 (𝜁) = 0} and Σ =

{
𝜁 P 𝑋

�� d𝜁 𝑓 = 0
}

be its singular locus. If
Σ = ∅, then 𝑥 ÞÑ 𝛾( 𝑓 , 𝑥) is continuous, hence, bounded on the compact set X, and it follows that
Γ( 𝑓 ) ă 8. In the case where Σ has codimension 1 or 0 in X, we can show that Γ( 𝑓 ) = 8. But the
general situation is not clear. In particular, it would be interesting to interpret 1/Γ( 𝑓 ) as the distance to
some set of polynomials.
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To obtain an interesting complexity result for a given class of unitarily invariant distributions of
polynomial systems F, based on numerical continuation along rigid paths and Inequality (2.18), we
need, firstly, to specify how to compute or approximate 𝛾Frob at a reasonable cost, and secondly, to
estimate the expectation of Γ(𝐹) over F. For the application to dense Gaussian systems, considered in
Part I, 𝛾Frob is computed directly, using the monomial representation of the system to compute all higher
derivatives, and the estimation of Γ(𝐹) is mostly standard. Using the monomial representation is not
efficient anymore in the black-box model. We will rely instead on a probabilistic estimation of 𝛾Frob,
within a factor poly(𝑛, 𝐷). However, this estimation may fail with small probability, compromising the
correctness of the result.

3. Fast numerical continuation for black-box functions

3.1. Weyl norm

We recall, here, how to characterise the Weyl norm of a homogeneous polynomial as an expectation,
which is a key observation behind Algorithm GammaProb to approximate 𝛾Frob ( 𝑓 , 𝑧) by random
sampling.

Let 𝑓 P C[𝑧0, . . . , 𝑧𝑛] be a homogeneous polynomial of degree 𝐷 ą 0. In the monomial basis, f
decomposes as

∑
𝛼 𝑐𝛼𝑧

𝛼, where 𝛼 = (𝛼0, . . . , 𝛼𝑛) is a multi-index. The Weyl norm of f is defined as

‖ 𝑓 ‖2
𝑊

.
=

∑
𝛼

𝛼0! ¨ ¨ ¨𝛼𝑛!
𝐷!

|𝑐𝛼 |
2. (3.1)

The following statement seems to be classical.
Lemma 3.1. Let f be a homogeneous polynomial of degree 𝐷.
(i) For a uniformly distributed w in the Euclidean unit ball of C𝑛+1, we have

‖ 𝑓 ‖2
𝑊 =

(
𝑛 + 1 + 𝐷

𝐷

)
E
[
| 𝑓 (𝑤) |2

]
.

(ii) For a uniformly distributed z in the unit sphere of C𝑛+1, we have

‖ 𝑓 ‖2
𝑊 =

(
𝑛 + 𝐷

𝐷

)
E
[
| 𝑓 (𝑧) |2

]
.

Proof. Let H be the space of homogeneous polynomials of degree 𝐷 in 𝑧0, . . . , 𝑧𝑛. Both left-hand and
right-hand sides of the first stated equality define a norm on H coming from a Hermitian inner product.
The monomial basis is orthogonal for both: this is obvious for Weyl’s norm. For the 𝐿2-norm, this is
[37, Proposition 1.4.8]. So it only remains to check that the claim holds true when f is a monomial. By
[37, Proposition 1.4.9(2)], if 𝑤𝛼 = 𝑤𝛼0

0 ¨ ¨ ¨𝑤𝛼𝑛
𝑛 is a monomial of degree 𝐷, we have

E

[
|𝑤𝛼 |2

]
=

(𝑛 + 1)!𝛼0! ¨ ¨ ¨𝛼𝑛!
(𝑛 + 1 + 𝐷)!

=
(𝑛 + 1)!𝐷!
(𝑛 + 1 + 𝐷)!

¨
𝛼0! ¨ ¨ ¨𝛼𝑛!

𝐷!
, (3.2)

=
(𝑛+1+𝐷

𝐷

)´1
‖𝑤𝛼‖2

𝑊 , (3.3)

which is the claim. The second equality follows similarly from [37, Proposition 1.4.9(1)]. �

The following inequalities will also be useful.
Lemma 3.2. For any homogeneous polynomial 𝑓 P C[𝑧0, . . . , 𝑧𝑛] of degree 𝐷,(

𝑛 + 𝐷

𝐷

)´1
‖ 𝑓 ‖2

𝑊 � max
𝑧PS(C𝑛+1)

| 𝑓 (𝑧) |2 = max
𝑤P𝐵 (C𝑛+1)

| 𝑓 (𝑤) |2 � ‖ 𝑓 ‖2
𝑊 .
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Proof. The first inequality follows directly from the second equality of Lemma 3.1. It is clear that the
maximum is reached on the boundary. For the second inequality, we may assume (because of the unitary
invariance of ‖ ´ ‖𝑊 ) that the maximum of | 𝑓 | on the unit ball is reached at (1, 0, . . . , 0). Besides, the
coefficient 𝑐𝐷,0,...,0 of f is 𝑓 (1, 0, . . . , 0). Therefore,

max
𝑤P𝐵

| 𝑓 (𝑤) |2 = | 𝑓 (1, 0, . . . , 0) |2 =
��𝑐𝐷,0,...,0

��2 � ‖ 𝑓 ‖2
𝑊 . �

3.2. Probabilistic evaluation of the gamma number

The main reason for introducing the Frobenius norm in the 𝛾 number, instead of the usual operator
norm, is the equality (Lemma I.30)

1
𝑘!

��d𝑘𝑧 𝑓
��

Frob = ‖ 𝑓 (𝑧 + ‚)𝑘 ‖𝑊 , (3.4)

where ‖ 𝑓 (𝑧 + ‚)𝑘 ‖𝑊 is the Weyl norm of the homogeneous component of degree k of the shifted
polynomial 𝑥 ÞÑ 𝑓 (𝑧 + 𝑥). It follows that

𝛾Frob ( 𝑓 , 𝑧) = sup
𝑘�2

(
‖d𝑧 𝑓 ‖´1 ‖ 𝑓 (𝑧 + ‚)𝑘 ‖𝑊

) 1
𝑘´1

. (3.5)

This equality opens up interesting ways for estimating 𝛾Frob, and, therefore, 𝛾. We used it to compute
𝛾Frob efficiently when f is a dense polynomial given in the monomial basis (see Section I.4.3.3). In
that context, we would compute the shift 𝑓 (𝑧 + ‚) in the same monomial basis in quasilinear time as
min(𝑛, 𝐷) Ñ 8. From there, the quantities ‖ 𝑓 (𝑧 + ‚)𝑘 ‖𝑊 can be computed in linear time. In the black-
box model, however, the monomial expansions (of either f or 𝑓 (𝑧 + ‚)) cannot fit into a poly(𝑛, 𝐷)𝐿( 𝑓 )
complexity bound, because the number of monomials of degree 𝐷 in 𝑛 + 1 variables is not poly(𝑛, 𝐷).
Nonetheless, we can obtain a good enough approximation of ‖ 𝑓 (𝑧 + ‚)𝑘 ‖𝑊 with a few evaluations but a
nonzero probability of failure. This is the purpose of Algorithm 2, which we analyse in the next theorem.
Theorem 3.3. Given 𝑓 P C[𝑥0, . . . , 𝑥𝑛] as a black-box function, an upper bound 𝐷 on its degree, a
point 𝑧 P C𝑛+1 and some 𝜀 ą 0, Algorithm 2 (GammaProb) computes some Γ � 0, such that

𝛾Frob ( 𝑓 , 𝑧) � Γ � 192𝑛2𝐷 ¨ 𝛾Frob ( 𝑓 , 𝑧)

with probability at least 1 ´ 𝜀, using 𝑂
(
𝐷 log

(
𝐷
𝜀

)
(𝐿( 𝑓 ) + 𝑛 + log𝐷)

)
operations.

Moreover, for any 𝑡 ě 1,

P

[
Γ �

𝛾Frob ( 𝑓 , 𝑧)

𝑡

]
� 𝜀1+ 1

2 log2 𝑡 .

Note that we currently do not know how to estimate 𝛾Frob within an arbitrarily small factor. The
key in Theorem 3.3 is to write each ‖ 𝑓 (𝑧 + ‚)𝑘 ‖

2
𝑊 as an expectation (this is classical, see Section 3.1)

and to approximate it by sampling (there are some obstacles). We assume that 𝑧 = 0 by changing f to
𝑓 (𝑧 +‚), which is harmless because the evaluation complexity is changed to 𝐿( 𝑓 ) +𝑂 (𝑛). Furthermore,
the homogeneous components 𝑓𝑘 of f are accessible as black-box functions; this is the content of the
next lemma.
Lemma 3.4. Given 𝑤 P C𝑛+1, one can compute 𝑓0(𝑤), . . . , 𝑓𝐷 (𝑤), with 𝑂 (𝐷 (𝐿( 𝑓 ) + 𝑛 + log𝐷))
arithmetic operations.
Proof. We first compute all 𝑓 (𝜉𝑖𝑤), for 0 � 𝑖 � 𝐷 for some primitive root of unity 𝜉 of order 𝐷 + 1.
This takes (𝐷 + 1)𝐿( 𝑓 ) +𝑂 (𝐷𝑛) arithmetic operations. Since

𝑓 (𝜉𝑖𝑤) =
𝐷∑
𝑘=0

𝜉𝑖𝑘 𝑓𝑘 (𝑤), (3.6)
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Algorithm 2. Probabilistic estimation of 𝛾Frob.
Input: 𝑓 P C[𝑥0, . . . , 𝑥𝑛] of degree � 𝐷, given as black-box evaluation program, 𝑧 P C𝑛+1 and
𝜀 P (0, 1)
Output: Γ P R

Postcondition: 𝛾Frob ( 𝑓 , 𝑧) � Γ � 192 𝑛2𝐷 𝛾Frob ( 𝑓 , 𝑧) with probability at least 1 ´ 𝜀.

function GammaProb(f, z, 𝜀)
ℎ Ð 𝑓 (𝑧 + ‚) (as black-box evaluation program)
𝑠 Ð

⌈
1 + log2

𝐷
𝜀

⌉
for 𝑖 from 1 to 𝑠 do

𝑤𝑖 Ð random uniformly distributed element of 𝐵 (unit ball of C𝑛+1)
compute ℎ2 (𝑤𝑖), . . . , ℎdeg 𝑓 (𝑤𝑖), where ℎ𝑘 is the degree 𝑘 component of ℎ

Ź Lemma 3.4
end for
compute d0ℎ

return max
2�𝑘�𝐷

(
(32𝑛𝑘)𝑘

‖d0ℎ‖
2 ¨

(
𝑛 + 1 + 𝑘

𝑘

)
1
𝑠

𝑠∑
𝑖=1

|ℎ𝑘 (𝑤𝑖) |
2

) 1
2𝑘´2

.

end function

we recover the numbers 𝑓𝑘 (𝑤) with the inverse Fourier transform,

𝑓𝑘 (𝑤) =
1

𝐷 + 1

𝐷∑
𝑖=0

𝜉´𝑖𝑘 𝑓 (𝜉𝑖𝑤). (3.7)

We may assume that 𝐷 is a power of two (𝐷 is only required to be an upper bound on the degree of f ),
and the fast Fourier transform algorithm has an𝑂 (𝐷 log𝐷) complexity bound to recover the 𝑓𝑘 (𝑧) (with
slightly more complicated formulas, we can also use 𝜉 = 2 to keep close to the pure BSS model). �

We now focus on the probabilistic estimation of ‖ 𝑓𝑘 ‖𝑊 via a few evaluations of 𝑓𝑘 . Let 𝐵 .
= 𝐵(C𝑛+1)

denote the Euclidean unit ball in C𝑛+1, and let 𝑤 P 𝐵 be a uniformly distributed random variable. By
Lemma 3.1, we have

‖ 𝑓𝑘 ‖
2
𝑊 =

(
𝑛 + 1 + 𝑘

𝑘

)
E
[
| 𝑓𝑘 (𝑤) |

2] . (3.8)

The expectation in the right-hand side can be estimated with finitely many samples of | 𝑓𝑘 (𝑤) |
2. To

obtain a rigorous confidence interval, we study some statistical properties of | 𝑓𝑘 (𝑤) |2. Let 𝑤1, . . . , 𝑤𝑠

be independent uniformly distributed variables in B, and let

m̂2
𝑘
.
=

1
𝑠

𝑠∑
𝑖=1

| 𝑓𝑘 (𝑤𝑖) |
2 (3.9)

denote their empirical mean. Let m2
𝑘

.
=E[m̂2

𝑘 ] = E[| 𝑓𝑘 (𝑤) |
2] be the mean that we want to estimate (note

that both m𝑘 and m̂𝑘 depend on 𝑓𝑘 ; we suppressed this dependence in the notation).
The next proposition shows that m̂2

𝑘 estimates m2
𝑘 within a poly(𝑛, 𝑘)𝑘 factor with very few samples.

The upper bound is obtained by a standard concentration inequality (Hoeffding’s inequality). The lower
bound is more difficult, and very specific to the current setting, because we need to bound m2

𝑘 away from
zero with only a small number of samples. Concentration inequalities do not apply because the standard
deviation may be larger than the expectation, so a confidence interval whose radius is comparable to
the standard deviation (which is what we can hope for with a small number of samples) may contain
negative values.
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Proposition 3.5. For any 0 � 𝑘 � 𝐷, we have, with probability at least 1 ´ 21´𝑠 ,

(32𝑛𝑘)´𝑘m2
𝑘 � m̂2

𝑘 � (6𝑛)𝑘m2
𝑘 ,

where s is the number of samples.

Before proceeding with the proof, we state two lemmas, the principle of which comes from [26,
Lemma 8].

Lemma 3.6. Let 𝑔 P C[𝑧] be a univariate polynomial of degree k, and let 𝑐 P C be its leading coefficient.
For any 𝜂 ą 0,

vol
{
𝑧 P C

�� |𝑔(𝑧) |2 � 𝜂} � 𝜋𝑘 (
|𝑐 |´2𝜂

) 1
𝑘
.

Proof. Let 𝑢1, . . . , 𝑢𝑘 P C be the roots of g, with multiplicities, so that

𝑔(𝑧) = 𝑐(𝑧 ´ 𝑢1) ¨ ¨ ¨ (𝑧 ´ 𝑢𝑘 ). (3.10)

The distance of some 𝑧 P C to the set 𝑆 .
= {𝑢1, . . . , 𝑢𝑘 } is the minimum of all |𝑧 ´ 𝑢𝑖 |. In particular

dist(𝑧, 𝑆)𝑘 �
𝑘∏
𝑖=1

|𝑧 ´ 𝑢𝑖 | = |𝑐 |´1 |𝑔(𝑧) |. (3.11)

Therefore,

{
𝑧 P C

�� |𝑔(𝑧) |2 � 𝜂} Ă

𝑘⋃
𝑖=1

𝐵
(
𝑢𝑖 , |𝑐 |

´ 1
𝑘 𝜂

1
2𝑘

)
, (3.12)

where 𝐵(𝑢𝑖 , 𝑟) Ď C is the disk of radius r around 𝑢𝑖 . The volume of 𝐵(𝑢𝑖 , 𝑟) is 𝜋𝑟2, so the claim follows
directly. �

Lemma 3.7. If 𝑤 P 𝐵 is a uniformly distributed random variable, then for all 𝜂 ą 0,

P

[
| 𝑓𝑘 (𝑤) |

2 � 𝜂max
S

| 𝑓𝑘 |
2
]
� (𝑛 + 1)𝑘𝜂

1
𝑘 ,

where maxS | 𝑓𝑘 | is the maximum value of | 𝑓𝑘 | on the unit sphere in C𝑛+1.

Proof. Let c be the coefficient of 𝑥𝑘𝑛 in 𝑓𝑘 . It is the value of 𝑓𝑘 at (0, . . . , 0, 1). Up to a unitary change
of coordinates, | 𝑓𝑘 | reaches a maximum at (0, . . . , 0, 1) so that 𝑐 = maxS | 𝑓𝑘 |. Up to scaling, we may
further assume that 𝑐 = 1. For any (𝑝0, . . . , 𝑝𝑛´1) P C𝑛,

vol
{
𝑧 P C

�� | 𝑓𝑘 (𝑝0, . . . , 𝑝𝑛´1, 𝑧) |
2 � 𝜂

}
� 𝜋𝑘𝜂1/𝑘 , (3.13)

by Lemma 3.6 applied to the polynomial 𝑔(𝑧) = 𝑓𝑘 (𝑝0, . . . , 𝑝𝑛´1, 𝑧), which, by construction, is monic.
It follows, from the inclusion 𝐵(C𝑛+1) Ď 𝐵(C𝑛) ˆ C, that

vol
{
𝑤 P 𝐵(C𝑛+1)

�� | 𝑓𝑘 (𝑤) |2 � 𝜂} (3.14)

� vol
{
(𝑝0, . . . , 𝑝𝑛´1, 𝑧) P 𝐵(C𝑛) ˆ C

�� | 𝑓𝑘 (𝑝0, . . . , 𝑝𝑛´1, 𝑧) |
2 � 𝜂

}
(3.15)

� vol 𝐵(C𝑛) ¨ 𝜋𝑘𝜂
1
𝑘 . (3.16)

Using vol 𝐵(C𝑛) = 𝜋𝑛

𝑛! and dividing both sides by vol 𝐵(C𝑛+1) concludes the proof. �
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Lemma 3.8. For any 𝜂 ą 0, we have

P
[
m̂2
𝑘 � 𝜂m2

𝑘

]
�

(
8𝑛𝑘𝜂

1
𝑘

) 𝑠
2
.

Proof. Put 𝑀 .
= maxS | 𝑓𝑘 |. If m̂2

𝑘 ď 𝜂𝑀2, then at least �𝑠/2� samples among | 𝑓 (𝑤1) |
2, . . . , | 𝑓 (𝑤𝑠) |

2

satisfy | 𝑓 (𝑤𝑖) |
2 � 2𝜂𝑀2. By the union bound and Lemma 3.7, we obtain,

P
[
m̂2
𝑘 � 𝜂𝑀

2] � (
𝑠

�𝑠/2�

)
P
[
| 𝑓 (𝑤) |2 � 2𝜂𝑀2] �𝑠/2� (3.17)

� 2𝑠
(
(𝑛 + 1)𝑘𝜂

1
𝑘

) 𝑠
2 (3.18)

�
(
8𝑛𝑘𝜂

1
𝑘

) 𝑠
2
. (3.19)

To conclude, we note that m𝑘 � 𝑀 . �

Proof of Proposition 3.5. With 𝜂 .
= (32𝑛𝑘)´𝑘 , Lemma 3.8 gives

P
[
m̂2
𝑘 ď 𝜂m2

𝑘

]
�

(
8𝑛𝑘𝜂

1
𝑘

) 𝑠
2
= 2´𝑠 . (3.20)

It follows that

P
[
m2
𝑘 � (32𝑛𝑘)𝑘 m̂2

𝑘

]
� 1 ´ 2´𝑠 , (3.21)

which is the stated left-hand inequality.
For the right-hand inequality, we apply Hoeffding’s inequality, (e.g., [10, Theorem 2.8]). The variable

𝑠m̂2
𝑘 is a sum of s independent variables lying in the interval [0, 𝑀2], where we, again, abbreviate

𝑀
.
= maxS | 𝑓𝑘 |. Accordingly, for any 𝐶 � 1,

P
[
m̂2
𝑘 � 𝐶m2

𝑘

]
= P

[
𝑠m̂2

𝑘 ´ 𝑠m2
𝑘 � (𝐶 ´ 1)𝑠m2

𝑘

]
� exp

(
´

2(𝐶 ´ 1)2𝑠2m4
𝑘

𝑠𝑀4

)
. (3.22)

By Lemma 3.2 combined with (3.8), we have

𝑀2
ď

(
𝑛 + 1 + 𝑘

𝑘

)
m2
𝑘 . (3.23)

Applying this bound, we obtain

P
[
m̂2
𝑘 � 𝐶m2

𝑘

]
� exp ���´

2(𝐶 ´ 1)2𝑠(𝑛+1+𝑘
𝑘

)2
�� . (3.24)

We choose 𝐶 = (6𝑛)𝑘 and simplify further using the inequality
(𝑚+𝑘

𝑘

)
ď

(𝑚+𝑘)𝑘

𝑘! ď (𝑒(𝑚 + 𝑘)/𝑘)𝑘 and
𝑒(𝑛 + 1 + 𝑘)/𝑘 ď 𝑒(𝑛 + 3)/2 (use 𝑘 ě 2) to obtain

𝐶 ´ 1(𝑛+1+𝑘
𝑘

) � (6𝑛)𝑘 ´ 1(
𝑒 (𝑛+3)

2

) 𝑘 � (
12𝑛

𝑒(𝑛 + 3)

) 𝑘
´

(
2

𝑒(𝑛 + 3)

) 𝑘
(3.25)

�
(

3
𝑒

)2
´

(
2
4𝑒

)2
�

c

1
2

log 2. (3.26)
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We obtain, therefore

P
[
m̂2
𝑘 � (6𝑛)𝑘m2

𝑘

]
� exp(´ log(2)𝑠) = 2´𝑠 . (3.27)

Combined with (3.21), the union bound implies

P
[
m̂2
𝑘 � (32𝑛𝑘)´𝑘m2

𝑘 or m̂2
𝑘 ě (6𝑛)𝑘m2

𝑘

]
� 2 ¨ 2´𝑠 (3.28)

and the proposition follows. �

Proof of Theorem 3.3. Recall that we assume that 𝑧 = 0. Proposition 3.5 can be rephrased as follows:
with probability at least 1 ´ 21´𝑠 , we have

m2
𝑘 ď (32𝑛𝑘)𝑘m̂2

𝑘 � (192𝑛2𝑘)𝑘m2
𝑘 . (3.29)

Defining

𝑐2
𝑘
.
=

(
𝑛 + 1 + 𝑘

𝑘

)
(32𝑛𝑘)𝑘m̂2

𝑘 , (3.30)

using that by (3.8)

‖ 𝑓𝑘 ‖
2
𝑊 =

(
𝑛 + 1 + 𝑘

𝑘

)
m2
𝑘 , (3.31)

and applying the union bound, we, therefore, see that

‖ 𝑓𝑘 ‖
2
𝑊 � 𝑐

2
𝑘 � (192𝑛2𝑘)𝑘 ¨ ‖ 𝑓𝑘 ‖

2
𝑊 (3.32)

holds for all 2 ď 𝑘 ď 𝐷, with probability at least 1 ´ 𝐷21´𝑠 . If we chose 𝑠 =
⌈
1 + log2

𝐷
𝜀

⌉
, then

𝐷21´𝑠 � 𝜀. Recall from (3.4) and (3.5) that

𝛾Frob ( 𝑓 , 𝑧) = max
𝐷ě𝑘�2

(
‖d0 𝑓 ‖

´1 ‖ 𝑓𝑘 ‖𝑊

) 1
𝑘´1

. (3.33)

Noting that (192𝑛2𝑘)
𝑘

𝑘´1 � (192𝑛2𝐷)2, for 2 � 𝑘 � 𝐷, we conclude that the random variable

Γ
.
= max

2�𝑘�𝐷

(
‖d0 𝑓 ‖

´1𝑐𝑘

) 1
𝑘´1

, (3.34)

which is returned by Algorithm 2, indeed satisfies

𝛾Frob ( 𝑓 , 𝑧) ď Γ ď 192𝑛2𝐷 ¨ 𝛾Frob ( 𝑓 , 𝑧) (3.35)

with probability at least 1 ´ 𝜀, which proves the first assertion.
For the assertion on the number of operations, it suffices to note that by Lemma 3.4, the computation of

the derivative 𝑑0 𝑓 and of m̂2, . . . , m̂𝐷 can be done with𝑂 (𝑠𝐷 (𝐿( 𝑓 ) +𝑛+ log𝐷)) arithmetic operations.
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It only remains to check, for any 𝑡 � 1, the tail bound

P

[
Γ �

𝛾Frob ( 𝑓 , 𝑧)

𝑡

]
� 𝜀1+ 1

2 log2 𝑡 . (3.36)

Unfolding the definitions (3.33) and (3.34) and using, again, (3.31), we obtain

P

[
Γ �

𝛾Frob ( 𝑓 , 𝑧)

𝑡

]
�

𝐷∑
𝑘=2
P

[
(32𝑛𝑘)𝑘m̂2

𝑘 � 𝑡
´2(𝑘´1)m2

𝑘

]
(3.37)

�
𝐷∑
𝑘=2

(
8𝑛𝑘 ¨

(
(32𝑛𝑘)𝑘 𝑡2(𝑘´1)

)´ 1
𝑘

) 𝑠
2

, by Lemma 3.8, (3.38)

=
𝐷∑
𝑘=2

(
1
4
𝑡´2 𝑘´1

𝑘

) 𝑠
2

� 𝐷2´𝑠𝑡´
𝑠
2 . (3.39)

Since 𝑠 =
⌈
1 + log2

𝐷
𝜀

⌉
, we have 𝐷2´𝑠 � 𝜀. Furthermore, 𝑠 � ´ log2 𝜀, so

𝑡´
𝑠
2 � 𝑡

1
2 log2 𝜀 = 𝜀

1
2 log2 𝑡 , (3.40)

which proves (3.36). �

3.3. A Monte-Carlo continuation algorithm

We deal, here, with the specifics of a numerical continuation with a step-length computation that may
be wrong.

The randomised algorithm for the evaluation of the step length can be plugged into the rigid con-
tinuation algorithm (Algorithm 1). There is no guarantee, however, that the randomised computations
of the 𝛾Frob fall within the confidence interval described in Theorem 3.3 and, consequently, there is no
guarantee that the corresponding step-length estimation is accurate. If step lengths are underestimated,
we don’t control any more the complexity: as the step lengths go to zero, the number of steps goes to
infinity. Overestimating a single step length, instead, may undermine the correctness of the result, and
the subsequent behaviour of the algorithm is unknown (it may even not to terminate). So we introduce a
limit on the number of continuation steps. Algorithm 3 is a corresponding modification of Algorithm 1.
When reaching the limit on the number of steps, this algorithm halts with a failure notification.

Proposition 3.9. On input F, u, v, 𝜁 , 𝐾max, and 𝜀, such that 𝜁 is a zero of v ¨ 𝐹, the randomised
Algorithm BoundedBlackBoxNC (Algorithm 3) either fails or returns some 𝑧˚ P P𝑛. In the latter
case, 𝑧˚ is an approximate zero of u ¨ 𝐹 with probability at least 1 ´ 𝜀. The total number of operations
is poly(𝑛, 𝐷) ¨ 𝐾max log

(
𝐾max𝜀

´1) ¨ 𝐿(𝐹).

Proof. Assume 𝑧˚ P P𝑛 is returned which is not an approximate zero of F. This implies that one of the
estimations of 𝛾Frob ( 𝑓 , 𝑧), computed by the GammaProb subroutines, yielded a result that is smaller
than the actual value of 𝛾Frob ( 𝑓 , 𝑧). There are at most 𝑛𝐾max such estimations, so by Theorem 3.3, this
happens with probability at most 𝑛𝐾max𝜂, which by choice of 𝜂 is exactly 𝜀.

The total number of operations is bounded by 𝐾max times the cost of an iteration. After computing the
derivative at z of w𝑡 ¨𝐹, in poly(𝑛, 𝐷)𝐿(𝐹) operations, we can compute an approximation of the number
𝜅(w𝑡 ¨𝐹, 𝑧) within a factor of 2, which is good enough for our purpose. We do so with𝑂 (𝑛3) operations
using tridiagonalisation with Householder’s reflections and a result by [27] (the same argument is used
in Corollary I.33). So the cost of an iteration is dominated by the evaluation of the 𝑔𝑖 , which is bounded
by𝑂 (𝐷 log(𝐷𝑛𝐾max𝜀

´1) (𝐿(𝐹) +𝑛+ log𝐷)) by Theorem 3.3 and the choice of 𝜂, and Newton iteration,
which costs poly(𝑛, 𝐷)𝐿(𝐹). �
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Algorithm 3. Bounded-time numerical continuation routine for black-box input.
Input: 𝐹 P H (given as black-box), u, v P U , 𝜁 P P𝑛, 𝐾max ą 0 and 𝜀 P (0, 1

2 ]
Precondition: 𝜁 is a zero of v ¨ 𝐹.
Output: 𝑧˚ P P𝑛 or Fail.
Postcondition: If some 𝑧˚ P P𝑛 is output, then 𝑧˚ is an approximate zero of u¨𝐹 with probability� 1´𝜀.

function BoundedBlackBoxNC(𝐹, u, v, 𝜁 , 𝐾max, 𝜀)
𝜂 Ð (𝑛𝐾max)

´1𝜀
(w𝑡 )0�𝑡�𝑇 Ð a 1-Lipschitz continuous path from v to u in U
𝑡 Ð 0
𝑧 Ð 𝜁
for 𝑘 from 1 to 𝐾max do

for 𝑖 from 1 to 𝑛 do
𝑤 Ð 𝑖th component of w𝑡

𝑔𝑖 Ð GammaProb( 𝑓𝑖 ˝ 𝑤´1, 𝑧, 𝜂) Ź Algorithm 2
end for
𝑡 Ð 𝑡 +

(
240 𝜅(w𝑡 ¨ 𝐹, 𝑧)2 (∑𝑛

𝑖=1 𝑔
2
𝑖

) 1
2
)´1

if 𝑡 � 𝑇 then
return 𝑧˚ Ð 𝑧

end if
𝑧 Ð Newton(w𝑡 ¨ 𝐹, 𝑧) Ź Newton’s iteration

end for
return Fail

end function

In case Algorithm 3 fails, it is natural to restart the computation with a higher iteration limit. This is
Algorithm 4. We can compare its complexity to that of Algorithm 1, which assumes an exact computation
of 𝛾. Let 𝐾 (𝐹, u, v, 𝜁) be a bound for the number of iterations performed by Algorithm 1 on input F, u,
v and 𝜁 , allowing an overestimation of the step length up to a factor 192𝑛2𝐷 (in view of Theorem 3.3).

Proposition 3.10. On input F, u, v, 𝜁 and 𝜀 P (0, 1
4 ], such that 𝜁 is a zero of v ¨ 𝐹, and 𝐾 (𝐹, u, v, 𝜁) ă

8, the randomised Algorithm BlackBoxNC (Algorithm 4) terminates almost surely and returns an
approximate zero of u ¨ 𝐹 with probability at least 1 ´ 𝜀. The average total number of operations is
poly(𝑛, 𝐷) ¨ 𝐿(𝐹) ¨ 𝐾 log

(
𝐾𝜀´1) , with 𝐾 = 𝐾 (𝐹, u, v, 𝜁) (NB: The only source of randomness is the

probabilistic evaluation of 𝛾Frob).

Proof. Let 𝐾 .
=𝐾 (𝐹, u, v, 𝜁). By definition of K, if all approximations lie in the desired confidence

interval, then BoundedBlackBoxNC terminates after at most K iterations. So as soon as 𝐾max � 𝐾 ,
BoundedBlackBoxNC may return Fail only if the approximation of some 𝛾Frob is not correct. This
happens with probability at most 𝜀 at each iteration of the main loop in Algorithm 4, independently. So
the number of iterations is finite, almost surely. That the result is correct with probability at least 1 ´ 𝜀
follows from Proposition 3.9.

We now consider the total cost. At the mth iteration, we have 𝐾max = 2𝑚, so the cost of the mth
iteration is poly(𝑛, 𝐷) ¨ 2𝑚 log(2𝑚𝜀´1) ¨ 𝐿( 𝑓 ), by Proposition 3.9. Put ℓ .

= �log2 𝐾�. If the mth iteration
is reached for some 𝑚 ą ℓ, then all the iterations from ℓ to 𝑚 ´ 1 have failed. This has a probability
� 𝜀𝑚´ℓ to happen, so, if I denotes the number of iterations, we have

P[𝐼 � 𝑚] � min
(
1, 𝜀𝑚´ℓ

)
. (3.41)
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Algorithm 4. Numerical continuation for black-box input.
Input: 𝐹 P H (given as black-box), u, v P U , 𝜁 P P𝑛 and 𝜀 P (0, 1

4 ].
Precondition: 𝜁 is a zero of v ¨ 𝐹.
Output: 𝑧˚ P P𝑛 if algorithm terminates.
Postcondition: 𝑧˚ is an approximate zero of u ¨ 𝐹 with probability ě 1 ´ 𝜀.

function BlackBoxNC(𝐹, u, v, 𝜁 , 𝜀)
𝐾max Ð 1
repeat

𝐾max Ð 2𝐾max
𝑧 Ð BoundedBlackBoxNC (𝐹, u, v, 𝜁 , 𝐾max, 𝜀) Ź Algorithm 3

until 𝑧 ≠ Fail
return 𝑧˚ Ð 𝑧

end function

The total expected cost is, therefore, bounded by

E[cost] � poly(𝑛, 𝐷)𝐿( 𝑓 )
8∑
𝑚=1

2𝑚 log(2𝑚𝜀´1)P[𝐼 � 𝑚] (3.42)

� poly(𝑛, 𝐷)𝐿( 𝑓 )
8∑
𝑚=1

2𝑚 log(2𝑚𝜀´1) min
(
1, 𝜀𝑚´ℓ

)
. (3.43)

The claim follows easily from splitting the sum into two parts, 1 � 𝑚 ă ℓ and 𝑚 ą ℓ, and applying the
bounds (with 𝑐 = log 𝜀´1)

ℓ´1∑
𝑚=1

2𝑚 (𝑚 + 𝑐) � (ℓ + 𝑐)2ℓ (3.44)

and, for 𝜀 P (0, 1
4 ),

8∑
𝑚=ℓ

2𝑚 (𝑚 + 𝑐)𝜀𝑚´ℓ �
(ℓ + 𝑐)2ℓ

(1 ´ 2𝜀)2 � 4(ℓ + 𝑐)2ℓ . (3.45)

�

4. Condition-based complexity analysis

We recall from Part I (Section 2) the rigid solution variety corresponding to a polynomial system
𝐹 = ( 𝑓1, . . . , 𝑓𝑛), which consists of the pairs (v, 𝜁) P U ˆ P𝑛, such that (v ¨ 𝐹) (𝜁) = 0, which means
𝑓1(𝑣

´1
1 𝜁) = 0, . . . , 𝑓𝑛 (𝑣´1

𝑛 𝜁) = 0. To solve a given polynomial system 𝐹 P H, we sample an initial pair
in the rigid solution variety corresponding to F (Algorithm I.1) and perform a numerical continuation
using Algorithm 4. This gives Algorithm 5 (recall that 1U denotes the unit in the group U ).

Proposition 4.1 (Termination and correctness). Let 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) be a homogeneous polynomial
system with only regular zeros. On input F, given as a black-box evaluation program, and 𝜀 P (0, 1

4 ],
Algorithm BlackBoxSolve terminates almost surely and returns a point 𝑧˚ P P𝑛 which is an approxi-
mate zero of F with probability 1 ´ 𝜀.

Proof. Termination and correctness directly follow from Proposition 3.10. �

We now analyse the cost of Algorithm 5.
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Algorithm 5. Zero finding for black-box input.
Input: 𝐹 P H (given as black-box) and 𝜀 P (0, 1

4 ].
Output: 𝑧˚ P P𝑛 if algorithm terminates.
Postcondition: 𝑧˚ is an approximate zero of 𝐹 with probability � 1 ´ 𝜀.

function BlackBoxSolve(𝐹, 𝜀)
Sample (v, 𝜁) in the rigid solution variety of 𝐹 Ź Algorithm I.1
return BlackBoxNC (𝐹, 1U , v, 𝜁 , 𝜀) Ź Algorithm 4

end function

Theorem 4.2 (Complexity). Let 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) be a homogeneous square-free polynomial system
with degrees at most 𝐷 in 𝑛 + 1 variables given by a black-box evaluation program. Let u P U be
uniformly distributed, and let 𝐻 = u ¨ 𝐹. Then, on input H, given as a black-box evaluation program,
and 𝜀 P (0, 1

4 ], Algorithm BlackBoxSolve terminates after

poly(𝑛, 𝐷) ¨ 𝐿(𝐹) ¨ Γ(𝐹)
(
log Γ(𝐹) + log 𝜀´1)

operations on average. ‘On average’ refers to expectation with respect to both the random draws made
by the algorithm and the random variable u, but F is fixed.

We next focus on proving the complexity bound. Note that the statement of Theorem 4.2 is sim-
ilar to that of Theorem 1.2. The only difference lies in the complexity bound, whose dependence
on 𝜀´1 is logarithmic in the former and doubly logarithmic in the latter. In Section 4.3 below, we
will use BlackBoxSolve with 𝜀 = 1

4 as a routine within a boosting procedure to achieve this cost
reduction.

4.1. Complexity of sampling the rigid solution variety

Towards the proof of Theorems 1.2 and 4.2, we first review the complexity of sampling the initial pair
for the numerical continuation. In the rigid setting, this sampling boils down to sampling hypersurfaces,
which, in turn, amounts to computing roots of univariate polynomials (see Part I, Section 2.4). Some
technicalities are required to connect known results about root-finding algorithms to our setting, and
especially the parameter Γ(𝐹), but the material is very classical. Below, log log(𝑥) is to be interpreted
as the function log2 log2 (𝑥 + 2) which is defined for all positive x. Since our statements are asymptotic,
this does not change anything.

Proposition 4.3. Given 𝐹 P H as a black-box evaluation program, we can sample v P U and 𝜁 P P𝑛,
such that v is uniformly distributed and 𝜁 is a uniformly distributed zero of v ¨ 𝐹, with poly(𝑛, 𝐷) ¨

(𝐿(𝐹) + log log Γ(𝐹)) operations on average.

Proof. This follows from Proposition I.10 and Proposition 4.4 below. �

Proposition 4.4. For any 𝑓 P C[𝑧0, . . . , 𝑧𝑛] homogeneous of degree 𝐷 ě 2, given as a black-box
evaluation program, one can sample a uniformly distributed point in the zero set 𝑉 ( 𝑓 ) of f by a
probabilistic algorithm with poly(𝑛, 𝐷) ¨ (𝐿( 𝑓 ) + log log Γ( 𝑓 )) operations on average.

Proof. Following Corollary I.9, we can compute a uniformly distributed zero of f by first sampling
a line ℓ Ă P𝑛 uniformly distributed in the Grasmannian of lines, and then sampling a uniformly
distributed point in the finite set ℓ X 𝑉 ( 𝑓 ). To do this, we consider the restriction 𝑓 |ℓ , which, after
choosing an orthonormal basis of ℓ, is a bivariate homogeneous polynomial, and compute its roots. The
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representation of 𝑓 |ℓ in a monomial basis can be computed by 𝐷 + 1 evaluations of f and interpolation,
at a cost 𝑂 (𝐷 (𝐿( 𝑓 ) + 𝑛 + log𝐷)), as in Lemma 3.4. By Lemma 4.5 below, computing the roots takes

poly(𝐷) log log
(

max
𝜁PℓX𝑉 ( 𝑓 )

𝛾( 𝑓 |ℓ , 𝜁)

)
(4.1)

operations on average. We assume a 6th type of node to refine approximate roots into exact roots (recall
the discussion in Section 1.3). Then we have, by the definition (1.5) of Γ( 𝑓 |ℓ),

max
𝜁PℓX𝑉 ( 𝑓 )

𝛾( 𝑓 |ℓ , 𝜁)
2 �

∑
𝜁PℓX𝑉 ( 𝑓 )

𝛾Frob ( 𝑓 |ℓ , 𝜁)
2 = 𝐷 Γ( 𝑓 |ℓ )

2. (4.2)

By Jensen’s inequality [15, Proposition 2.28], using the concavity of log2 log2(𝑥) on [2,8), we obtain

Eℓ

[
log2 log2

(
2 + 𝐷 Γ( 𝑓 |ℓ )

2
)]
� log2 log2

(
2 + 𝐷Eℓ

[
Γ( 𝑓 |ℓ)

2] ) . (4.3)

Finally, Lemma 4.6 below gives

log2 log2

(
2 + 𝐷Eℓ

[
Γ( 𝑓 |ℓ)

2] ) � log2 log2

(
2 + 2𝑛𝐷 Γ( 𝑓 )2

)
(4.4)

and the claim follows. �

Lemma 4.5. Let 𝑔 P C[𝑧0, 𝑧1] be a homogeneous polynomial of degree 𝐷 without multiple zeros. One
can compute, with a probabilistic algorithm, 𝐷 approximate zeros of g, one for each zero of g, with
poly(𝐷) log log 𝛾max operations on average, where 𝛾max

.
= max𝜁P𝑉 (𝑔) 𝛾(𝑔, 𝜁).

Proof. The proof essentially relies on the following known fact due to [35] (see also [33, Thm. 2.1.1
and Cor. 2.1.2], for tighter bounds). Let 𝑓 P C[𝑡] be a given polynomial of degree 𝐷, 𝑅 ą 0 be a known
upper bound on the modulus of the roots 𝜉1, . . . , 𝜉𝐷 P C of f and 𝜀 ą 0. We can compute from these data
with poly(𝐷) log log 𝑅

𝜀 operations approximations 𝑥1, . . . , 𝑥𝑛 P C of the zeros, such that |𝜉𝑖 ´ 𝑥𝑖 | � 𝜀.
To apply this result to the given homogeneous polynomial g, we first apply a uniformly random unitary

transformation 𝑢 P 𝑈 (2) to the given g and dehomogenise 𝑢 ¨ 𝑔, obtaining the univariate polynomial
𝑓 P C[𝑡].

We first claim that, with probability at least 3/4, we have: (˚) |𝜉𝑖 | ď 2
?
𝐷 for all zeros 𝜉𝑖 P C

of f. This can be seen as follows. We measure distances in P1 with respect to the projective (angular)
distance. The disk of radius 𝜃 around a point in P1, has measure at most 𝜋(sin 𝜃)2 [15, Lemma 20.8].
Let sin 𝜃 = (2

?
𝐷)´1. Then a uniformly random point p in P1 lies in a disk of radius 𝜃 around a

root of f with probability at most 𝐷 (sin 𝜃)2 ď 1/4. Write 0 .
= [1 : 0] and 8

.
=], [0 : 1], and note that

dist(0, 𝑝) + dist(𝑝,8) = 𝜋/2 for any 𝑝 P P1. Since 𝑢´1 (8) is uniformly distributed, we conclude
that with probability at least 3/4, each zero 𝜁 P P1 of g satisfies dist(𝜁, 𝑢´1 (8)) ě 𝜃, which means
dist(𝜁, 𝑢´1(0)) ď 𝜋/2 ´ 𝜃. The latter easily implies for the corresponding affine root 𝜉 = 𝜁1/𝜁0 of f
that |𝜉 | ď (tan 𝜃)´1 ď (sin 𝜃)´1 = 2

?
𝐷, hence, (˚) holds.

The maximum norm of a zero of 𝑓 P C[𝑡] can be computed with a small relative error with
𝑂 (𝐷 log𝐷) operations [34, Fact 2.2(b)], so we can test the property (˚). We repeatedly sample a new
𝑢 P 𝑈 (2) until (˚) holds. Each iteration succeeds with probability at least 3

4 of success, so there are at
most two iterations on average.

For a chosen 𝜀 ą 0, we can now compute with Renegar’s algorithm the roots of f, up to precision 𝜀
with poly(𝐷) log log 1

𝜀 operations (where the log log 2
?
𝐷 is absorbed by poly(𝐷)). By homogenising

and transforming back with 𝑢´1, we obtain approximations 𝑝1, . . . , 𝑝𝐷 of the projective roots 𝜁1, . . . , 𝜁𝐷
of g up to precision 𝜀, measured in projective distance.

The remaining difficulty is that the 𝑝𝑖 might not be approximate roots of g, in the sense of Smale.
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However, suppose that for all i we have

𝜀𝛾(𝑔, 𝑝𝑖) � 1
11 . (4.5)

Using that 𝑧 ÞÑ 𝛾(𝑔, 𝑧)´1 is 5-Lipschitz continuous on P1 (by Lemma I.31), we see that 𝜀𝛾(𝑔, 𝜁𝑖) � 1
6

for all i. This is known to imply that 𝑝𝑖 is an approximate zero of 𝑝𝑖 ([40], and Theorem I.12 for the
constant). On the other hand, using again the Lipschitz property, we are sure that Condition (4.5) is met
as soon as 𝜀𝛾max � 1

16 .
So starting with 𝜀 = 1

2 , we compute points 𝑝1, . . . , 𝑝𝐷 approximating 𝜁1, . . . , 𝜁𝐷 up to precision 𝜀
until (4.5) is met for all 𝑝𝑖 , squaring 𝜀 after each unsuccessful iteration. Note that Renegar’s algorithm
need not be restarted when 𝜀 is refined. We have 𝜀𝛾max � 1

16 after at most log log(16𝛾max) iterations.
Finally, note that we do not need to compute exactly 𝛾, an approximation within factor 2 is enough,
with appropriate modifications of the constants, and this is achieved by 𝛾Frob, see (1.4), which we can
compute in poly(𝐷) operations. �

Lemma 4.6. Let 𝑓 P C[𝑧0, . . . , 𝑧𝑛] be homogeneous of degree 𝐷, and let ℓ Ď P𝑛 be a uniformly
distributed random projective line. Then Eℓ

[
Γ( 𝑓 |ℓ)2] � 2𝑛 Γ( 𝑓 )2.

Proof. Let ℓ Ď P𝑛 be a uniformly distributed random projective line, and let 𝜁 P ℓ be uniformly
distributed among the zeros of 𝑓 |ℓ . Then 𝜁 is also a uniformly distributed zero of f (see Corollary I.9).
Let 𝜃 denote the angle between the tangent line 𝑇𝜁 ℓ and the line 𝑇𝜁𝑉 ( 𝑓 )K normal to 𝑉 ( 𝑓 ) at 𝜁 . By an
elementary geometric reasoning, we have ‖d𝜁 𝑓 |ℓ ‖ = ‖d𝜁 𝑓 ‖ cos 𝜃. Moreover, ‖d𝑘𝜁 𝑓 |ℓ ‖Frob � ‖d𝑘𝜁 𝑓 ‖Frob.
So it follows that

𝛾Frob ( 𝑓 |ℓ , 𝜁)
2 � 𝛾Frob ( 𝑓 , 𝜁)

2 cos(𝜃)´2. (4.6)

In order to bound this, we consider now a related but different distribution. As above, let 𝜁 be a
uniformly distributed zero of f. Consider now a uniformly distributed random projective line ℓ1 passing
through 𝜁 . The two distributions (ℓ, 𝜁) and (𝜁, ℓ1) are related by Lemma I.5 as follows: for any integrable
function h of ℓ and 𝜁 , we have

Eℓ,𝜁 [ℎ(ℓ, 𝜁)] = 𝑐 E𝜁 ,ℓ1 [ℎ(ℓ1, 𝜁)detK(𝑇𝜁 ℓ
1, 𝑇𝜁𝑉 ( 𝑓 ))], (4.7)

where c is some normalisation constant and where detK(𝑇𝜁 ℓ
1, 𝑇𝜁𝑉 ( 𝑓 )) is defined in I, Section 2.1. It is

only a matter of unfolding definitions to see that it is equal to cos 𝜃1, where 𝜃1 denotes the angle between
𝑇𝜁 ℓ

1 and 𝑇𝜁𝑉 ( 𝑓 )K. With ℎ = 1, we obtain 𝑐 = E [cos 𝜃1]
´1 and, therefore, we get

Eℓ,𝜁 [ℎ(ℓ, 𝜁)] = E𝜁 ,ℓ1 [ℎ(ℓ1, 𝜁) cos 𝜃1] E[cos 𝜃1]´1. (4.8)

We analyse now the distribution of 𝜃1: cos(𝜃1)2 is a beta-distributed variable with parameters 1 and
𝑛 ´ 1: indeed, cos(𝜃1)2 = |𝑢1 |

2/‖𝑢‖2 where 𝑢 P C𝑛 is a Gaussian random vector, and it is well known
that the distribution of this quotient of 𝜒2-distributed random variables is a beta-distributed variable.
Generally, the moments of a beta-distributed random variable Z with parameters 𝛼, 𝛽 satisfy

E[𝑍𝑟 ] =
𝐵(𝛼 + 𝑟, 𝛽)

𝐵(𝛼, 𝛽)
, (4.9)

where B is the Beta function and 𝑟 ą ´𝛼. In particular, for 𝑟 ą ´1,

E𝜁 ,ℓ1 [cos(𝜃1)2𝑟 ] =
𝐵(1 + 𝑟, 𝑛 ´ 1)
𝐵(1, 𝑛 ´ 1)

, (4.10)
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and, hence

E
[
cos(𝜃1)´1]

E
[
cos(𝜃1)

]´1
=
𝐵( 1

2 , 𝑛 ´ 1)
𝐵( 3

2 , 𝑛 ´ 1)
= 2𝑛 ´ 1. (4.11)

Continuing with (4.8), we obtain

Eℓ

[
Γ( 𝑓 |ℓ)

2] = Eℓ,𝜁 [
𝛾Frob ( 𝑓 |ℓ , 𝜁)

2] , by (1.5), (4.12)

� Eℓ,𝜁
[
𝛾Frob ( 𝑓 , 𝜁)

2 cos(𝜃)´2] , by (4.6), (4.13)

= E𝜁 ,ℓ1
[
𝛾Frob ( 𝑓 , 𝜁)

2 cos(𝜃1)´1]
E
[
cos(𝜃1)

]´1
, by (4.8), (4.14)

= E𝜁
[
𝛾Frob ( 𝑓 , 𝜁)

2]
Eℓ1

[
cos(𝜃1)´1]

E
[
cos(𝜃1)

]´1 (4.15)

= Γ( 𝑓 )2(2𝑛 ´ 1), by (4.11)
(4.16)

the second last equality (4.15) since the random variable 𝜃1 is independent from 𝜁 . This concludes the
proof. �

4.2. Proof of Theorem 4.2

We now study the average complexity of the Algorithm BlackBoxSolve(u ¨ 𝐹, 𝜀), where u P U is
uniformly distributed. Recall that Γ(u ¨ 𝐹) = Γ(𝐹), by unitary invariance of 𝛾Frob, and 𝐿(u ¨ 𝐹) =
𝐿(𝐹) +𝑂 (𝑛3).

The sampling operation costs at most poly(𝑛, 𝐷) ¨𝐿(𝐹) ¨ log log Γ(𝐹) on average, by Proposition 4.3.
The expected cost of the continuation phase is poly(𝑛, 𝐷) ¨ 𝐿(𝐹) ¨ 𝐾 (log𝐾 + log 𝜀´1), by Proposition
3.10, where 𝐾 = 𝐾 (u ¨ 𝐹, 1U , v, 𝜁) and (v, 𝜁) is the sampled initial pair. By unitary invariance,

𝐾 (u ¨ 𝐹, 1U , v, 𝜁) = 𝐾 (𝐹, u, v1, 𝜁), (4.17)

where v1 = vu. Moreover, since v is uniformly distributed and independent from u, v1 is also uniformly
distributed and independent from u, and 𝜁 is a uniformly distributed zero of v1 ¨ 𝐹. So the following
proposition concludes the proof of Theorem 4.2.

Proposition 4.7. Let u, v P U be independent and uniformly distributed random variables, let 𝜁 be a
uniformly distributed zero of v ¨ 𝐹 and let 𝐾 = 𝐾 (𝐹, u, v, 𝜁). Then we have E [𝐾] � poly(𝑛, 𝐷)Γ(𝐹)
and E [𝐾 log𝐾] � poly(𝑛, 𝐷) ¨ Γ(𝐹) log Γ(𝐹).

Sketch of proof. The first bound E [𝐾] � poly(𝑛, 𝐷)Γ(𝐹) was shown in Theorem I.27. Following
mutatis mutandis the proof of Theorem I.27 (the only additional fact needed is Proposition 4.8 below
for 𝑎 = 3/2), we obtain that

E

[
𝐾

3
2

]
� poly(𝑛, 𝐷)Γ(𝐹)

3
2 . (4.18)

Next, we observe that the function ℎ : 𝑥 ÞÑ 𝑥
2
3 (1 + log 𝑥 2

3 ) is concave on [1,8). By Jensen’s
inequalities, it follows that

E [𝐾 log𝐾] � E
[
ℎ(𝐾

3
2 )
]
� ℎ

(
E[𝐾

3
2 ]
)
� poly(𝑛, 𝐷)Γ(𝐹) log Γ(𝐹), (4.19)

which gives the claim.
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The following statement extends Proposition I.17 to more general exponents. The proof technique is
more elementary, and the result, although not as tight, good enough for our purpose.

Proposition 4.8. Let 𝑀 P C𝑛ˆ(𝑛+1) be a random matrix whose rows are independent uniformly dis-
tributed vectors in S(C𝑛+1), and let 𝜎min(𝑀) be the smallest singular value of M. For all 𝑎 P [1, 2),

E
[
𝜎min(𝑀)´2𝑎] � 𝑛1+2𝑎

2 ´ 𝑎
,

and, equivalently with the notations of Proposition I.17,

E
[
𝜅(u ¨ 𝐹, 𝜁)2𝑎] � 𝑛1+2𝑎

2 ´ 𝑎
.

Proof. For short, let 𝜎 denote 𝜎min(𝑀). Let 𝑢1, . . . , 𝑢𝑛 be the rows of M. By definition, there is a unit
vector 𝑥 P C𝑛, such that

‖𝑥1𝑢1 + ¨ ¨ ¨ + 𝑥𝑛𝑢𝑛‖
2 = 𝜎2. (4.20)

If 𝑉𝑖 denotes the subspace of C𝑛+1 spanned by all 𝑢 𝑗 except 𝑢𝑖 , and 𝑏𝑖 denotes the squared Euclidean
distance of 𝑢𝑖 to 𝑉𝑖 , then (4.20) implies 𝑏𝑖 � |𝑥𝑖 |

´2𝜎2 for all i. Moreover, since x is a unit vector, there
is at least one i, such that |𝑥𝑖 |2 � 1

𝑛 . Hence, 𝑛𝜎2 � min𝑖 𝑏𝑖 and, therefore

E
[
𝜎´2𝑎] � 𝑛𝑎E [

max
𝑖
𝑏´𝑎
𝑖

]
� 𝑛𝑎

𝑛∑
𝑖=1
E
[
𝑏´𝑎
𝑖

]
. (4.21)

To analyse the distribution of 𝑏𝑖 consider, for fixed 𝑉𝑖 , a standard Gaussian vector 𝑝𝑖 in 𝑉𝑖 , and an
independent standard Gaussian vector 𝑞𝑖 in 𝑉K

𝑖 (note dim𝑉K
𝑖 = 4). Since 𝑢𝑖 is uniformly distributed

in the sphere, it has the same distribution as (𝑝𝑖 + 𝑞𝑖)/
a

‖𝑝𝑖 ‖2 + ‖𝑞𝑖 ‖2. In particular, 𝑏𝑖 has the same
distribution as ‖𝑞𝑖 ‖2/(‖𝑝𝑖 ‖

2 + ‖𝑞𝑖 ‖
2), which is a Beta distribution with parameters 2, 𝑛´ 1, since ‖𝑝𝑖 ‖

2

and ‖𝑞𝑖 ‖
2 are independent 𝜒2-distributed random variables with 2𝑛 ´ 2 and 4 degrees of freedom,

respectively. By (4.9), we have for the moments, using 𝑎 ă 2,

E
[
𝑏´𝑎
𝑖

]
=
𝐵(2 ´ 𝑎, 𝑛 ´ 1)
𝐵(2, 𝑛 ´ 1)

=
Γ(2 ´ 𝑎)Γ(𝑛 + 1)
Γ(𝑛 + 1 ´ 𝑎)

. (4.22)

We obtain

E
[
𝑏´𝑎
𝑖

]
=

Γ(3 ´ 𝑎)

2 ´ 𝑎
¨ 𝑛 ¨

Γ(𝑛)
Γ(𝑛 + 1 ´ 𝑎)

, using twice Γ(𝑥 + 1) = 𝑥Γ(𝑥), (4.23)

�
1

2 ´ 𝑎
¨ 𝑛 ¨ 𝑛𝑎´1, by Gautschi’s inequality. (4.24)

In combination with (4.21), this gives the result. �

4.3. Confidence boosting and proof of Theorem 1.2

We may leverage the quadratic convergence of Newton’s iteration to increase the confidence in the result
of Algorithm 5 and reduce the dependence on 𝜀 (the maximum probability of failure) from log 1

𝜀 down
to log log 1

𝜀 , so that we can choose 𝜀 = 10´10100 without afterthoughts, at least in the BSS model. On a
physical computer, the working precision should be comparable with 𝜀, which imposes some limitations.
A complete certification, without possibility of error, with poly(𝑛, 𝐷) evaluations of F, seems difficult
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to reach in the black-box model: with only poly(𝑛, 𝐷) evaluations, we cannot distinguish a polynomial
system F from the infinitely many other systems with the same evaluations.

To describe this boosting procedure, we first recall some details about 𝛼-theory and Part I. Let 𝐹 P H
be a polynomial system and 𝑧 P P𝑛 be a projective point. Let N𝐹 (𝑧) denote the projective Newton
iteration (and N 𝑘

𝐹 (𝑧) denote the composition of k projective Newton iterations). Let

𝛽(𝐹, 𝑧)
.
= 𝑑P (𝑧,N𝐹 (𝑧)) . (4.25)

There is an absolute constant 𝛼0, such that for any 𝑧 P P𝑛, if 𝛽(𝐹, 𝑧)𝛾(𝐹, 𝑧) � 𝛼0, then z is an
approximate zero of F [17, Theorem 1] (one may take 𝛼0 = 1/137). This is one of many variants of the
𝛼-theorem of [45]. There may be differences in the definition of 𝛾 or 𝛽, or even the precise definition of
approximate zero, but they only change the constant 𝛼0.

It is important to be slightly more precise about the output of Algorithm 5 (when all 𝛾’s are correctly
estimated, naturally, and hence, the output is an approximate zero of F): by the design of the numerical
continuation (see Proposition I.22 with 𝐶 = 15 and 𝐴 = 1

4𝐶 ), the output point 𝑧˚ P P𝑛 satisfies

𝑑P(𝑧
˚, 𝜁)�̂�Frob (𝐹, 𝜁) �

1
4 ¨ 15

=
1
60
, (4.26)

for some zero 𝜁 of F, where �̂�Frob is the split Frobenius 𝛾 number (see Section 2.3). This implies (see
Theorem I.12), using 𝛾 � �̂�Frob, that

𝑑P

(
N 𝑘

𝐹 (𝑧
˚), 𝜁

)
� 21´2𝑘 𝑑P(𝑧

˚, 𝜁). (4.27)

The last important property we recall is the 15-Lipschitz continuity of the function 𝑧 P P𝑛 ÞÑ

�̂�Frob (𝐹, 𝑧)
´1 (Lemmas I.26 and I.31).

Algorithm 6 checks the criterion 𝛽(𝐹, 𝑧˚)𝛾(𝐹, 𝑧˚) � 𝛼0 after having refined to 𝑧˚ a presumed
approximate zero z with a few Newton iterations. If the input point z is indeed an approximate zero, then
𝛽(𝐹, 𝑧˚) will be very small, and it will satisfy the criterion above even with a very gross approximation
of 𝛾(𝐹, 𝑧˚).

Algorithm 6. Boosting the confidence for approximate zeros.
Input: 𝐹 = ( 𝑓1, . . . , 𝑓𝑛) P H (given as black-box), 𝑧 P P𝑛 and 𝜀 P (0, 1

4 ).
Output: 𝑧˚ P P𝑛 or Fail
Postcondition: If Boost returns a point 𝑧˚, then it is an approximate zero of 𝐹 with probability � 1´𝜀.

function (Boost)(𝐹, 𝑧, 𝜀)
𝑘 Ð

⌈
max

(
1 + log2 log2

(
20𝑛2𝐷𝛼´1

0

)
, 1 + log2 log2 𝜀

´1
)⌉

𝑧˚ Ð N 𝑘
𝐹 (𝑧)

𝑐 Ð 𝜅(𝐹, 𝑧˚)
(∑𝑛

𝑖=1 GammaProb( 𝑓𝑖 , 𝑧˚, 1
4𝑛 )

2
) 1

2
Ź Algorithm 2

if 22𝑘´1
𝛽(𝐹, 𝑧˚)𝑐 � 𝛼0 then

return 𝑧˚

else
return Fail

end if
end function

Proposition 4.9. On input 𝐹 P H, 𝑧 P P𝑛 and 𝜀 P (0, 1
4 ), Algorithm Boost outputs some 𝑧˚ P P𝑛

(succeeds) or fails after poly(𝑛, 𝐷)𝐿(𝐹) log log 𝜀´1 operations. If z satisfies (4.26), then it succeeds
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with probability at least 3
4 . If it succeeds, then the output point is an approximate zero of F with

probability at least 1 ´ 𝜀.

Proof. We use the notations (k, 𝑧˚ and c) of Algorithm 6. Assume first that (4.26) holds for z and some
zero 𝜁 of F. By (4.27) and (4.26),

𝑑P(𝑧
˚, 𝜁)�̂�Frob (𝐹, 𝜁) �

1
60
. (4.28)

Using the Lipschitz continuity and (4.28),

�̂�Frob (𝐹, 𝑧
˚) �

�̂�Frob (𝐹, 𝜁)

1 ´ 15𝑑P (𝑧˚, 𝜁)�̂�Frob (𝐹, 𝜁)
�

4
3
�̂�Frob (𝐹, 𝜁), (4.29)

and it follows from (4.27) and (4.26), again, that

𝛽(𝐹, 𝑧˚)�̂�Frob (𝐹, 𝑧
˚) �

4
3
(
𝑑P (𝑧

˚, 𝜁) + 𝑑P(N𝐹 (𝑧
˚), 𝜁)

)
�̂�Frob (𝐹, 𝜁) (4.30)

�
4
3

(
21´2𝑘 + 21´2𝑘+1

)
𝑑P (𝑧, 𝜁)�̂�Frob (𝐹, 𝜁) (4.31)

�
1

10
2´2𝑘 . (4.32)

Besides, by Theorem 3.3, we have with probability at least 3
4 ,

𝑐 � 192𝑛2𝐷 ¨ �̂�Frob (𝐹, 𝑧
˚) (4.33)

(note that the computation of c involves n calls to GammaProb, each returning a result outside the
specified range with probability at most 1

4𝑛 . So the n computations are correct with probability at least
3
4 ). It follows from (4.32) and (4.33), along with the choice of k, that

22𝑘´1
𝛽(𝐹, 𝑧˚)𝑐 � 192

10 𝑛
2𝐷2´2𝑘´1

� 𝛼0, (4.34)

with probability at least 3
4 . We conclude, assuming (4.26), that Algorithm BlackBoxSolve succeeds

with probability at least 3
4 .

Assume now that the algorithm succeeds, but 𝑧˚, the output point, is not an approximate zero of F.
On the one hand, 𝑧˚ is not an approximate zero, so

𝛽(𝐹, 𝑧˚)�̂�Frob (𝐹, 𝑧
˚) ą 𝛼0, (4.35)

and on the other hand, the algorithm succeeds, so 22𝑘´1
𝛽(𝐹, 𝑧˚)𝑐 � 𝛼0, and then

22𝑘´1
𝑐 � �̂�Frob (𝐹, 𝑧

˚). (4.36)

By definition (2.16) of �̂�Frob (𝐹, 𝑧
˚), and since 𝑐 = 𝜅(𝐹, 𝑧) (Γ2

1 + ¨ ¨ ¨ + Γ2
𝑛)

1
2 , where Γ𝑖 denotes the value

returned by the call to GammaProb( 𝑓𝑖 , 𝑧, 1
4𝑛 ), we get

22𝑘´1
(Γ2

1 + ¨ ¨ ¨ + Γ2
𝑛)

1
2 �

(
𝛾Frob ( 𝑓1, 𝑧

˚)2 + ¨ ¨ ¨ + 𝛾Frob ( 𝑓𝑛, 𝑧
˚)2

) 1
2
. (4.37)

This implies that, for some i,

22𝑘´1
Γ𝑖 � �̂�Frob ( 𝑓𝑖 , 𝑧

˚). (4.38)
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By the choice of k, 22𝑘´1
� 𝜀´1, and using the tail bound in Theorem 3.3, with 𝑡 = 𝜀´1, (4.38) may

only happen with probability at most

1
4𝑛

( 1
4𝑛

) 1
2 log2 𝑡

ď

(
1
4

) 1
2 log2 𝑡

= 2´ log2 𝑡 = 𝜀. (4.39)

The complexity bound is clear, since a Newton’s iteration requires only poly(𝑛, 𝐷)𝐿(𝐹) operations. �

The combination of BlackBoxSolve and Boost leads to Algorithm 7, BoostBlackBoxSolve.

Algorithm 7. Boosted zero finder for black-box input.
Input: 𝐹 P H (given as black-box), 𝜀 P (0, 1

4 )
Output: 𝑧˚ P P𝑛 if algorithm terminates.
Postcondition: 𝑧˚ is an approximate zero of 𝐹 with probability � 1 ´ 𝜀.

function BoostBlackBoxSolve(𝐹, 𝜀)
repeat

𝑧 Ð BlackBoxSolve(𝐹, 1
4 ) Ź Algorithm 5

𝑧˚ Ð Boost(𝐹, 𝑧, 𝜀) Ź Algorithm 6
until 𝑧˚ ≠ Fail
return 𝑧˚

end function

Proof of Theorem 1.2. The correctness, with probability at least 1 ´ 𝜀, is clear, by the correctness of
Boost. An iteration of Algorithm 7 succeeds if and only if Boost succeeds. If (4.26) holds (which it
does with probability at least 3

4 ), then Boost succeeds with probability at least 3
4 . So each iteration of

Algorithm 7 succeeds with probability at least 1
2 , and the expected number of iterations is, therefore, at

most two. Furthermore, on input u¨𝐹, the average cost of each iteration is poly(𝑛, 𝐷)𝐿(𝐹)Γ(𝐹) log Γ(𝐹)
for BlackBoxSolve and poly(𝑛, 𝐷)𝐿(𝐹) log log 𝜀´1 for Boost. �

Proof of Corollary 1.3. Let u P U be uniformly distributed and independent from F. By hypothesis,
u ¨ 𝐹 and F have the same distribution, so we study u ¨ 𝐹 instead. Then Theorem 1.2 applies, and we
obtain, for fixed 𝐹 P H and random 𝑢 P U , that BoostBlackBoxSolve terminates after

poly(𝑛, 𝐷) ¨ 𝐿 ¨

(
E [Γ(𝐹) log Γ(𝐹)] + log log 𝜀´1

)
(4.40)

operations on average. With the concavity on [1,8) of the function ℎ : 𝑥 ÞÑ 𝑥
1
2 log 𝑥 1

2 , Jensen’s
inequality ensures that

E [Γ(𝐹) log Γ(𝐹)] = E
[
ℎ(Γ(𝐹)2)

]
� ℎ

(
E[Γ(𝐹)2]

)
, (4.41)

which gives the complexity bound. �

5. Probabilistic analysis of algebraic branching programs

The goal of this section is to prove our second main result, Theorem 1.5. Recall from Section 1.7
the notion of a Gaussian random ABP. We first state a result that connects the notions of irreducible
Gaussian random ABPs with that of irreducible polynomials.
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Lemma 5.1. Let f be the homogeneous polynomial computed by an irreducible Gaussian random ABP
in the variables 𝑧0, . . . , 𝑧𝑛. If 𝑛 � 2, then f is almost surely irreducible.

Proof. The proof is by induction on the degree 𝐷, the base case 𝐷 = 1 being clear. So suppose 𝐷 ě 2.
In the given ABP, replace the label of each edge e by a new variable 𝑦𝑒. Let G denote the modified ABP
and g the polynomial computed by G. The polynomial f is obtained as a restriction of g to a generic
linear subspace, so, by Bertini’s theorem, it suffices to prove that g is irreducible (recall 𝑛 ě 2).

Let s denote the source vertex and t the target vertex of G. There is a path from s to t: let 𝑒 = (𝑠, 𝑣)
be its first edge. We remove s and all vertices in the first layer different from v, making v the source
vertex of a new ABP denoted H. It is irreducible: if the layers of G have the sizes 1, 𝑟1, . . . , 𝑟𝐷´1, 1, then
the layers of H have the sizes 1, 𝑟2, . . . , 𝑟𝐷´1, 1. The paths of H from source to target are in bijective
correspondence with the paths of G from v to t. Therefore, 𝑔 = 𝑦𝑒𝑝 + 𝑞, where p is the polynomial
computed by H, and q corresponds to the paths from s to t which avoid v. By induction hypothesis, p
is irreducible. Clearly, 𝑞 ≠ 0 because 𝑟1 ą 0, and p does not divide q since the variable corresponding
to an edge leaving v does not appear in q (such edge exists due to 𝐷 ě 2). We conclude that p and q
are relatively prime. Moreover, the variable 𝑦𝑒 does neither appear in p nor in q, so it follows that g is
irreducible. �

We also remark that a random polynomial computed by a Gaussian random ABP may define a
random hypersurface in P𝑛 that is always singular. It is rather uncommon in our field to be able to study
stochastic models featuring singularities almost surely, so it is worth a lemma.

Lemma 5.2. If 𝑓 P C[𝑧0, . . . , 𝑧𝑛] is the polynomial computed by a algebraic branching program with
at most n edges, then the hypersurface 𝑉 ( 𝑓 ) Ď P𝑛 is singular.

Proof. Let e be the number of edges of the algebraic branching program computing f. After a linear
change of variables, we may assume that f depends only on 𝑧0, . . . , 𝑧𝑒´1. The singular locus of 𝑉 ( 𝑓 ) is
defined by the vanishing of the partial derivatives B

B𝑧𝑖
𝑓 . But these derivatives are identically 0 for 𝑖 � 𝑒,

so that the singular locus is defined by at most e equations. So it is nonempty. �

As already mentioned before, the distribution of a polynomial computed by a Gaussian random ABP
is best understood in terms of matrices. This calls for the introduction of some terminology. For any
𝐷-tuple r = (𝑟1, . . . , 𝑟𝐷), let 𝑀r (𝑛 + 1) (and 𝑀r for short) denote the space of all 𝐷-tuples of matrices
(𝐴1 (𝑧), . . . , 𝐴𝐷 (𝑧)), of respective size 𝑟𝐷 ˆ 𝑟1, 𝑟1 ˆ 𝑟2, . . ., 𝑟𝐷´1 ˆ 𝑟𝐷 , with degree one homogeneous
entries in 𝑧 = (𝑧0, . . . , 𝑧𝑛) (it is convenient to think of 𝑟0 = 𝑟𝐷). We have dimC 𝑀r = (𝑛+1)

∑𝐷
𝑖=1 𝑟𝑖´1𝑟𝑖 .

For 𝐴 P 𝑀r, we define the degree 𝐷 homogeneous polynomial

𝑓𝐴(𝑧)
.
= tr (𝐴1(𝑧) ¨ ¨ ¨ 𝐴𝐷 (𝑧)) . (5.1)

A Hermitian norm is defined on 𝑀r by

‖𝐴‖2 .
=

𝐷∑
𝑖=1

𝑛∑
𝑗=0

‖𝐴𝑖 (𝑒 𝑗 )‖
2
Frob,

where 𝑒 𝑗 = (0, . . . , 0, 1, 0, . . . , 0) P C𝑛+1, with a 1 at index j (0 � 𝑗 � 𝑛). The standard Gaussian
probability on𝑀r is defined by the density 𝜋´ dimC 𝑀r exp(´‖𝐴‖2)d𝐴. The distribution of the polynomial
computed by a Gaussian random ABP with layer sizes (𝑟1, . . . , 𝑟𝐷´1) is the distribution of 𝑓𝐴, where A
is standard Gaussian in 𝑀(𝑟1 ,...,𝑟𝐷´1 ,1) .

The following statement is the main ingredient of the proof of Theorem 1.5. It can be seen as an
analogue of Lemma I.37. Note that the case 𝑟𝐷 = 1 is the case of ABPs.
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Proposition 5.3. Let 𝑟1, . . . , 𝑟𝐷´1 � 2, and 𝑟𝐷 � 1. Let 𝐴 P 𝑀r be standard Gaussian, and let 𝜁 P P𝑛

be a uniformly distributed projective zero of 𝑓𝐴. For any 𝑘 � 2, we have

E𝐴,𝜁

[��d𝜁 𝑓𝐴
��´2

���� 1
𝑘!

d𝑘𝜁 𝑓𝐴
����2

Frob

]
�

1
𝑛𝐷

(
𝐷

𝑘

) (
𝐷 + 𝑛

𝑘

) (
1 +

𝐷 ´ 1
𝑘 ´ 1

) 𝑘´1

�
[

1
4𝐷

2 (𝐷 + 𝑛)

(
1 +

𝐷 ´ 1
𝑘 ´ 1

)] 𝑘´1
.

Theorem 1.5 easily follows from Proposition 5.3.

Proof of Theorem 1.5. Let 𝐴 P 𝑀r be standard Gaussian so that 𝑓 = 𝑓𝐴. The proof follows exactly the
lines of the proof of Lemma I.38 and the intermediate Lemma I.37. We bound the supremum in the
definition (1.3) of 𝛾Frob by a sum:

E
[
𝛾Frob ( 𝑓𝐴, 𝜁)

2] � 𝐷∑
𝑘=2
E

[(��d𝜁 𝑓𝐴
��´1

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���
Frob

) 2
𝑘´1

]
(5.2)

�
𝐷∑
𝑘=2
E

[��d𝜁 𝑓𝐴
��´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob

] 1
𝑘´1

(5.3)

�
𝐷∑
𝑘=2

1
4𝐷

2 (𝐷 + 𝑛)

(
1 +

𝐷 ´ 1
𝑘 ´ 1

)
, by Proposition 5.3, (5.4)

� 3
4𝐷

3 (𝐷 + 𝑛) log𝐷, (5.5)

using Jensen’s inequality for (5.3) and 1 +
∑𝐷

𝑘=2
1

𝑘´1 � 2 + log(𝐷 ´ 1) ď 3 log𝐷 for (5.5). �

The remainder of this article is devoted to the proof of Proposition 5.3.

5.1. A coarea formula

The goal of this subsection is to establish a consequence of the coarea formula [19, Theorem 3.1] that is
especially useful to estimate Γ( 𝑓 ) for a random polynomial f. This involves a certain identity of normal
Jacobians of projections that appears so frequently that it is worthwhile to provide the statement in some
generality. Let us first introduce some useful notations. For a linear map ℎ : 𝐸 Ñ 𝐹 between two real
Euclidean spaces, we define its Euclidean determinant as

Edet(ℎ) .
=

a

detR (ℎ ˝ ℎ˚), (5.6)

where ℎ˚ : 𝐹 Ñ 𝐸 is the adjoint operator of h and the notation detR simply recalls that the base field isR.
If 𝑝 : 𝑈 Ñ 𝑉 is a linear map between complex Hermitian spaces, then Edet(𝑝) is defined by the

induced real Euclidean structures on U and V, and it is well known that

Edet(𝑝) = detC(𝑝 ˝ 𝑝˚), (5.7)

and detC is the determinant over C.
The normal Jacobian of a smooth map 𝜑 between Riemannian manifolds at a given point x is defined

as the Euclidean determinant of the derivative of the map at that point:

NJ𝑥 𝜑
.
= Edet (d𝑥𝜑) . (5.8)
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Lemma 5.4. Let E and F be Euclidean (respectively, Hermitian) spaces, let V be a subspace of 𝐸ˆ𝐹 and
let 𝑝 : 𝐸ˆ𝐹 Ñ 𝐸 and 𝑞 : 𝐸ˆ𝐹 Ñ 𝐹 be the canonical projections. Then Edet(𝑝 |𝑉 ) = Edet((𝑞 |𝑉 K)˚)

and Edet(𝑞 |𝑉 ) = Edet((𝑝 |𝑉 K )˚).

Proof. By symmetry, it suffices to show the first equality. Let 𝑣1, . . . , 𝑣𝑟 , 𝑤1, . . . , 𝑤𝑠 be an orthonormal
basis of 𝐸 ˆ 𝐹, such that 𝑣1, . . . , 𝑣𝑟 is a basis of V and 𝑤1, . . . , 𝑤𝑠 is a basis of 𝑉K. After fixing
orthonormal bases for E and F (and the corresponding basis of 𝐸 ˆ 𝐹), consider the orthogonal
(respectively, unitary) matrix U with columns 𝑣1, . . . , 𝑣𝑟 , 𝑤1, . . . , 𝑤𝑠 . We decompose U as a block
matrix

𝑈
.
=

[
𝑉𝐸 𝑊𝐸

𝑉𝐹 𝑊𝐹

]
.
=

[
𝑝(𝑣1) . . . 𝑝(𝑣𝑟 ) 𝑝(𝑤1) . . . 𝑝(𝑤𝑠)

𝑞(𝑣1) . . . 𝑞(𝑣𝑟 ) 𝑞(𝑤1) . . . 𝑞(𝑤𝑠)

]
. (5.9)

Using 𝑈𝑈˚ = 𝐼 and 𝑈˚𝑈 = 𝐼, we see that 𝑉𝐸𝑉
˚
𝐸 +𝑊𝐸𝑊

˚
𝐸 = 𝐼 and 𝑊˚

𝐸𝑊𝐸 +𝑊˚
𝐹𝑊𝐹 = 𝐼. It follows

from Sylvester’s determinant identity det(𝐼 + 𝐴𝐵) = det(𝐼 + 𝐵𝐴) that

det(𝑉𝐸𝑉
˚
𝐸 ) = det(𝐼 ´𝑊𝐸𝑊

˚
𝐸 ) = det(𝐼 ´𝑊˚

𝐸𝑊𝐸 ) = det(𝑊˚
𝐹𝑊𝐹 ). (5.10)

By definition, we have Edet(𝑝 |𝑉 ) = det(𝑉𝐸𝑉
˚
𝐸 )

𝜂
2 with 𝜂 = 1 in the Euclidean situation and 𝜂 = 2 in

the Hermitian situation. Similarly, Edet((𝑞 |𝑉 K)˚) = det(𝑊˚
𝐹𝑊𝐹 )

𝜂
2 . Therefore, we have Edet(𝑝 |𝑉 ) =

Edet((𝑞 |𝑉 K )˚). �

Corollary 5.5. In the setting of Lemma 5.4, suppose V is a real (or complex) hyperplane in 𝐸 ˆ 𝐹 with
nonzero normal vector (𝑣, 𝑤) P 𝐸 ˆ 𝐹. Then

Edet(𝑝 |𝑉 )
Edet(𝑞 |𝑉 )

=

(
‖𝑤‖

‖𝑣‖

) 𝜂
,

where 𝜂 = 1 in the Euclidean situation and 𝜂 = 2 in the Hermitian situation.

Proof. 𝑉K is spanned by (𝑣, 𝑤). Without loss of generality, we may scale (𝑣, 𝑤) so that ‖𝑣‖2+‖𝑤‖2 = 1.
The vector (𝑣, 𝑤) forms a unitary basis of 𝑉K, in which the matrix of 𝑝 |𝑉 K is given by v, as a column
vector. Therefore, Edet((𝑝𝑉 K )˚) = det(𝑣˚𝑣)

𝜂
2 = ‖𝑣‖𝜂 . Similarly, Edet((𝑞 |𝑉 K )˚) = det(𝑤˚𝑤)

𝜂
2 =

‖𝑤‖𝜂 . Now apply Lemma 5.4. �

We consider now the abstract setting of a family ( 𝑓𝐴) of homogeneous polynomials of degree 𝐷 in
the variables 𝑧0, . . . , 𝑧𝑛, parameterised by elements A of a Hermitian manifold M through a holomorphic
map 𝐴 P 𝑀 ÞÑ 𝑓𝐴. Let V be the solution variety {(𝐴, 𝜁) P 𝑀 ˆ P𝑛 | 𝑓𝐴(𝜁) = 0} and 𝜋1 : V Ñ 𝑀 and
𝜋2 : V Ñ P𝑛 be the restrictions of the canonical projections. We can identify the fibre 𝜋´1

1 (𝐴) with the
zero set𝑉 ( 𝑓𝐴) in P𝑛. Moreover, the fibre 𝜋´1

2 (𝜁) can be identified with 𝑀𝜁
.
= {𝐴 P 𝑀 | 𝑓𝐴(𝜁) = 0}. For

fixed 𝜁 P C𝑛+1, such that ‖𝜁 ‖ = 1, we consider the map 𝑀 Ñ C, 𝐴 ÞÑ 𝑓𝐴(𝜁) and its derivative at A,

B𝐴 𝑓 (𝜁) : 𝑇𝐴𝑀 Ñ C. (5.11)

Moreover, for fixed 𝐴 P 𝑀 , we consider the map 𝑓𝐴 : C𝑛+1 Ñ C and its derivative at 𝜁 ,

d𝜁 𝑓𝐴 : 𝑇𝜁 P𝑛 Ñ C, (5.12)

restricted to the tangent space 𝑇𝜁 P𝑛, that we identify with the orthogonal complement of C𝜁 in C𝑛+1

with respect to the standard Hermitian inner product. Below, it will be convenient to write B𝐴 𝑓 (𝜁) and
d𝜁 𝑓𝐴 for 𝜁 P P𝑛, meaning that 𝜁 stands for a representative in C𝑛+1 (due to B𝐴 𝑓 (𝑡𝜁) = 𝑡𝐷B𝐴 𝑓 (𝜁) and
d𝑡 𝜁 𝑓𝐴 = 𝑡𝐷d𝜁 𝑓𝐴, the statements do not depend on the scaling).
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Proposition 5.6. For any measurable function Θ : V Ñ [0,8), we have∫
𝑀
d𝐴

∫
𝑉 ( 𝑓𝐴)
d𝜁 Θ(𝐴, 𝜁)‖B𝐴 𝑓 (𝜁)‖

2 =
∫
P𝑛
d𝜁

∫
𝑀𝜁

d𝐴 Θ(𝐴, 𝜁)‖d𝜁 𝑓𝐴‖2.

Here, d𝐴 denotes the Riemannian volume measure on M and 𝑀𝜁 , respectively.

Proof. As in [15, Lemma 16.9], the tangent space of V at (𝐴, 𝜁) P V can be expressed as

𝑉
.
=𝑇𝐴,𝜁V =

{
( �𝐴, �𝜁) P 𝑇𝐴𝑀 ˆ 𝑇𝜁 P

𝑛
�� d𝜁 𝑓𝐴( �𝜁) + B𝐴 𝑓 (𝜁) ( �𝐴) = 0

}
. (5.13)

If B𝐴 𝑓 (𝜁) and d𝜁 𝑓𝐴 are not both zero, then V is a hyperplane in the product 𝐸 ˆ 𝐹
.
=𝑇𝐴𝑀 ˆ 𝑇𝜁 P

𝑛 of
Hermitian spaces and V has the normal vector ((B𝐴 𝑓 (𝜁))˚, (d𝜁 𝑓𝐴)˚), where ˚ denotes the Hermitian
adjoint. If we denote by p and q the canonical projections of V onto E and F, then d𝐴,𝜁 𝜋1 = 𝑝 |𝑉 and
d𝐴,𝜁 𝜋2 = 𝑞 |𝑉 , hence

NJ𝐴,𝜁 (𝜋1) = Edet(𝑝 |𝑉 ), NJ𝐴,𝜁 (𝜋2) = Edet(𝑞 |𝑉 ). (5.14)

By Corollary 5.5, we, therefore, have

NJ𝐴,𝜁 (𝜋1)

NJ𝐴,𝜁 (𝜋2)
=

Edet(𝑝 |𝑉 )
Edet(𝑞 |𝑉 )

=
‖(d𝜁 𝑓𝐴)˚‖2

‖(B𝐴 𝑓 (𝜁))˚‖2 =
‖d𝜁 𝑓𝐴‖2

‖B𝐴 𝑓 (𝜁)‖2 . (5.15)

The coarea formula [19, Theorem 3.1], applied to 𝜋1 : V Ñ 𝑀 asserts,∫
V
d(𝐴, 𝜁)Θ(𝐴, 𝜁)‖d𝜁 𝑓𝐴‖2 NJ𝐴,𝜁 (𝜋1) =

∫
𝑀
d𝐴

∫
𝑉 ( 𝑓𝐴)
d𝜁 Θ(𝐴, 𝜁)‖d𝜁 𝑓𝐴‖2 (5.16)

(note that V may have singularities, so we actually apply the coarea formula to its smooth locus. The
Lipschitz-continuity hypothesis required by Federer is satisfied: 𝜋1 is 1-Lipschitz continuous, since it is
the restriction to V of the projection 𝑀 ˆ P𝑛 Ñ 𝑀). On the other hand, the coarea formula applied to
𝜋2 : V Ñ P𝑛 gives∫

V
d(𝐴, 𝜁)Θ(𝐴, 𝜁)‖B𝐴 𝑓 (𝜁)‖

2 NJ𝐴,𝜁 (𝜋2) =
∫
P𝑛
d𝜁

∫
𝑀𝜁

d𝐴 Θ(𝐴, 𝜁)‖B𝐴 𝑓 (𝜁)‖
2. (5.17)

By (5.15), we have

NJ𝐴,𝜁 (𝑝)‖B𝐴 𝑓 (𝜁)‖
2 = NJ𝐴,𝜁 (𝑞)‖d𝜁 𝑓𝐴‖2, (5.18)

so all the four integrals above are equal. �

5.2. A few lemmas on Gaussian random matrices

We present, here, some auxiliary results on Gaussian random matrices, centring around the new notion
of the anomaly of a matrix. This will be crucial for the proof of Theorem 1.5.

We endow the space C𝑟 with the probability density 𝜋´𝑟 𝑒´‖𝑥 ‖2 d𝑥, where ‖𝑥‖ is the usual Hermitian
norm, and call a random vector 𝑥 P C𝑟 with this probability distribution standard Gaussian. This
amounts to say that the real and imaginary parts of x are independent centred Gaussian with variance
1
2 . We note that E𝑥

[
‖𝑥‖2] = 𝑟 . This convention slightly differs from some previous writings with

a different scaling, where the distribution used is (2𝜋)´𝑟 𝑒´ 1
2 ‖𝑥 ‖

2 d𝑥. This choice seems more natural
since it avoids many spurious factors. Similarly, the matrix space C𝑟ˆ𝑠 is endowed with the probability
density 𝜋´𝑟𝑠 exp(´‖𝑅‖2

Frob)d𝑅, and we call a random matrix with this probability distribution standard
Gaussian as well (in the random matrix literature, this is called complex Ginibre ensemble).
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Lemma 5.7. For 𝑃 P C𝑟ˆ𝑠 fixed and 𝑥 P C𝑠 standard Gaussian, we have

E𝑥

[
‖𝑃𝑥‖2] = ‖𝑃‖2

Frob, E𝑥

[
‖𝑃𝑥‖´2]

ě ‖𝑃‖´2
Frob, E𝑥

[
‖𝑥‖´2] = 1

𝑠 ´ 1
.

Proof. By the singular value decomposition and unitary invariance, we may assume that P equals
diag(𝜎1, . . . , 𝜎min(𝑟 ,𝑠) ), with zero columns or zero rows appended. Then ‖𝑃𝑥‖2 =

∑
𝑖 𝜎

2
𝑖 |𝑥𝑖 |

2, hence,
E𝑥

[
‖𝑃𝑥‖2] = ∑

𝑖 𝜎
2
𝑖 E𝑥𝑖

[
‖𝑥𝑖 ‖

2] = ∑
𝑖 𝜎

2
𝑖 = ‖𝑃‖2

Frob.
For the second assertion, we note that for a nonnegative random variable Z, we have by Jensen’s

inequality that E [𝑍]´1
ď E

[
𝑍´1] , since 𝑥 ÞÑ 𝑥´1 is convex on (0,8). The second assertion follows

by applying this to 𝑍 .
= ‖𝑃𝑥‖2 and using the first assertion.

For the third assertion, we note ‖𝑥‖2 = 1
2 𝜒

2
2𝑠 , where 𝜒2

2𝑠 stands for a chi-square distribution with 2𝑠
degrees of freedom. Hence, 𝜒´2

2𝑠 is an inverse chi-square and E[𝜒´2
2𝑠 ] = 1/(2𝑠 ´ 2) [20, §A.1, Table

A.1]. �

We define the anomaly of a matrix 𝑃 P C𝑟ˆ𝑠 as the quantity

𝜃 (𝑃)
.
=E𝑥

[
‖𝑃‖2

Frob
‖𝑃𝑥‖2

]
P [1,8), (5.19)

where 𝑥 P C𝑠 is a standard Gaussian random vector. Note that 𝜃 (𝑃) ě 1 by Lemma 5.7. Moreover, by
the same lemma, 𝜃 (𝐼𝑟 ) = 𝑟/(𝑟 ´ 1). This quantity 𝜃 (𝑃) is easily seen to be finite if rk 𝑃 ą 1; it grows
logarithmically to infinity as P approaches a rank 1 matrix.

Lemma 5.8. Let 𝑃 P C𝑟ˆ𝑠 and 𝑄 P C𝑡ˆ𝑢 be fixed matrices and 𝑋 P C𝑠ˆ𝑡 be a standard Gaussian
random matrix. Then

E𝑋

[
‖𝑃‖2

Frob‖𝑄‖2
Frob

‖𝑃𝑋𝑄‖2
Frob

]
� 𝜃 (𝑃).

Proof. Up to left and right multiplications of Q by unitary matrices, we may assume that Q is diagonal,
with nonnegative real numbers𝜎1, . . . , 𝜎min(𝑡 ,𝑢) on the diagonal (and we define𝜎𝑖 = 0 for 𝑖 ą min(𝑡, 𝑢)).
This does not change the left-hand side because the Frobenius norm is invariant by left and right
multiplications with unitary matrices, and the distribution of X is unitarily invariant as well.

Let 𝑒𝑢1 , . . . , 𝑒
𝑢
𝑢 (reps. 𝑒𝑡1, . . . , 𝑒

𝑡
𝑡 ) be the canonical basis of C𝑢 (respectively, C𝑡 ). Observe that

‖𝑃𝑋𝑄‖2
Frob =

𝑢∑
𝑖=1

‖𝑃𝑋𝑄𝑒𝑢𝑖 ‖
2 =

𝑡∑
𝑖=1

𝜎2
𝑖 ‖𝑃𝑋𝑒

𝑡
𝑖 ‖

2. (5.20)

Noting that ‖𝑄‖2
Frob = 𝜎2

1 + ¨ ¨ ¨ + 𝜎2
𝑡 , the convexity of 𝑥 ÞÑ 𝑥´1 on (0,8) gives(

1
‖𝑄‖2

Frob

𝑡∑
𝑖=1

𝜎2
𝑖 ‖𝑃𝑋𝑒

𝑡
𝑖 ‖

2

)´1

�
1

‖𝑄‖2
Frob

𝑡∑
𝑖=1

𝜎2
𝑖

‖𝑃𝑋𝑒𝑡𝑖 ‖
2 . (5.21)

Since X is standard Gaussian, 𝑋𝑒𝑡𝑖 P C𝑠 is also standard Gaussian. Therefore, by definition of 𝜃, we
have for any 1 � 𝑖 � 𝑡,

E𝑋

[
‖𝑃‖2

Frob
‖𝑃𝑋𝑒𝑡𝑖 ‖

2

]
= 𝜃 (𝑃). (5.22)
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It follows that

E𝑋

[
‖𝑃‖2

Frob‖𝑄‖2
Frob

‖𝑃𝑋𝑄‖2
Frob

]
�

1
‖𝑄‖2

Frob

𝑡∑
𝑖=1

𝜎2
𝑖 E

[
‖𝑃‖2

Frob
‖𝑃𝑋𝑒𝑡𝑖 ‖

2

]
, by (5.20) and (5.21),

=
1

‖𝑄‖2
Frob

𝑡∑
𝑖=1

𝜎2
𝑖 𝜃 (𝑃), by (5.22),

= 𝜃 (𝑃),

which concludes the proof. �

Lemma 5.9. Let 𝑃 P C𝑟ˆ𝑠 be fixed, 𝑡 ą 1 and 𝑋 P C𝑠ˆ𝑡 be a standard Gaussian random matrix. Then

E𝑋 [𝜃 (𝑃𝑋)] =
1

𝑡 ´ 1
+ 𝜃 (𝑃).

Furthermore, if 𝑋1, . . . , 𝑋𝑚 are standard Gaussian matrices of size 𝑟0 ˆ 𝑟1, 𝑟1 ˆ 𝑟2, . . . , 𝑟𝑚´1 ˆ 𝑟𝑚,
respectively, where 𝑟0, . . . , 𝑟𝑚 ą 1, then

E𝑋1 ,...,𝑋𝑚 [𝜃 (𝑋1 ¨ ¨ ¨ 𝑋𝑚)] = 1 +

𝑚∑
𝑖=0

1
𝑟𝑖 ´ 1

.

Proof. Let 𝑥 P C𝑡 be a standard Gaussian random vector, so that

E𝑋 [𝜃 (𝑃𝑋)] = E𝑋,𝑥

[
‖𝑃𝑋 ‖2

Frob
‖𝑃𝑋𝑥‖2

]
. (5.23)

We first compute the expectation conditionally on x. So we fix x and write 𝑥 = ‖𝑥‖𝑢1 for some
unit vector 𝑢1. We choose other unit vectors 𝑢2, . . . , 𝑢𝑡 to form an orthonormal basis of C𝑡 . Since
‖𝑃𝑋 ‖2

Frob =
∑𝑡
𝑖=1 ‖𝑃𝑋𝑢𝑖 ‖

2, we obtain

‖𝑃𝑋 ‖2
Frob

‖𝑃𝑋𝑥‖2 =
1

‖𝑥‖2 +

𝑡∑
𝑖=2

‖𝑃𝑋𝑢𝑖 ‖
2

‖𝑃𝑋𝑢1‖2‖𝑥‖2 . (5.24)

Since X is standard Gaussian, the vectors 𝑋𝑢𝑖 are standard Gaussian and independent. So we obtain,
using Lemma 5.7,

E𝑋

[
‖𝑃𝑋𝑢𝑖 ‖

2

‖𝑃𝑋𝑢1‖2

]
= E𝑋 [‖𝑃𝑋𝑢𝑖 ‖

2] E𝑋

[
1

‖𝑃𝑋𝑢1‖2

]
(5.25)

= ‖𝑃‖2
Frob E𝑋

[
1

‖𝑃𝑋𝑢1‖2

]
= 𝜃 (𝑃). (5.26)

Combining with (5.24), we obtain

E𝑋

[
‖𝑃𝑋 ‖2

Frob
‖𝑃𝑋𝑥‖2

]
=

1
‖𝑥‖2 +

𝑡∑
𝑖=2

𝜃 (𝑃)

‖𝑥‖2 =
1

‖𝑥‖2
(
1 + (𝑡 ´ 1)𝜃 (𝑃)

)
. (5.27)

When we take the expectation over x, the first claim follows with the third statement of Lemma 5.7.
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The second claim follows by induction on m. The base case𝑚 = 1 follows from writingE𝑋1 [𝜃 (𝑋1)] =
E𝑋1

[
𝜃 (𝐼𝑟0𝑋1)

]
, the first part of Lemma 5.7 and 𝜃 (𝐼𝑟0) = 1 + 1

𝑟0´1 . For the induction step 𝑚 ą 1, we
first fix 𝑋1, . . . , 𝑋𝑚´1 and obtain from the first assertion

E𝑋𝑚 [𝜃 (𝑋1 ¨ ¨ ¨ 𝑋𝑚´1𝑋𝑚)] =
1

𝑟𝑚 ´ 1
+ 𝜃 (𝑋1 ¨ ¨ ¨ 𝑋𝑚´1). (5.28)

Taking the expectation over 𝑋1, . . . , ¨ ¨ ¨ , 𝑋𝑚´1 and applying the induction hypothesis implies the
claim. �

Lemma 5.10. For any fixed 𝑃,𝑄 P C𝑟ˆ𝑟 and 𝑋 P C𝑟ˆ𝑟 standard Gaussian, we have

(i) E
[
|tr(𝑋𝑄) | 2] = ‖𝑄‖2

Frob,
(ii) E

[
‖𝑃𝑋𝑄‖2

Frob
]
= ‖𝑃‖2

Frob ‖𝑄‖2
Frob.

Proof. By unitary invariance of the distribution of X and the Frobenius norm, we can assume that P
and Q are diagonal matrices. Then the claims reduce to easy computations. �

5.3. Proof of Proposition 5.3

We now carry out the estimation of

E

[��d𝜁 𝑓𝐴
��´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob

]
, (5.29)

where 𝐴 P 𝑀r is standard Gaussian and 𝜁 P P𝑛 is a uniformly distributed zero of 𝑓𝐴. The computation
is lengthy, but the different ingredients arrange elegantly.

5.3.1. Conditioning 𝑨 on 𝜻
As often in this kind of average analysis, the first step is to consider the conditional distribution of
A given 𝜁 , reversing the natural definition where 𝜁 is defined conditionally on A. This is of course
the main purpose of Proposition 5.6. Consider the Hermitian vector space 𝑀

.
=𝑀r, and let d1𝐴 =

𝜋´ dimC 𝑀r𝑒´
∑

𝑖 ‖𝐴𝑖 ‖
2 d𝐴 denote the Gaussian probability measure on 𝑀r. It is a classical fact (e.g., [25,

p. 20]), that the volume of a hypersurface of degree 𝐷 in P𝑛 equals 𝐷 vol P𝑛´1, this applies, in particular,
to 𝑉 ( 𝑓𝐴). By Proposition 5.6, we have

E

[��d𝜁 𝑓𝐴
��´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob

]
=
∫
𝑀
d1𝐴 (vol𝑉 ( 𝑓𝐴))´1

∫
𝑉 ( 𝑓𝐴)
d𝜁

��d𝜁 𝑓𝐴
��´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob
(5.30)

=
(
𝐷 vol P𝑛´1

)´1 ∫
P𝑛
d𝜁

∫
𝑀𝜁

d1𝐴 ‖B𝐴 𝑓 (𝜁)‖
´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob
. (5.31)

Here, d1𝐴 denotes the Gaussian measure on M and 𝑀𝜁 , respectively. We focus on the inner integral over
𝑀𝜁 for some fixed 𝜁 . Everything being unitarily invariant, this integral actually does not depend on 𝜁 .
So we fix 𝜁 .

= [1 : 0 : ¨ ¨ ¨ : 0]. We next note that vol P𝑛 = 𝜋
𝑛 vol P𝑛´1, and we obtain

E

[��d𝜁 𝑓𝐴
��´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob

]
=

𝜋

𝐷𝑛

∫
𝑀𝜁

d1𝐴 ‖B𝐴 𝑓 (𝜁)‖
´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob
. (5.32)

Recall that the entries of 𝐴𝑖 = 𝐴𝑖 (𝑧) are linear forms in 𝑧0, 𝑧1, . . . , 𝑧𝑛. We define

𝐵𝑖
.
= 𝐴𝑖 (𝜁) P C

𝑟𝑖´1ˆ𝑟𝑖 , 𝐴𝑖 (𝑧) = 𝑧0𝐵𝑖 + 𝐶𝑖 (𝑧1, . . . , 𝑧𝑛), (5.33)
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where the entries of the matrix 𝐶𝑖 (𝑧1, . . . , 𝑧𝑛) are linear forms 𝑧1, . . . , 𝑧𝑛. This yields an orthogonal
decomposition 𝑀r (𝑛+1) » 𝑀r (1)‘𝑀r(𝑛) with respect to the Hermitian norm on 𝑀r, where 𝐴 = 𝐵+𝐶
with

𝐵 = (𝐵1, . . . , 𝐵𝐷) P

𝐷∏
𝑖=1
C
𝑟𝑖´1ˆ𝑟𝑖 » 𝑀r (1), 𝐶 = (𝐶1, . . . , 𝐶𝐷) P 𝑀r (𝑛). (5.34)

Consider the function 𝑓 (𝜁) : 𝑀r (𝑛 + 1) Ñ C, 𝐴 ÞÑ 𝑓𝐴(𝜁). By (5.1), we have 𝑓𝐴(𝜁) =
tr(𝐴1 (𝜁), . . . , 𝐴𝐷 (𝜁)) = tr(𝐵1 ¨ ¨ ¨ 𝐵𝐷). The derivative of 𝑓 (𝜁) is given by

B𝐴 𝑓 (𝜁) ( �𝐴) =
𝐷∑
𝑖=1

tr
(
𝐵1 ¨ ¨ ¨ 𝐵𝑖´1 �𝐵𝑖𝐵𝑖+1 ¨ ¨ ¨ 𝐵𝐷

)
=

𝐷∑
𝑖=1

tr( �𝐵𝑖 �̂�𝑖), (5.35)

where �𝐴 = �𝐵 + �𝐶 and (invariance of the trace under cyclic permutations)

�̂�𝑖
.
= 𝐵𝑖+1 ¨ ¨ ¨ 𝐵𝐷 𝐵1 ¨ ¨ ¨ 𝐵𝑖´1. (5.36)

Hence, the induced norm of the linear form B𝐴 𝑓 (𝜁) on the Hermitian space 𝑀r satisfies

‖B𝐴 𝑓 (𝜁)‖
2 =

𝐷∑
𝑖=1

‖�̂�𝑖 ‖
2
Frob. (5.37)

The equation defining the fibre 𝑀𝜁 can be written as tr (𝐵1 ¨ ¨ ¨ 𝐵𝐷) = 0. We have 𝑀𝜁 » 𝑊 ˆ𝑀r(𝑛),
where W denotes the space of 𝐷-tuples of complex matrices (of respective size 𝑟0 ˆ 𝑟1, 𝑟1 ˆ 𝑟2, etc.)
that satisfy this condition. Using this identification, the projection

𝑀𝜁 Ñ 𝑊, (𝐴1 (𝑧), . . . , 𝐴𝐷 (𝑧)) ÞÑ (𝐵1, . . . , 𝐵𝐷) = (𝐴1(𝜁), . . . , 𝐴𝐷 (𝜁)) (5.38)

is given by evaluation at 𝜁 . With (5.37), this implies that∫
𝑀𝜁

d1𝐴 ‖B𝐴 𝑓 (𝜁)‖
´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob
=
∫
𝑊
d1𝐵

∫
𝑀r (𝑛)
d1𝐶 ‖B𝐴 𝑓 (𝜁)‖

´2
��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob
(5.39)

=
∫
𝑊

d1𝐵

‖�̂�1‖2 + ¨ ¨ ¨ + ‖�̂�𝐷 ‖2

∫
𝑀r (𝑛)
d1𝐶

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob
. (5.40)

As before, we denote by d1𝐵 and d1𝐶 the Gaussian probability measures on the respective spaces.

5.3.2. Computation of the inner integral
We now study ‖d𝑘𝜁 𝑓𝐴‖

2
Frob to obtain an expression for the integral

∫
d1𝐶‖ 1

𝑘! d𝑘𝜁 𝑓𝐴‖
2
Frob that appears in

(5.40). The goal is Equation (5.56).
Recall that 𝜁 = (1, 0, . . . , 0). Let 𝑔(𝑧) .

= 𝑓𝐴(𝜁 + 𝑧), and write 𝑔𝑘 for the kth homogeneous component
of g. By Lemma I.30, we have ��� 1

𝑘! d𝑘𝜁 𝑓𝐴
���

Frob
= ‖𝑔𝑘 ‖𝑊 . (5.41)
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By expanding a multilinear product, we compute with (5.33) that

𝑔(𝑧0, . . . , 𝑧𝑛) = tr (((1 + 𝑧0)𝐵1 + 𝐶1) ¨ ¨ ¨ ((1 + 𝑧0)𝐵𝐷 + 𝐶𝐷)) (5.42)

=
∑

𝐼Ď{1,...,𝐷 }

(1 + 𝑧0)
𝐷´#𝐼 ℎ𝐼 (𝑧1, . . . , 𝑧𝑛), (5.43)

where ℎ𝐼 (𝑧1, . . . , 𝑧𝑛)
.
= tr

(
𝑈 𝐼

1 ¨ ¨ ¨𝑈 𝐼
𝐷

)
with

𝑈 𝐼
𝑖

.
=

{
𝐶𝑖 (𝑧1, . . . , 𝑧𝑛) if 𝑖 P 𝐼

𝐵𝑖 otherwise.
(5.44)

Note that ℎ𝐼 is of degree #𝐼 in 𝑧1, . . . , 𝑧𝑛. Hence, the homogeneous part 𝑔𝑘 satisfies

𝑔𝑘 (𝑧0, . . . , 𝑧𝐷) =
𝑘∑

𝑚=1

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

)
𝑧𝑘´𝑚

0

∑
#𝐼=𝑚

ℎ𝐼 (𝑧1, . . . , 𝑧𝑛). (5.45)

The contribution for 𝑚 = 0 vanishes by assumption:(
𝐷

𝑘

)
𝑧𝑘0 ℎ∅ =

(
𝐷

𝑘

)
𝑧𝑘0 tr(𝐵1 ¨ ¨ ¨ 𝐵𝑘 ) = 0. (5.46)

All the terms of the outer sum in (5.45) over m have disjoint monomial support, so they are orthogonal
for the Weyl inner product (see Section 3.1). Moreover, for any homogeneous polynomial 𝑝(𝑧1, . . . , 𝑧𝑛)
of degree 𝑚 � 𝑘 , the definition of the Weyl norm easily implies

( 𝑘
𝑚

)
‖𝑧𝑘´𝑚

0 𝑝‖2
𝑊 = ‖𝑝‖2

𝑊 . It follows that

‖𝑔𝑘 ‖
2
𝑊 =

𝑘∑
𝑚=1

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

)2 (
𝑘

𝑚

)´1
����� ∑

#𝐼=𝑚
ℎ𝐼

�����2

𝑊

. (5.47)

For two different subsets 𝐼, 𝐼 1 Ď {1, . . . , 𝐷}, there is at least one index i, such that 𝐶𝑖 occurs in ℎ𝐼 and
not in ℎ𝐼 1 , so that the Weyl inner product 〈ℎ𝐼 , ℎ𝐼 1〉𝑊 depends linearly on 𝐶𝑖 and then, by symmetry,∫

d1𝐶 〈ℎ𝐼 , ℎ𝐼 1〉𝑊 = 0. It follows that∫
d1𝐶 ‖𝑔𝑘 ‖

2
𝑊 =

𝑘∑
𝑚=1

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

)2 (
𝑘

𝑚

)´1 ∑
#𝐼=𝑚

∫
d1𝐶 ‖ℎ𝐼 ‖

2
𝑊 . (5.48)

For computing
∫

d1𝐶 ‖ℎ𝐼 ‖
2
𝑊 , with #𝐼 = 𝑚 ą 0, we proceed as follows. From Lemma 3.1 (ℎ𝐼 is a

homogeneous polynomial in n variables of degree m), we obtain that

‖ℎ𝐼 ‖
2
𝑊 =

(
𝑚 + 𝑛 ´ 1

𝑚

)
1

vol S(C𝑛)

∫
S(C𝑛)

d𝑧 |ℎ𝐼 (𝑧) | 2. (5.49)

Then, given that the tuple (𝐶1, . . . , 𝐶𝐷) is standard Gaussian in 𝑀r (𝑛), the matrices 𝐶1 (𝑧), . . . , 𝐶𝐷 (𝑧)
are independent standard Gaussian random matrices, for any 𝑧 P S(C𝑟 ). Let 𝐼 Ď {1, . . . , 𝐷} be such
that 1 P 𝐼 (without loss of generality, because the indices are defined up to cyclic permutation). Then
we have ℎ𝐼 (𝑧1, . . . , 𝑧𝑛) = tr

(
𝐶1 (𝑧)𝑈

𝐼
2 ¨ ¨ ¨𝑈 𝐼

𝐷

)
. Integrating over 𝐶1, Lemma 5.101 shows for a fixed

𝑧 P S(C𝑛+1) that ∫
d1𝐶1 |ℎ𝐼 (𝑧) |

2 = ‖𝑈 𝐼
2 ¨ ¨ ¨𝑈 𝐼

𝐷 ‖2
Frob. (5.50)
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Integrating further with respect to 𝐶𝑖 with 𝑖 ∉ 𝐼 is trivial since ‖𝑈 𝐼
2 ¨ ¨ ¨𝑈 𝐼

𝐷 ‖2
Frob does not depend on

these 𝐶𝑖 . To integrate with respect to 𝐶𝑖 with 𝑖 P 𝐼, we use Lemma 5.10(ii) to obtain∫
d1𝐶1d1𝐶𝑖 |ℎ𝐼 (𝑧) |

2 = ‖𝑈 𝐼
2 ¨ ¨ ¨𝑈 𝐼

𝑖´1‖
2
Frob ‖𝑈 𝐼

𝑖+1 ¨ ¨ ¨𝑈 𝐼
𝐷 ‖2

Frob. (5.51)

After integrating with respect to the remaining 𝐶𝑖 in the same way, we obtain∫
d1𝐶 |ℎ𝐼 (𝑧) |

2 = 𝑃𝐼 (𝐵), (5.52)

where 𝑃𝐼 (𝐵) does not depend on z and is defined as follows. Let 𝐼 = {𝑖1, . . . , 𝑖𝑚}, with 1 = 𝑖1 ă ¨ ¨ ¨ ă 𝑖𝑚.
Then

𝑃𝐼 (𝐵)
.
= ‖𝐵2 ¨ ¨ ¨ 𝐵𝑖2´1‖

2
Frob‖𝐵𝑖2+1 ¨ ¨ ¨ 𝐵𝑖3´1‖

2
Frob ¨ ¨ ¨ ‖𝐵𝑖𝑚+1 ¨ ¨ ¨ 𝐵𝐷 ‖2

Frob. (5.53)

More generally, if 𝑖1 ≠ 1, 𝑃𝐼 (𝐵) is defined as above with the first and last factors replaced, respectively,
by

‖𝐵𝑖1+1 ¨ ¨ ¨ 𝐵𝑖2´1‖
2
Frob and ‖𝐵𝑖𝑚+1 ¨ ¨ ¨ 𝐵𝐷𝐵1 ¨ ¨ ¨ 𝐵𝑖1´1‖

2
Frob, (5.54)

and (5.52) still holds. Averaging (5.52) with respect to 𝑧 P S(C𝑛), we obtain with (5.49)∫
d1𝐶 ‖ℎ𝐼 ‖

2
𝑊 =

(
𝑚 + 𝑛 ´ 1

𝑚

)
𝑃𝐼 (𝐵). (5.55)

Combining further with (5.41) and (5.48), we obtain∫
d1𝐶

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob
=

𝑘∑
𝑚=1

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

)2 (
𝑘

𝑚

)´1 (
𝑚 + 𝑛 ´ 1

𝑚

) ∑
#𝐼=𝑚

𝑃𝐼 (𝐵). (5.56)

Combining with (5.40), this leads to∫
𝑀𝜁

d1𝐴 ‖B𝐴 𝑓 (𝜁)‖
´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2
=

𝑘∑
𝑚=1

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

)2 (
𝑘

𝑚

)´1 (
𝑚 + 𝑛 ´ 1

𝑚

) ∑
#𝐼=𝑚

∫
𝑊
d1𝐵

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob + ¨ ¨ ¨ + ‖�̂�𝐷 ‖2

Frob
. (5.57)

Recall that �̂�𝑖 = 𝐵𝑖+1 ¨ ¨ ¨ 𝐵𝐷𝐵1 ¨ ¨ ¨ 𝐵𝑖´1.

5.3.3. Computation of the integral over W
We now consider the integral ∫

𝑊
d1𝐵

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob + ¨ ¨ ¨ + ‖�̂�𝐷 ‖2

Frob
, (5.58)

which appears in the right-hand side of (5.57). The goal is the bound (5.68). To simplify notation, we
assume 1 P 𝐼, but this does not change anything, up to cyclic permutation of the indices. We apply the
coarea formula to the projection 𝑞 : 𝑊 Ñ 𝐹, 𝐵 ÞÑ (𝐵2, . . . , 𝐵𝐷), where 𝐹 .

=C𝑟1ˆ𝑟2 ˆ ¨ ¨ ¨ ˆ C𝑟𝐷´1ˆ𝑟𝐷 .
Since the complex hypersurface W is defined by the condition tr(𝐵1 ¨ ¨ ¨ 𝐵𝐷) = 0, we have

𝑇𝐵𝑊 =

{
( �𝐵1, . . . , �𝐵𝐷)

����� 𝐷∑
𝑖=1

tr( �𝐵𝑖 �̂�𝑖) = 0

}
Ď C

𝑟𝐷ˆ𝑟1 ˆ 𝐹, (5.59)

this is the same computation as for (5.35).
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In particular, the normal space of W is spanned by (�̂�˚
1 , . . . , �̂�

˚
𝐷), where ˚ denotes the Hermitian

transpose. It follows from Lemma 5.4 (used as in Corollary 5.5) that the normal Jacobian NJ𝐵 (𝑞) of q
at some 𝐵 P 𝑊 is given by

NJ𝐵 (𝑞) =
‖�̂�1‖

2

‖�̂�1‖
2
Frob + ¨ ¨ ¨ + ‖�̂�𝐷 ‖2

Frob
. (5.60)

The coarea formula then gives∫
𝑊
d1𝐵

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob + ¨ ¨ ¨ + ‖�̂�𝐷 ‖2

Frob
=
∫
𝐹
d1𝐵2 ¨ ¨ ¨ d1𝐵𝐷

∫
tr(𝐵1¨¨¨𝐵𝐷 )=0
d1𝐵1

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob

. (5.61)

Note that the inner integrand does not depend on 𝐵1. Moreover, for fixed 𝐵2, . . . , 𝐵𝐷 , the condition
tr(𝐵1 ¨ ¨ ¨ 𝐵𝐷) = 0 restricts 𝐵1 to a hyperplane in C𝑟0ˆ𝑟1 . Due to the unitary invariance of the standard
Gaussian measure, the position of the hyperplane does not matter, and we obtain∫

tr(𝐵1¨¨¨𝐵𝐷 )=0
d1𝐵1 =

∫
C
𝑟0𝑟1´1

d1𝐵1 =
1
𝜋
. (5.62)

It follows that∫
𝑊
d1𝐵

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob + ¨ ¨ ¨ + ‖�̂�𝐷 ‖2

Frob
=

1
𝜋

∫
𝐹
d1𝐵2 ¨ ¨ ¨ d1𝐵𝐷

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob

(5.63)

=
1
𝜋

∫
𝐹
d1𝐵2 ¨ ¨ ¨ d1𝐵𝐷

∏𝑚´1
𝑘=1 ‖𝐵𝑖𝑘+1 ¨ ¨ ¨ 𝐵𝑖𝑘+1´1‖

2
Frob ¨ ‖𝐵𝑖𝑚+1 ¨ ¨ ¨ 𝐵𝐷 ‖2

Frob

‖𝐵2 ¨ ¨ ¨ 𝐵𝑖2 ¨ ¨ ¨ 𝐵𝑖3 ¨ ¨ ¨ ¨ ¨ ¨ 𝐵𝑖𝑚 ¨ ¨ ¨ 𝐵𝐷 ‖2
Frob

, (5.64)

where 𝐼 = {𝑖1, . . . , 𝑖𝑚} with 𝑖1 = 1. If 𝑚 = 1, that is 𝐼 = {1}, then the integrand simplifies to 1.
Recall the anomaly 𝜃 (𝐴) of a matrix defined in (5.19). When 𝑚 ą 1, we take expectations over

𝐵𝑖2 , . . . , 𝐵𝑖𝑚 and repeatedly apply Lemma 5.8, to obtain7∫
𝐹
d1𝐵2 ¨ ¨ ¨ d1𝐵𝐷

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob
�

𝑚´1∏
𝑘=1

∫
d1𝐵𝑖𝑘+1 ¨ ¨ ¨ d1𝐵𝑖𝑘+1´1𝜃 (𝐵𝑖𝑘+1 ¨ ¨ ¨ 𝐵𝑖𝑘+1´1). (5.65)

Every block 𝐵𝑖𝑘+1 ¨ ¨ ¨ 𝐵𝑖𝑘+1´1 appears except the last block 𝐵𝑖𝑚+1 ¨ ¨ ¨ 𝐵𝐷 . If one of the parameters 𝑟𝑖 is
1, then, by cyclic permutation of the indices, we may assume that it appears in the last block (indeed,
by the hypothesis 𝑟1, . . . , 𝑟𝐷´1 ě 2, there is at most one i with 𝑟𝑖 = 1).

7Let us exemplify the computations (5.65)–(5.66) on a particular case: 𝐷 = 6 and 𝐼 = {1, 4, 5}. In this case, 𝑃𝐼 (𝐵) =
‖𝐵2𝐵3 ‖

2
Frob ‖1‖2

Frob ‖𝐵6 ‖
2
Frob, where 1 is the identity matrix of size 𝑟4 ˆ 𝑟4. Then, by (5.63) and two applications of Lemma 5.8

(first for integrating w.r.t 𝐵4 then 𝐵5),∫
d1𝐵2 ¨ ¨ ¨ d1𝐵6

𝑃𝐼 (𝐵)

‖�̂�1 ‖2
=
∫

d1𝐵2 ¨ ¨ ¨ d1𝐵6
‖𝐵2𝐵3 ‖

2
Frob ‖𝐵5𝐵6 ‖

2
Frob

‖𝐵2𝐵3𝐵4𝐵5𝐵6 ‖
2
Frob

‖1‖2
Frob ‖𝐵6 ‖

2

‖𝐵5𝐵6 ‖
2
Frob

�
∫
𝐸
d1𝐵2 d1𝐵3 d1𝐵5 d1𝐵6 𝜃 (𝐵2𝐵3)

‖1‖2
Frob ‖𝐵6 ‖

2

‖𝐵5𝐵6 ‖
2
Frob

�
(∫

d1𝐵2 d1𝐵3 𝜃 (𝐵2𝐵3)

)
𝜃 (1)

=

(
1 +

1
𝑟1 ´ 1

+
1

𝑟2 ´ 1
+

1
𝑟3 ´ 1

) (
1 +

1
𝑟4 ´ 1

)
,

the last by Lemma 5.9.
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So we can apply Lemma 5.9 and obtain∫
𝐹
d1𝐵2 ¨ ¨ ¨ d1𝐵𝐷

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob
�

𝑚´1∏
𝑗=1

(
1 +

𝑖𝑘+1´1∑
𝑗=𝑖𝑘

1
𝑟 𝑗 ´ 1

)
(5.66)

�

(
1 +

1
𝑚 ´ 1

𝑖𝑚´1∑
𝑗=𝑖1

1
𝑟 𝑗 ´ 1

)𝑚´1

, (5.67)

using the inequality of arithmetic and geometric means. Since 𝑟 𝑗 ą 1 for 𝑗 � 𝑖𝑚 ´ 1, we further obtain∫
𝐹
d1𝐵2 ¨ ¨ ¨ d1𝐵𝐷

𝑃𝐼 (𝐵)

‖�̂�1‖
2
Frob
�

(
1 +

𝐷 ´ 1
𝑚 ´ 1

)𝑚´1
. (5.68)

5.3.4. Conclusion
Combining (5.32), (5.57), (5.63) and (5.68), we obtain (note the cancellation of 𝜋),

E

[��d𝜁 𝑓𝐴
��´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob

]
�

1
𝐷𝑛

𝑘∑
𝑚=1

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

)2 (
𝑘

𝑚

)´1 (
𝑚 + 𝑛 ´ 1

𝑚

) (
𝐷

𝑚

) (
1 +

𝐷 ´ 1
𝑚 ´ 1

)𝑚´1
. (5.69)

By reordering the factorials, we have(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

)2 (
𝑘

𝑚

)´1 (
𝐷

𝑚

)
=

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

) (
𝐷

𝑘

)
. (5.70)

As in the proof of Lemma I.37, we observe the identity

𝑘∑
𝑚=0

(
𝐷 ´ 𝑚

𝑘 ´ 𝑚

) (
𝑚 + 𝑛 ´ 1

𝑚

)
=

(
𝐷 + 𝑛

𝑘

)
. (5.71)

Moreover, since 𝑚 � 𝑘 , (
1 +

𝐷 ´ 1
𝑚 ´ 1

)𝑚´1
�

(
1 +

𝐷 ´ 1
𝑘 ´ 1

) 𝑘´1
(5.72)

(including 𝑚 = 1, where the left-hand side is 1). Equations (5.69), (5.70), (5.71) and (5.72) give

E

[��d𝜁 𝑓𝐴
��´2

��� 1
𝑘! d𝑘𝜁 𝑓𝐴

���2

Frob

]
�

1
𝑛𝐷

(
𝐷

𝑘

) (
𝐷 + 𝑛

𝑘

) (
1 +

𝐷 ´ 1
𝑘 ´ 1

) 𝑘´1
. (5.73)

This gives the first inequality of Proposition 5.3. For the second, we argue as in the proof of Lemma
I.37: the maximum value of

[ 1
𝑛𝐷

(𝐷
𝑘

) (𝐷+𝑛
𝑘

) ] 1
𝑘´1 with 𝑘 ě 2 is reached at 𝑘 = 2. Hence, for any 𝑘 ě 2,[

1
𝑛𝐷

(
𝐷

𝑘

) (
𝐷 + 𝑛

𝑘

)] 1
𝑘´1

ď

[
1
𝑛𝐷

(
𝐷

2

) (
𝐷 + 𝑛

2

)] 1
𝑘´1

ď

[
1
4
𝐷2 (𝐷 + 𝑛)

] 1
𝑘´1

. (5.74)

This concludes the proof of Proposition 5.3.
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