Canad. Math. Bull. Vol. 16 (1), 1973

ON AN INEQUALITY OF PEANO(1)

BY

JAMES S. MULDOWNEY

Let f be a real valued function on an open subset of \mathbb{R}^2 . It is assumed that f satisfies Carathéodory's conditions: f(t, x) is continuous in x for each t, Lebesgue measurable in t for each x and there is a locally integrable function m(t) such that $|f(t, x)| \le m(t)$ uniformly in x. A proof will be given of the following theorem.

THEOREM. Suppose u(t) is a real valued function on $[t_0, t_0+a)$ such that f(t,u(t)) is Lebesgue measurable and locally integrable on $[t_0, t_0+a)$,

(1)
$$u(t_2) - u(t_1) \leq \int_{t_1}^{t_2} f(s, u(s)) \, ds$$

for each $t_1, t_2 \in [t_0, t_0+a), t_1 < t_2$, and

$$u(t_0) \leq v_0, \qquad |v_0| < +\infty.$$

Then there exists a solution v(t) (in the sense of Carathéodory) of

(2)
$$v' = f(t, v), \quad v(t_0) = v_0$$

such that

6

$$(3) u(t) \le v(t)$$

on the intersection of the domains of u(t) and v(t).

COROLLARY. Suppose u(t) is a finite valued, essentially bounded measurable function on $[t_0, t_0+a)$ such that $\overline{D}u(t) < +\infty$ for all t and

(1')
$$\overline{D}u(t) \le f(t, u(t)), \text{ a.e. } [t_0, t_0 + a).$$

Then $u(t_0) \leq v_0$ implies the existence of a solution of (2) such that (3) holds.

It follows from essential boundedness and measurability of u(t) that f(t, u(t)) is integrable (cf. [8, p. 92, Lemma 2.1]). The other conditions of the corollary imply that (1) holds (cf. [4, p. 267, Lemma 2]).

General results for differential inequalities of this type were obtained by Peano [6] and Perron [7] in the case that f and u are continuous on their domains and (1') holds everywhere. When f satisfies the Carathéodory conditions such results

Received by the editors May 11, 1971 and, in revised form, July 8, 1971.

⁽¹⁾ This work was supported by Defence Research Board Grant DRB-9540-28.

[March

have been obtained for the inequality (1') by Cafiero [1] when u is absolutely continuous locally on $[t_0, t_0+a)$, and by Olech and Opial [5] when u is continuous and locally of bounded variation with nonincreasing singular part. Lakshmikantham [3] has stated a similar result for a more restrictive inequality than (1) in which the left-hand side of (1) is replaced by its absolute value. Although that theorem as stated is true the proof in [3] is incorrect since it is implicitly assumed there that a differential inequality holds everywhere which in fact only holds almost everywhere. All of the results mentioned above are implied by the present theorem; it is not assumed here that u is continuous. The proof is a modified version of the proof of the Peano result given in the book of Kamke [2, pp. 82-86].

The following lemma will be used.

LEMMA. Let $\theta(\lambda, t)$ be a real valued function defined for $\lambda \in K$, a subset of \mathbb{R}^2 , and $t \in J$, an interval in \mathbb{R} . Suppose that θ is continuous in λ for each t and measurable in t for each λ . Then

$$\omega(t) = \sup\{\theta(\lambda, t) : \lambda \in K\}$$

is measurable.

Proof of the lemma. Let K_1 be a countable subset of K dense in K and

$$\omega_1(t) = \sup\{\theta(\lambda, t) : \lambda \in K_1\}$$

Clearly $\omega_1(t)$ is measurable and $\omega_1(t) \le \omega(t)$. It is asserted that $\omega_1(t) = \omega(t)$ and hence $\omega(t)$ is measurable.

To prove this assertion, suppose $\omega_1(t_0) < \omega(t_0)$. By the definition of ω there exists $\lambda_0 \in K$ such that $\omega_1(t_0) < \theta(\lambda_0, t_0)$. But $\theta(\lambda, t_0)$ is continuous on K and hence there is a point $\lambda_1 \in K_1$ sufficiently close to λ_0 to ensure $\omega_1(t_0) < \theta(\lambda_1, t_0)$ contradicting the definition of ω_1 .

Proof of the theorem. Let $\omega(t, \varepsilon) = \varepsilon + \sup\{|f(t, x) - f(t, y)| : x \in K, |x-y| < \varepsilon\}$ where K is a compact neighbourhood of v_0 . Then for each $\varepsilon > 0$, ω is measurable in t by the lemma, $|\omega(t, \varepsilon)| \le 2m(t) + \varepsilon$ and $\lim_{\varepsilon \to 0+} \omega(t, \varepsilon) = 0$ for each t. There exists $\alpha, 0 < \alpha < a$, such that for all sufficiently small $\varepsilon > 0$ solutions $v_{\varepsilon}(t)$ to

(4)
$$v' = f(t, v) + \omega(t, \varepsilon), \quad v_{\varepsilon}(t_0) = v_0$$

exist on $[t_0, t_0 + \alpha]$ and $v_{\varepsilon}(t) \in K$. It suffices to show that $u(t) \leq v_{\varepsilon}(t)$; then, by the Arzelà-Ascoli theorem, a subsequence $\{v_{\varepsilon(k)}\}$ of $\{v_{\varepsilon}\}$ converges uniformly on $[t_0, t_0 + \alpha]$ to a solution v of (2) for which (3) holds.

Suppose $u(\tau) > v_{\varepsilon}(\tau)$ for some $\tau \in (t_0, t_0 + \alpha)$. Let $t_1 = \sup\{t < \tau : u(t) \le v_{\varepsilon}(t)\}$. It follows from (1) that u is left lower semicontinuous on $(t_0, t_0 + \alpha]$ and right upper semicontinuous on $[t_0, t_0 + \alpha)$. Hence $t_1 < \tau$. If $t_1 = t_0$ then

$$0\geq u(t_1)-v_{\varepsilon}(t_1),$$

by hypothesis, and if $t_1 > t_0$

$$0 \geq \liminf_{t \to t_1^-} \{u(t) - v_{\varepsilon}(t)\} \geq u(t_1) - v_{\varepsilon}(t_1);$$

also

$$0 \leq \limsup_{t \to t_1+} \{u(t) - v_{\varepsilon}(t)\} \leq u(t_1) - v_{\varepsilon}(t_1)$$

so that

(5)

$$u(t_1) = v_{\varepsilon}(t_1)$$

Therefore, since $u(t) > v_{\varepsilon}(t)$, $t \in (t_1, \tau]$, u is also right lower semicontinuous at t_1 , i.e. u is right continuous at t_1 . From this it follows that there exists a point $t_2 \in$ $(t_1, \tau]$ such that

 $u(t_{2}) > v_{*}(t_{2})$

and $|u(t)-u(t_1)| < \varepsilon/2$, $|v_{\varepsilon}(t)-u(t_1)| < \varepsilon/2$ if $t \in [t_1, t_2]$ so that

(7)
$$|u(t)-v_{\varepsilon}(t)| < \varepsilon, \quad t \in [t_1, t_2].$$

Hence

$$u(t_2) - v_{\varepsilon}(t_2) \leq \int_{t_1}^{t_2} \{f(s, u(s)) - f(s, v_{\varepsilon}(s)) - \omega(s, \varepsilon)\} ds$$

from (1), (4), and (5). Therefore, by (7),

$$u(t_2) - v_{\varepsilon}(t_2) \le \int_{t_1}^{t_2} \{\omega(s,\varepsilon) - \varepsilon - \omega(s,\varepsilon)\} ds$$
$$= -\varepsilon |t_2 - t_1| < 0$$

contradicting (6) so that $u(t) \leq v_{\varepsilon}(t)$ for each $t \in [t_0, t_0 + \alpha]$.

References

1. F. Cafiero, Su un problema ai limiti relativo all'equazione $y'=f(x, y, \lambda)$, Giorn. Mat. Battaglini 77 (1947), 145-163.

2. E. Kamke, Differentialgleichungen reeler Funktionen, Akademische Verlagsgesellschaft, Leipzig, 1930; Chelsea, New York, 1947.

3. V. Lakshmikantham, On the boundedness of solutions of nonlinear differential equations, Proc. Amer. Math. Soc. 8 (1957), 1044-1048.

4. I. P. Natanson, Theory of functions of a real variable, Ungar, New York, 1961.

5. C. Olech and Z. Opial, Sur une inégalité différentielle, Ann. Polon. Math. 7 (1960), 247-264.

6. G. Peano, Sull'integrabilità delle equazione differenziali di primo ordine, Atti. Accad. Sci. Torino, Atti. R. Accad. Torino 21 (1885/86), 677-685.

7. O. Perron, Ein neuer Existenzbeweis für die Integrale der Differentialgleichung y'=f(x, y), Math. Ann. 76 (1915), 471-484.

8. W. T. Reid, Ordinary differential equations, Wiley-Interscience, New York, 1971.

UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA