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Abstract. In this paper, some min–max theorems for even and C1 functionals
established by Ghoussoub are extended to the case of functionals that are the sum of a
locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous,
even function. A class of non-smooth functionals admitting an unbounded sequence
of critical values is also pointed out.
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1. Introduction. Already in the early days of the min–max methods for real-
valued C1 functionals f defined on an infinite-dimensional Banach space (X, ‖ · ‖), it
has been pointed out that the connection between symmetry and multiplicity of the
critical points of f , which are not minima or maxima, is one of the most fascinating
phenomena occurring in this framework. Starting with the results of Ljusternik and
Schnirelmann, several techniques have widely been developed and successfully applied
to many problems that stem from the calculus of variations. In this direction, it is by
now well known that one of the most meaningful results is the symmetric version of
the Mountain Pass Lemma (briefly, SMPL) due to Ambrosetti and Rabinowitz. For
more details on this subject, we refer the reader to the excellent monographs [1, 14, 15].

However, many variational problems, which arise in the modelling of important
mechanical and engineering questions, naturally lead to consider functionals lacking
the smoothness properties usually required for the application of classical results [13,
14, 16]. As an example, we only mention both variational inequalities and elliptic
equations with discontinuous non-linearities. Concerning the first case, the indicator
function of some convex closed subset of X must appear in the expression of f ; for the
second case, f turns out to be locally Lipschitz continuous at most.
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Recently, Motreanu and Panagiotopoulos established in [12] (see also [7] and
[11]) a non-smooth version of SMPL for functionals f : X → � ∪ {+∞} satisfying the
following structural hypothesis:

(Hf ) f (x) := �(x) + ψ(x) for all x ∈ X, where � : X → IR is even and locally
Lipschitz continuous while ψ : X → IR ∪ {+∞} is even, convex, proper and lower
semi-continuous.

Critical points of f are defined as solutions to the following problem:

Find x ∈ X such that �0(x; z − x) + ψ(z) − ψ(x) ≥ 0 ∀ z ∈ X, (∗)

with �0(x; z − x) being the generalized directional derivative [4, p. 25] of � in x along
the direction z − x. Here, the standard Palais–Smale condition becomes the following:

(PS)f Every sequence {xn} ⊆ X such that {f (xn)} is bounded and

�0(xn; z − xn) + ψ(z) − ψ(xn) ≥ −εn‖z − xn‖ ∀ n ∈ �, z ∈ X,

where εn → 0+, possesses a convergent subsequence.

When � is C1, problem (∗) reduces to a variational inequality, and the relevant critical
point theory as well as significant applications are developed in [16]. If ψ ≡ 0, then (∗)
coincides with the problem treated by Chang [3]. Finally, when both � turn out C1

and ψ ≡ 0, problem (∗) simplifies to the Euler equation �′(x) = 0, and the theory is
classical. Let us explicitly observe that the above-mentioned results are obtained when
the relevant mountain-pass-type inequalities are strict.

The aim of this paper is to establish a �2-symmetric version of the main results
contained in [8, Ch. 7] for functionals f satisfying the condition

(H′
f ) f : X → IR ∪ {+∞} satisfies (Hf ) and ψ is continuous on any non-empty compact

set A ⊆ X such that supx∈A ψ(x) < +∞
under a relaxed boundary condition that covers the limit case, i.e., a non-strict
inequality is allowed.

Although less general than (Hf ), this condition still works in all of the most
important concrete situations. We emphasize that a non-symmetric version of (H′

f )
has been introduced in [9] for extending some well-known min–max theorems to the
non-differentiable setting. See also [2] and [10] for other applications of these abstract
results in the framework of variational–hemi-variational inequalities.

Our goal is achieved by adapting the technical approach developed by Ghoussoub
in [8] for C1 functionals. It is worthwhile to stress that, in our framework, we cannot
use the property that the sets {x ∈ X : f (x) ≥ c}, c ∈ IR, are closed, which seems to
be crucial in the arguments adopted therein. Likewise, it is not possible to follow the
approach developed in [7] because the topological reasoning in that work involving the
Hausdorff metric does not apply here. Such technical difficulties have been overcome
mainly by means of a �2-symmetric version of [9, Theorem 3.1] given as Theorem 3.1
below for functionals satisfying (H′

f ), which furnishes a general method to construct a
Palais–Smale sequence around a min–max sequence of suitable compact and symmetric
subsets of X .

Basic definitions and preliminary results are contained in Section 2, while the main
abstract results are established in Section 3. Some applications leading to infinitely
many critical points for general non-smooth functionals are pointed out in Section 4.
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Specifically, Theorem 4.1 provides a non-smooth �2-symmetric version of SMPL and
Theorem 4.3 ensures the existence of an unbounded sequence of critical values in the
general non-smooth framework permitting to treat new classes of variational–hemi-
variational inequalities with symmetries.

2. Basic definitions and preliminary results. Let (X, ‖ · ‖) be a real Banach space.
If V is a subset of X , we write int(V ) for the interior of V , V for the closure of V
and ∂V for the boundary of V . When V is non-empty, x ∈ X and δ > 0, we define
B(x, δ) := {z ∈ X : ‖z − x‖ < δ} as well as Nδ(V ) := {z ∈ X : d(z, V ) ≤ δ}. If Y is a
subspace of X , we define Bδ(Y ) = B(0, δ) ∩ Y and Sδ(Y ) = {z ∈ Y : ‖z‖ = δ}. Given
x, z ∈ X , the notation [x, z] indicates the line segment joining x to z, namely

[x, z] := {(1 − t)x + tz : t ∈ [0, 1]}.

Moreover, ]x, z] := [x, z] \ {x}. We denote by X∗ the dual space of X , while 〈·, ·〉
denotes the duality pairing between X∗ and X . A function � : X → IR is called locally
Lipschitz continuous when, to every x ∈ X , there correspond a neighbourhood Vx of
x and a constant Lx ≥ 0 such that

|�(z) − �(w)| ≤ Lx‖z − w‖ ∀ z, w ∈ Vx.

If x, z ∈ X , we write �0(x; z) for the generalized directional derivative of � at the point
x along the direction z, i.e.,

�0(x; z) := lim sup
w→x, t→0+

�(w + tz) − �(w)
t

.

It is known [4, Proposition 2.1.1] that �0 is upper semi-continuous on X × X . The
generalized gradient of the function � at x ∈ X , denoted by ∂�(x), is the set

∂�(x) := {
x∗ ∈ X∗ : 〈x∗, z〉 ≤ �0(x; z) ∀ z ∈ X

}
.

In [4, Proposition 2.1.2], it is ensured that ∂�(x) turns out to be non-empty, convex,
in addition to weak* compact.

Let f be an even function on X taking values in � ∪ {+∞} satisfying hypothesis
(Hf ). Set Dψ := {x ∈ X : ψ(x) < +∞}. Since ψ turns out to be continuous on int(Dψ )
(see, e.g., [5, Exercise 1, p. 296]), the same holds regarding f . To simplify the notation,
always denote by ∂ψ(x) the sub-differential of ψ at x in the sense of convex analysis,
while

D∂ψ := {x ∈ X : ∂ψ(x) �= ∅}.

Further, [5, Theorem 23.5] gives int(Dψ ) = int(D∂ψ ). Moreover, by [5, Theorems 23.5
and 23.3], ∂ψ(x) is always convex and weak* closed. We say that x ∈ Dψ is a critical
point of f when

�0(x; z − x) + ψ(z) − ψ(x) ≥ 0 ∀ z ∈ X.

If ψ ≡ 0, this clearly means 0 ∈ ∂�(x); thus, x is a critical point of � according to [3,
Definition 2.1]. The notation K(f ) indicates the set of all critical points of f . Given a
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real number c, we denote

Kc(f ) := K(f ) ∩ f −1(c) and fc := {x ∈ X : f (x) ≤ c}.
If Kc(f ) �= ∅, then c ∈ IR is said to be a critical value of f . In this general framework,
the classical Palais–Smale condition takes the form (PS)f in the preceding section (see
[12, Definition 3.2]).

We say that a set A ⊆ X is symmetric if A = −A. Let us recall that
the �2-index of Krasnoselski γ : � → IN ∪ {+∞} is defined on � = {A ⊆ X :
A is closed and symmetric} as follows:

γ (A) := inf{k ∈ IN : there exists η : A → IRk \ {0} odd and continuous}.
If no such a finite k exists, we set γ (A) = +∞. In particular, if 0 ∈ A, then γ (A) = +∞.
We also set γ (∅) = 0. Moreover, γ satisfies the following properties:

(I1) γ (A) = 0 if and only if A = ∅.
(I2) γ (A1) ≤ γ (A2) if there exists η ∈ C0(A1, A2) odd.
(I3) If K ⊂ X is a compact and symmetric set, there exists δ > 0 such that

γ (Nδ(K)) = γ (K).
(I4) γ (A1 ∪ A2) ≤ γ (A1) + γ (A2) for every A1, A2 ∈ �.
(I5) If K ⊂ X is a compact and symmetric set with 0 /∈ K , then K contains at least

n pairs of points provided γ (K) ≥ n.
(I6) If K ⊂ X is a compact and symmetric set with 0 /∈ K , then γ (K) < +∞.

The following version [6, pp. 444, 456] of the famous variational principle of
Ekeland will be repeatedly employed.

THEOREM 2.1. Let (Z, d) be a complete metric space and let 
 be a proper, lower
semi-continuous, bounded below function from Z into IR ∪ {+∞}. Then to every ε, δ > 0
and every z̄ ∈ Z satisfying 
(z̄) ≤ infz∈Z 
(z) + ε, there corresponds a point z0 ∈ Z such
that


(z0) ≤ 
(z̄), d(z0, z̄) ≤ 1
δ
, 
(z) − 
(z0) ≥ −εδd(z, z0) ∀ z ∈ Z.

Let us state a �2-symmetric version of [9, Theorem 2.2].

THEOREM 2.2. Let (Hf ) be satisfied, ε > 0 and B, C be two non-empty closed,
symmetric sets in X. Suppose C is compact, B ∩ C = ∅, C ⊆ Dψ , and moreover, the
following also holds:

(a1) To each x ∈ C, there corresponds a point ξx ∈ X such that

�0(x; ξx − x) + ψ(ξx) − ψ(x) < −ε‖ξx − x‖.
Then for every k > 1, there exists t0 ∈ (0, 1], α ∈ C0([0, 1] × X, X) such that α(t, ·) is
odd for every t ∈ [0, 1] and ϕ ∈ C0(X, IR+) even, with the following properties:

(i1) α(t, Dψ ) ⊆ Dψ ∀t ∈ [0, t0) and α(t, x) = x ∀(t, x) ∈ [0, t0) × B.
(i2) ‖α(t, x) − x‖ ≤ kt ∀(t, x) ∈ [0, t0) × X.
(i3) f (α(t, x)) − f (x) ≤ −εϕ(x)t ∀(t, x) ∈ [0, t0) × Dψ .
(i4) ϕ(x) = 1 ∀x ∈ C.

Proof. First of all, we can observe that, since � and ψ are even, one has that
0 ∈ ∂�(0) and ψ(0) = minx∈X ψ(x). Hence, 0 ∈ K(f ). Moreover, (a1) implies that C ∩
K(f ) = ∅. Thus, in particular, 0 /∈ C. Again by the evenness of �, it is easy to verify
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that

�0(−x; −v) = �0(x; v) ∀x, v ∈ X.

Hence, it is not restrictive to assume that ξ−x = −ξx for every x ∈ C. In fact, if x ∈ C
and ξx ∈ X satisfies (a1), one has that −x ∈ C and

�0(−x; −ξx + x) + ψ(−ξx) − ψ(−x) = �0(x; ξx − x) + ψ(ξx) − ψ(x),

< −ε‖ξx − x‖,
= −ε‖ − ξx + x‖,

that is, ξ−x = −ξx satisfies (a1).
For every x ∈ C, by (a1) and the upper semi-continuity of the function (z, w) �→

�0(z; ξx − w) + ψ(ξx) − ψ(w) + ε‖ξx − w‖ on X × X , we can find a positive number
δx < ‖ξx − x‖ such that

�0(z; ξx − w) + ψ(ξx) − ψ(w) < −ε‖ξx − w‖ ∀z, w ∈ B(x, δx). (1)

Moreover, δx can be chosen to be small enough such that B(x, δx) ∩ B = ∅, � is
Lipschitz continuous in B(x, δx), δ−x = δx and bearing in mind that 0 /∈ C,

B(x, δx) ∩ B(−x, δx) = ∅. (2)

Define

Vx = B
(

x,
δx

4

)
∪ B

(
−x,

δx

4

)
, Ux = B

(
x,

δx

2

)
∪ B

(
−x,

δx

2

)
.

The family B = {Vx : x ∈ C} represents an open covering of C. Since this set is
compact, B possesses a finite sub-covering {Vxj : j = 1, 2, . . . , m} to which we can
associate a continuous partition of unity {χ̂j : j = 1, 2, . . . , m}, with

∑m
j=1 χ̂j(x) = 1

for every x ∈ C and
∑m

j=1 χ̂j(x) ≤ 1 for all x ∈ X . To simplify the notation, write

ξj = ξxj , ξ−j = −ξj, δj = δxj , Vj = Vxj , Uj = Uxj .

Let us assume that

χj(x) = 1
2

(
χ̂j(x) + χ̂j(−x)

)
, j = 1, 2, . . . , m ∀x ∈ X.

Obviously, {χj : j = 1, 2, . . . , m} is still a continuous partition of unity associated to
{Vxj : j = 1, 2, . . . , m} such that

∑m
j=1 χj(x) = 1 for every x ∈ C and every χj is even.

Let l̂ : X → [0, 1] be a continuous function such that

l̂(x) = 1 ∀x ∈ C, l̂(x) = 0 ∀x ∈ X \ ∪m
j=1Vj.

The function l : X → [0, 1] is defined by assuming that

l(x) = 1
2

(
l̂(x) + l̂(−x)

)
∀x ∈ X

is even, continuous and such that

l(x) = 1 ∀x ∈ C, l(x) = 0 ∀x ∈ X \ ∪m
j=1Vj.
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Moreover, since δj < ‖ξj − xj‖, one has that

ξj /∈ B̄(xj, δj), ξ−j /∈ B̄(−xj, δj) ∀j = 1, 2, . . . , m. (3)

At this point, if we assume that δ0 = 1
2 min1≤j≤m δj and fix k > 1, we can choose a

positive number t0 with t0 ≤ 1 such that

t0 < min
{

δ0

1 + k2
, min

1≤j≤m
d

(
ξj, B

(
xj,

δj

2

))}
. (4)

Starting with α0(t, x) = x, for every (t, x) ∈ [0, 1] × X , we define by induction on
j, 1 ≤ j ≤ m, the functions αj : [0, 1] × X → X as follows:

αj(t, x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αj−1(t, x) + tl(x)χj(x)
ξj − αj−1(t, x)

‖ξj − αj−1(t, x)‖ , if αj−1(t, x) ∈ B
(

xj,
δj

2

)
,

αj−1(t, x) + tl(x)χj(x)
ξ−j − αj−1(t, x)

‖ξ−j − αj−1(t, x)‖ , if αj−1(t, x) ∈ B
(
−xj,

δj

2

)
,

αj−1(t, x), otherwise.

Observe that in view of (2) and (3), αj is well defined. Moreover, a simple computation
shows that for each t ∈ [0, 1], the function αj(t, ·) is odd. We claim that for any t ∈ [0, t0),
one has

αj(t, Dψ ) ⊆ Dψ, (5)

‖αj(t, x) − αj−1(t, x)‖ ≤ kl(x)χj(x)t ∀x ∈ X, (6)

f (αj(t, x)) − f (αj−1(t, x)) ≤ −εl(x)χj(x)t ∀x ∈ Dψ. (7)

Indeed, fix j = 1. If x = α0(t, x) /∈ U1, then (5) and (6) are obvious. Since x /∈ V1, we
get χ1(x) = 0, which yields (7). Suppose now x = α0(t, x) ∈ B(x1, δ1/2). In this case,
(5) immediately follows from ξ1 ∈ Dψ and the convexity of Dψ while (6) is trivial. In
order to verify (7), by Lebourg’s theorem ([3, Theorem 2.3.7]), there exists a suitable
z ∈]α0(t, x), α1(t, x)[ and z∗ ∈ ∂�(z) such that

f (α1(t, x)) − f (α0(t, x)) = 〈z∗, α1(t, x) − α0(t, x)〉 + ψ(α1(t, x)) − ψ(α0(t, x))

≤ τ
[
�0(z; ξ1 − α0(t, x)) + ψ(ξ1) − ψ(α0(t, x))

]
, (8)

where

τ = tl(x)χ1(x)
‖ξ1 − α0(t, x)‖ < 1.

On account of (4) and (6), one has

‖z − x1‖ ≤ ‖z − α0(t, x)‖ + ‖α0(t, x) − x1‖
< ‖α1(t, x) − α0(t, x)‖ + δ1

2
≤ kl(x)χ1(x)t + δ1

2
< δ1.
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Therefore, by (1), one has

�0(z; ξ1 − α0(t, x)) + ψ(ξ1) − ψ(α0(t, x)) < −ε‖ξ1 − α0(t, x)‖. (9)

Combining (8) and (9) yields (7). Suppose now x ∈ B(−x1, δ1/2). In this case, (5)
immediately follows from ξ−1 = −ξ1, the symmetry and the convexity of Dψ . While
(6) is trivial, the proof of (7) can be obtained as in the previous case with ξ−1 and −x1

in place of ξ1 and x1, respectively. Assume now that (5)–(7) hold up to j − 1; we will
prove them for αj(t, x). The same reasoning made before gives (5) and (6). Let us next
observe that

χj(x) = 0 as soon as αj−1(t, x) �∈ Uj. (10)

Indeed, if χj(x) �= 0 for some point x satisfying αj−1(t, x) �∈ Uj, then x ∈ Vj. So, if
x ∈ B(xj, δj/4), by (6), one has

‖αj−1(t, x) − xj‖ ≤ ‖αj−1(t, x) − x‖ + ‖x − xj‖ <

j−1∑
h=1

‖αh(t, x) − αh−1(t, x)‖ + δj

4

≤ kl(x)t
j−1∑
h=1

χh(x) + δj

4
<

δj

2
,

that is, αj−1(t, x) ∈ B(xj, δj/2) against the condition αj−1(t, x) /∈ Uj. Analogous is the
case x ∈ B(−xj, δj/4). Therefore, if αj−1(t, x) /∈ Uj, inequality (7) immediately follows
from (10), while if αj−1(t, x) ∈ Uj, it can be established arguing exactly as in the case
j = 1, with

τ = tl(x)χj(x)
‖ξj − αj−1(t, x)‖ <

d(ξj, B(xj, δj/2))
‖ξj − αj−1(t, x)‖ ≤ 1

or

τ = tl(x)χj(x)
‖ξ−j − αj−1(t, x)‖ <

d(ξ−j, B(−xj, δj/2))
‖ξ−j − αj−1(t, x)‖ ≤ 1

if αj−1(t, x) ∈ B(xj, δj/2) or αj−1(t, x) ∈ B(−xj, δj/2), respectively. Suitable arguments
relying on (10) imply that each αj is continuous. Define α(t, x) = αm(t, x) and ϕ(x) =
l(x)

∑m
j=1 χj(x), (t, x) ∈ [0, 1] × X . Since x ∈ B implies l(x) = 0, by (6), we get

α(t, x) = αm−1(t, x) = · · · = α0(t, x) = x,

and (i1) is proved. Assertions (i2) and (i3) are consequences of the properties of l and
χj (j = 1, 2, . . . , m) and (6), (7), respectively. Finally, since l|C ≡ 1, one has ϕ(x) =
l(x)

∑m
j=1 χj(x) = 1 for all x ∈ C, which shows (i4). �

3. Main results. The main purpose of this section is to prove Theorems 3.1
and 3.3, which give symmetric versions of [9, Theorem 3.1] and [8, Theorem 7.13],
respectively, when the structural assumption (H′

f ) is satisfied.
Let B ⊆ X be closed and symmetric, and letF be a class of compact and symmetric

sets in X . We say that F is a symmetric homotopy-stable family with extended boundary
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B when for every A ∈ F and every η ∈ C0([0, 1] × X, X) such that η(t, ·) is odd for every
t ∈ [0, 1] and η(t, x) = x for every (t, x) ∈ ({0} × X) ∪ ([0, 1] × B), one has η({1} × A) ∈
F .

Moreover, if B ⊆ A for every A ∈ F , we say that F is a symmetric homotopy-stable
family with boundary B.

The following assumptions will be posited in the sequel:

(a2) Let {Fα} be a family of symmetric homotopy-stable classes with extended
boundaries {Bα} and assume that F̃ = ⋃

α Fα. The function f satisfies the
condition (H′

f ) and

c := inf
A∈F̃

sup
x∈A

f (x) < +∞.

(a3) There exists a closed symmetric subset F of X such that for each α, one has

(F ∩ A) \ Bα �= ∅ ∀A ∈ F̃

and

sup
x∈Bα

f (x) ≤ inf
x∈F

f (x).

We explicitly observe that, by (a2) and (a3), one has that

inf
x∈F

f (x) ≤ c. (11)

THEOREM 3.1. Assume that the function f : X → IR ∪ {+∞} verifies assumption
(H′

f ). Let (a2) and (a3) be satisfied. Then, to every sequence {An} in F̃ such that
limn→+∞ supx∈An

f (x) = c, there corresponds a sequence {xn} in X satisfying the following
properties:

(i5) limn→+∞ f (xn) = c.
(i6) �0(xn; v − xn) + �(v) − �(xn) ≥ −εn‖v − xn‖ ∀n ∈ �, ∀v ∈ X,

where εn → 0+.

(i7) limn→+∞ d(xn, F) = 0 provided infx∈F f (x) = c.
(i8) limn→+∞ d(xn, An) = 0.

Proof. First we consider the case

inf
x∈F

f (x) = c. (12)

Fix ε > 0 and let Aε ∈ F̃ be such that

c ≤ sup
x∈Aε

f (x) < c + ε2

8
. (13)

We claim the existence of xε ∈ X , such that

c − ε2

8
≤ f (xε) ≤ c + 5ε2

4
, (14)

�◦(xε ; v − xε) + �(v) − �(xε) ≥ −5ε‖v − xε‖ ∀v ∈ X, (15)
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d(xε, F) ≤ 3ε

2
, (16)

d(xε, Aε) ≤ ε

2
, (17)

which provides a sequence {xn} in X satisfying properties (i5)–(i8).
Since Aε ∈ F̃ , there exists α such that Aε ∈ Fα. To simplify the notation, let

A′
ε = {1} × Aε, Fε = Nε(F), Gε = ({0} × X) ∪ ([0, 1] × ((Aε \ Fε) ∪ Bα)) ,

and let L be the space of all η ∈ C0 ([0, 1] × X, X) such that η(t, ·) is odd for every
t ∈ [0, 1],

η(t, x) = x ∀(t, x) ∈ Gε, sup
(t,x)∈[0,1]×X

‖η(t, x) − x‖ < +∞.

An easy computation shows that L equipped with the metric ρ of uniform convergence
is complete. Moreover, since ({0} × X) ∪ ([0, 1] × Bα) ⊆ Gε , it leads to

η
(
A′

ε

) ∈ Fα ⊆ F̃ ∀η ∈ L. (18)

Define now for every x ∈ X ,

f1(x) = max
{
0, ε2 − εd(x, F)

}
, f2(x) = min

{
ε2

8
, εd (x, (Aε \ Fε) ∪ Bα)

}
,

g(x) = f (x) + f1(x) + f2(x).

Moreover, let I : L → � ∪ {+∞} be the function defined by

I(η) = sup
z∈η(A′

ε)
g(z) ∀η ∈ L,

which is clearly lower semi-continuous. Combining (18) with assumption (a3), one has

(η(A′
ε) ∩ F) \ Bα �= ∅.

Hence, for each η ∈ L, we get

I(η) ≥ sup
z∈η(A′

ε )∩F
g(z) ≥ sup

z∈η(A′
ε )∩F

(f (z) + f1(z))

= sup
z∈η(A′

ε )∩F
f (z) + ε2 ≥ c + ε2,

that is,

inf
η∈L

I(η) ≥ c + ε2. (19)

Therefore, bearing in mind the previous inequality and (13), assuming that η(t, x) = x
for each (t, x) ∈ [0, 1] × X , one has

I(η) < inf
η∈L

I(η) + ε2/4. (20)
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Then, by Theorem 2.1, there exists η0 ∈ L such that

I(η0) ≤ I(η), (21)

‖η − η0‖ ≤ ε

2
, (22)

I(η) ≥ I(η0) − ε

2
‖η − η0‖ ∀η ∈ L. (23)

From (21), one has

sup
z∈η0(A′

ε )
�(z) ≤ I(η) − min

z∈η0(A′
ε )

�(z) < +∞.

Thus, by (H′
f ), � becomes continuous on η0(A′

ε) as well as the function x →
g(η0(1, x)) ∀x ∈ Aε . So, the set

C =
{

z ∈ η0(A′
ε) : g(z) = max

w∈η0(A′
ε )

g(w)
}

is non-empty, symmetric and compact. Now, we write B′ = (Aε\Fε) ∪ Bα and let us
prove that

B′ ∩ C = ∅.

To this end, we first show that there exists z0 ∈ (η0(A′
ε) ∩ F) \ Bα such that

f (z0) = max
x∈η0(A′

ε )∩F
f (x). (24)

Let ẑ ∈ η0(A′
ε) ∩ F such that f (̂z) = maxη0(A′

ε )∩F f . If ẑ /∈ Bα, then we can choose z0 = ẑ.
Otherwise, by (a3), there exists z0 ∈ (η0(A′

ε) ∩ F) \ Bα such that

max
z∈η0(A′

ε )∩F
f (z) = f (̂z) ≤ sup

x∈Bα

f (x) ≤ inf
x∈F

f (x) ≤ f (z0) ≤ max
z∈η0(A′

ε )∩F
f (z)

and (24) holds. Moreover, we have

max
z∈η0(A′

ε )
g(z) ≥ f (z0) + f1(z0) + f2(z0) ≥ c + ε2 + f2(z0), (25)

with z0 /∈ Bα ∪ (Aε \ Fε) by the fact that (η0(A′
ε) ∩ F) ∩ (Aε \ Fε) = ∅. Hence, one has

f2(z0) > 0. On the other hand, f1|X\Fε
≡ f2|Aε\Fε

≡ 0 implies

sup
z∈Aε\Fε

g(z) ≤ sup
z∈Aε

f (z) < c + ε2/8, (26)

and taking into account that supBα f ≤ c, we get

sup
z∈Bα∩Fε

g(z) = sup
z∈Bα∩Fε

(f + f1)(z) ≤ sup
z∈Bα

f (z) + ε2 ≤ c + ε2. (27)
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From (25)–(27), one has

sup
z∈B′

g(z) = max

{
sup

z∈Aε\Fε

g(z), sup
z∈Bα∩Fε

g(z), sup
z∈Bα\Fε

g(z)

}
≤ max

z∈η0(A′
ε )

g(z) − f2(z0),

which clearly ensures that B′ ∩ C = ∅.
Now we prove that there exists xε ∈ C satisfying (15). Suppose not, for k ∈]1, 2[,

we can apply Theorem 2.2 to B′ and C with 5ε in place of ε. Therefore, there exist
t0 ∈]0, 1], β ∈ C0 ([0, 1] × X, X) with β(t, ·) odd for every t ∈ [0, 1] and ϕ ∈ C0

(
X, �+)

even satisfying (i1)–(i4). Pick λ ∈ [0, t1] where t1 ∈]0, t0] and define

ηλ(t, x) = β(λt, η0(t, x)) ∀(t, x) ∈ [0, 1] × X,

then we have ηλ ∈ L and ‖η0 − ηλ‖ ≤ λk for each λ. Hence, by (23), one has

I(ηλ) ≥ I(η0) − λkε

2
. (28)

While (i3) furnishes

sup
z∈ηλ(A′

ε)
f (z) ≤ sup

z∈η0(A′
ε)

f (z) − 5ελ min
z∈η0(A′

ε)
ϕ(z) ≤ I(η0) − 5ελ min

z∈η0(A′
ε)

ϕ(z) < +∞.

Hence, by (H′
f ), the function x → �(ηλ(1, x)) is continuous in Aε as well as x →

g(ηλ(1, x)). So there exists xλ ∈ Aε such that

g(ηλ(1, xλ)) = I(ηλ).

Then, for each x ∈ Aε , one has

g (ηλ (1, xλ)) ≥ g (η0 (1, x)) − λεk
2

. (29)

At this point, we can show that

−λεk
2

≤ g (ηλ (1, xλ)) − g (η0 (1, x)) ≤ −5λεϕ (η0 (1, xλ)) + 2ε‖ηλ − η0‖
≤ −5λεϕ (η0 (1, xλ)) + 2ελk.

From this we get

ϕ (η0 (1, xλ)) ≤ k
2

∀λ ∈ [0, t1]. (30)

If x̂ ∈ Aε is a cluster point of {xλ : λ ∈ [0, t1]} as λ ↓ 0, bearing in mind that the function
(λ, x) → g (β (λ, η0 (1, x))) is continuous in [0, t1] × Aε , by (29), for every x ∈ Aε , one
has

g (η0(1, x̂)) ≥ g (η0(1, x)) ,

which ensures η0 (1, x̂) ∈ C and ϕ (η0 (1, x̂)) = 1 from (i4). On the other hand, (30)
implies that ϕ (η0 (1, x̂)) < 1. This contradiction shows that there exists xε ∈ C
satisfying (15). Let xε = η0 (1, x̃), with x̃ ∈ Aε . Arguing as in [8, p. 97], it is seen
that the point xε satisfies (14), (16) and (17).
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Let us now consider the case

inf
x∈F

f (x) < c. (31)

Fix ε > 0 and choose Aε ∈ F̃ satisfying

c ≤ sup
x∈Aε

f (x) < c + ε2

4
. (32)

We claim the existence of xε ∈ X such that

c ≤ f (xε) ≤ c + ε2

4
, (33)

�0(xn; v − xε) + �(v) − �(xε) ≥ −ε‖v − xε‖ ∀v ∈ X, (34)

d(xε, Aε) ≤ ε

2
, (35)

which provides a sequence {xn} in X satisfying properties (i5), (i6) and (i8). To obtain
this, observing that Aε ∈ Fα for some α, we can make use of the reasoning in the
previous case of (12) replacing the function g with f , the space L with the space L̂ of
all η ∈ C0 ([0, 1] × X, X) such that η(t, ·) is odd for every t ∈ [0, 1],

η(t, x) = x ∀(t, x) ∈ ({0} × X) ∪ ([0, 1] × Bα), sup
[0,1]×X

‖η(t, x) − x‖ < +∞,

and the set B′ with Bα. �
As a consequence of Theorem 3.1, we have the following critical point result.

THEOREM 3.2. Let f be a function satisfying (H′
f ) and (PS)f in addition to (a2)

and (a3). Then, for every sequence {An} ⊆ F̃ such that limn→+∞ supx∈An
f (x) = c, if we

set A∞ = {x ∈ X : lim infn→+∞ d(x, An) = 0}, one has Kc(f ) ∩ A∞ �= ∅. If, moreover,
infx∈F f (x) = c, then Kc(f ) ∩ F ∩ A∞ �= ∅.

The following lemma will be useful for proving Theorem 3.3.

LEMMA 3.1. Let f be a function satisfying (a2) and (PS)f condition. In addition, we
assume the following:

(a′
3) There exists a symmetric, closed set F ⊆ X such that for every α

F ∩ Bα = ∅ and F ∩ A �= ∅ for every A ∈ F̃

sup
x∈Bα

f (x) ≤ inf
x∈F

f (x) = c.

Then one has γ (Kc(f ) ∩ F ∩ A∞) ≥ inf{γ (A ∩ F) : A ∈ F̃}.
Proof. Let n = inf{γ (A ∩ F) : A ∈ F̃}. Theorem 3.2 ensures that Kc(f ) ∩ F ∩

A∞ �= ∅, and by the index properties, there exists an open set U such that Kc(f ) ∩
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F ∩ A∞ ⊂ U and γ (U) = γ (Kc(f ) ∩ F ∩ A∞) besides, for each A ∈ F̃ ,

n ≤ γ (A ∩ F) ≤ γ (A ∩ F ∩ (X \ U)) + γ (U)

= γ (A ∩ F ∩ (X \ U)) + γ (Kc(f ) ∩ F ∩ A∞).

Hence, if it were true that γ (Kc(f ) ∩ F ∩ A∞) ≤ n − 1, then it would follow

γ (A ∩ F ∩ (X \ U)) ≥ 1 ∀A ∈ F̃

and

inf
x∈F∩(X\U)

f (x) = c.

In other words, Theorem 3.2 applies to the symmetric, closed set F ∩ (X \ U) and we
obtain

Kc(f ) ∩ A∞ ∩ F ∩ (X\U) �= ∅,

which is absurd. �
THEOREM 3.3. Let f be a function satisfying (H′

f ) and (PS)f . Let F̃j = ∪αFα
j where,

for every j = 1, 2, . . . , N and for every α, Fα
j is a symmetric homotopy-stable family with

boundary Bα
j such that Fα

j+1 ⊆ Fα
j . Assume that

(E) For every 1 ≤ j ≤ j + p ≤ N, any A ∈ Fα
j+p and any U open and symmetric such

that U ∩ Bα
j = ∅ and γ (U) ≤ p, we have A \ U ∈ Fα

j .

In addition, assume the following:
(a′

2) For every j = 1, 2, . . . , N, there exists Ãj ∈ F̃j such that

sup
x∈Ãj

f (x) < +∞.

(a′′
3) There exists a symmetric and closed set F ⊂ X such that for every j = 1, 2, . . . , N,

and for every α

F ∩ Bα
j = ∅, F ∩ A �= ∅ for every A ∈ F̃j,

sup
x∈Bα

j

f (x) ≤ inf
x∈F

f (x).

For every j = 1, 2, . . . , N, set cj := infA∈F̃j
supx∈A f (x), d = infx∈F f (x),

J = {k : ck = d} and M =
{

max J, if J �= ∅
0, if J = ∅.

Then
(a) for every sequence {An} ∈ F̃M such that limn→+∞ supx∈An

f (x) = cM, one has

γ (KcM (f ) ∩ F ∩ A∞) ≥ M;

(b) for every M < j ≤ j + p ≤ N such that cj = cj+p = c̄ and for every sequence
{An} ∈ F̃cj+p such that limn→+∞ supx∈An

f (x) = c̄, one has γ (Kc̄(f ) ∩ A∞) ≥
p + 1.
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Moreover, if 0 ∈ fd \ F, then
(c) f has at least N distinct pairs of critical points;
(d) limj→+∞ cj = +∞ provided N = +∞.

Proof. First of all, we observe that assumption (a′
2) ensures that every cj is finite.

(a) For M = 0, M = 1, there is nothing to prove (see Theorem 3.2). Whereas for
M ≥ 2, bearing in mind Lemma 3.1, it is enough to show that for every A ∈ F̃M ,
γ (A ∩ F) ≥ M. Arguing by contradiction, there exists A ∈ F̃M such that γ (A ∩ F) ≤
M − 1 and A ∈ Fα

M for some α. By (a′′
3), we have F ∩ Bα

1 = ∅ and F ∩ A �= ∅; hence,
there exists an open and symmetric set U such that γ (U) = γ (A ∩ F), U ∩ Bα

1 = ∅ and
A ∩ F ⊂ U . Therefore, condition (E) ensures that A \ U ∈ Fα

1 . Thus, (A \ U) ∩ F �= ∅,
which is absurd.

(b) Let M < j ≤ j + p ≤ N with cj = cj+p = c̄ and let {An} ⊆ F̃cj+p be such that
limn→+∞ supx∈An

f (x) = c̄. By contradiction, assume that γ (Kc̄(f ) ∩ A∞) ≤ p. Since
d < c̄, one has

fd ∩ (Kc̄(f ) ∩ A∞) = ∅.

Hence, there exists ρ > 0 such that

γ (N2ρ(Kc̄(f ) ∩ A∞)) = γ (Kc̄(f ) ∩ A∞)

and for every α

N2ρ(Kc̄(f ) ∩ A∞) ∩ Bα
j = ∅.

Further, for every k ∈ IN, there exists Ank ∈ F̃cj+p such that

c̄ ≤ sup
x∈Ank

f (x) < c̄ + 1
k
, (36)

and we assume that

Âk = Ank\int(N2ρ(Kc̄(f ) ∩ A∞)).

Condition (E) implies that {Âk} ⊆ F̃cj , and by (36), it follows that

c̄ = cj ≤ sup
x∈Âk

f (x) ≤ sup
x∈Ank

f (x) < c̄ + 1
k
.

Hence,

lim
k→+∞

sup
x∈Âk

f (x) = c̄.

Thus, applying Theorem 3.1 to F̃cj and {Âk}, and taking into account (PS)f condition,
we get a sequence {xk} satisfying (i5), (i6) and (i8) such that

xk → x∗ ∈ Kc̄ ∩ Â∞ ⊆ Kc̄ ∩ A∞, (37)

where Â∞ = {x ∈ X : lim infk→+∞ d(x, Ãk) = 0}. Now we claim that for every q ∈ IN,
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there exists kq > q such that

d(xkq , Kc̄(f ) ∩ A∞) > ρ. (38)

Suppose (38) is false. Then, there exists q̄ ∈ IN such that for every k > q̄, one has

d(xk, Kc̄(f ) ∩ A∞) ≤ ρ.

Hence, if k ∈ IN is large enough, d(xk, x∗) < ρ and, by (i8), there exists yk ∈ Âk such
that d(xk, yk) < ρ. Finally, we can write

2ρ ≤ d(yk, Kc̄ ∩ A∞) ≤ d(yk, xk) + d(xk, Kc̄ ∩ A∞) < ρ + d(xk, x∗) < 2ρ,

which is absurd and (37) is proved. The contradiction between (37) and (38) justifies
(b).

(c) The assertion follows from (a), (b) and property (I5).
(d) First of all, we can observe that M < +∞. In fact, since by hypothesis 0 /∈

Kd(f ) ∩ F , combining together (a) and the index property (I6), one has

M ≤ γ (KcM (f ) ∩ F) = γ (Kd(f ) ∩ F) < +∞.

In a similar way, it is possible to verify that the sequence {cj} is not stationary. Clearly,
the sequence {cj} is monotone. Let us prove that cj → +∞. Arguing by contradiction,
let us verify that Kc(f ) is non-empty, where limj→+∞ cj = c < +∞. Since Kcj (f ) �= ∅,
there exists a sequence {xj}, with f (xj) = cj satisfying

�0(xj; z − xj) + ψ(z) − ψ(xj) ≥ 0 ∀ j ∈ IN , z ∈ X. (39)

Moreover, by (PS)f condition, there exists x∗ ∈ K(f ) such that xj → x∗, where a
subsequence is considered if it is necessary. On the other hand, (39) implies that

ψ(xj) ≤ �0(xj; x∗ − xj) + ψ(x∗) ∀j ∈ IN.

Hence,

ψ(x∗) ≤ lim inf
k→+∞

ψ(xnk ) ≤ lim sup
k→+∞

ψ(xnk ) ≤ ψ(x∗),

and we conclude that x∗ ∈ Kc(f ) since

f (x∗) = lim
j→+∞

f (xj) = c.

Clearly, Kc(f ) is a symmetric, compact set, and since f (0) ≤ d < c, one has that 0 /∈
Kc(f ) and fd ∩ Kc(f ) = ∅. Thus, properties (I6) and (I3) ensure that γ (Kc(f )) = q < +∞
and that there exists a symmetric, open set U containing Kc(f ), which is disjoint from
fd such that γ (Ū) = q.

Fix ε > 0, we claim that there exist jε ∈ IN, Aε ∈ F̃jε such that

cjε ≤ sup
x∈Aε

f (x) < cjε + ε2

4
. (40)
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In fact, let jε ∈ IN be such that cjε+q < cjε + ε2

8 and choose Âε ∈ F̃jε+q with

cjε ≤ cjε+q ≤ sup
x∈Âε

f (x) < cjε+q + ε2/8 < cjε + ε2

4
.

At this point, there are no difficulties in verifying that the set Aε = Âε\U ∈ F̃jε satisfies
(40). Consequently, observing that (40) reduces to (32) with F̃jε in place of F̃ , reasoning
as in the proof of Theorem 3.1, we find a point xε ∈ X satisfying (33)–(35). The previous
arguments, in addition to (PS)f , provide the sequences {xn} in X , convergent to a point
x∗ ∈ Kc(f ), and {An} in

⋃
j F̃j with An ⊆ X\U for every n ∈ IN and d(xn, An) → 0.

Hence,

d(x∗, X\U) ≤ d(x∗, xn) + d(xn, An)

for every n ∈ IN. That is, x∗ /∈ U against the fact that Kc(f ) ⊆ U . �
In the sequel, following [8], we will use the F-intersection index IntF

B, where F and
B are two closed, symmetric, disjoint sets in X , while IntF

B is defined on �B = {A ⊆ X :
A is closed, symmetric and B ⊆ A} in the following way:

IntF
B(A) = inf{γ (η(A) ∩ F) : η ∈ LB}

and LB = {η ∈ C0(X, X) : η is odd and η|B ≡ id|B}. Recall that IntF
B : �B → IN ∪

{+∞} satisfies the following properties:
(T1) IntF

B(A1) ≤ IntF
B(A2) if η(A1) ⊆ A2 for some η ∈ LB.

(T2) IntF
B(A1 ∪ A2) ≤ IntF

B(A1) + IntF
B(A2).

(T3) If IntF
B(A) ≥ 1, then A ∩ F �= ∅.

As a consequence of Theorem 3.3, we can obtain the following non-smooth version of
[8, Corollary 7.17].

THEOREM 3.4. Let f be a function satisfying (H′
f ) and (PS)f . Suppose that {Bj}j=1,...,N

is an increasing family of symmetric, closed sets, F is a closed, symmetric set such that
F ∩ BN = ∅ and

sup
x∈BN

f (x) ≤ inf
x∈F

f (x). (41)

Assume that there exists a symmetric, compact set A0 such that

BN ⊆ A0, IntF
BN

(A0) ≥ N, sup
x∈A0

f (x) < +∞. (42)

Then, there exist critical values cj (1 ≤ j ≤ N) for f such that if d = infx∈F f (x) then
(a) γ (KcM (f ) ∩ F) ≥ M;
(b) for every M < j ≤ j + p ≤ N with cj = cj+p = c̄, we have γ (Kc̄(f )) ≥ p + 1

(where M is as in Theorem 3.3).
In particular, if 0 ∈ fd \ F, then

(c) f has at least N distinct pairs of critical points;
(d) f has an unbounded sequence of critical values provided the hypothesis hold for

arbitrarily large N.
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Proof. For every 1 ≤ j ≤ N, let us consider the family

Fj = {A ⊆ X : A is symmetric and compact, Bj ⊆ A and IntF
Bj

(A) ≥ j}.

By the monotonicity of {Bj}, it is simple to verify that

FN ⊆ FN−1 ⊆ · · · ⊆ F1.

Assumption (42) ensures that A0 ∈ FN . Let us verify that every Fj is a symmetric
homotopy-stable family with boundary Bj, satisfying the excision property (E). Fix
j, A ∈ Fj and η ∈ C0([0, 1] × X, X) such that η(t, ·) is odd for every t ∈ [0, 1] and
η(t, x) = x for every (t, x) ∈ ({0} × X) ∪ ([0, 1] × Bj). Of course, Â = η({1} × A) is a
symmetric and compact set such that Bj ⊆ Â. Moreover,

IntF
Bj

(Â) = inf{γ (ν(η({1} × A)) ∩ F) : ν ∈ LBj } ≥ IntF
Bj

(A) ≥ j,

that is, Fj is a symmetric homotopy-stable family with boundary Bj.
Let A ∈ Fj+p and U be a symmetric open set such that γ (Ū) ≤ p and Ū ∩ Bj = ∅.

Then, A \ U ∈ �Bj , and bearing in mind (T1) and (T2), one has

j + p ≤ IntF
Bj+p

(A) ≤ IntF
Bj

(A) ≤ IntF
Bj

((A\U) ∪ Ū) ≤ IntF
Bj

(A \ U) + γ (Ū)

≤ IntF
Bj

(A\U) + p,

that is, IntF
Bj

(A\U) ≥ j and A\U ∈ Fj. By the definition of Fj and property (T3), one
has that F ∩ A �= ∅ for every A ∈ Fj and each j = 1, . . . , N. Finally, from (42), (a′

2)
follows immediately. Hence, all the assumptions of Theorem 3.3 are satisfied and the
conclusion is achieved. �

4. Some applications. The following two results are meaningful consequences of
Theorems 3.4 and 3.3, respectively.

THEOREM 4.1. Let f be a function satisfying (H′
f ) and (PS)f on X = Y ⊕ Z with

dim(Y ) = k < +∞. Assume that f (0) = 0 in addition to the following:
(i) There exist ρ > 0 and β ≥ 0 such that infx∈Sρ (Z) f (x) ≥ β.

(ii) There exist R > ρ and a subspace E of X containing Y such that dim(E) = n > k
and supx∈SR(E) f (x) ≤ 0.

Then, there exist critical values cj (1 ≤ j ≤ n − k) for f such that
(a) 0 ≤ c1 ≤ · · · ≤ cn−k;
(b) f has at least n − k distinct pairs of non-trivial symmetric critical points.

Moreover, if cj = β for some 1 ≤ j ≤ n − k, we have

γ (Kβ(f ) ∩ Sρ(Z)) ≥ j.

Proof. Assumption (ii) ensures the existence of e1, . . . , eN ∈ E such that E = Y ⊕
span{e1, . . . , eN}, where N = n − k. For every j = 1, . . . , N, let us assume that

Ej = Y ⊕ span{e1, . . . , ej}, Bj = SR(Ej).
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Moreover, let

F = Sρ(Z), A0 = BR(E).

Clearly, {Bj}j=1,...,N is an increasing family of symmetric, closed sets as well as F is
symmetric, closed, F ∩ BN = ∅ and supx∈SR(E) f (x) ≤ infx∈Sρ (Z) f (x). A0 is a symmetric,
compact set such that BN ⊆ A0, and by [8, Lemma 7.21], IntF

BN
(A0) ≥ N. Finally, by

assumption (ii) and the convexity of ψ , one has supx∈A0
f (x) < +∞. So the conclusion

follows at once from Theorem 3.4 observing that 0 ∈ fβ \ F . �
THEOREM 4.2. Let f be a function satisfying (H′

f ) and (PS)f on X = Y ⊕ Z with
dim(Y ) = k < +∞. Assume that f (0) = 0, (i) in Theorem 4.1 holds:

(ii′) There exists an increasing sequence {En} of finite-dimensional subspaces of
X, containing Y such that limn→+∞ dim En = +∞ and for each n ∈ IN,
supx∈SRn (En) f (x) ≤ 0 for some Rn > ρ.

Then, f has an unbounded sequence of critical values.

Proof. The conclusion follows from (d) of Theorem 3.3 and [8, Lemma 7.21] if, for
every j > k, we consider

F̃j =
⋃

n

{Fn
j : dim(En) ≥ j},

where

Fn
j = {A ⊆ X : A is symmetric and compact, Bn

j ⊆ A and IntF
Bn

j
(A) ≥ j − k},

F = SRn (Z), Bn
j = SRn (En),

as well as

Ãj = BRnj
(Enj ),

with nj = min{n ∈ IN : dim(En) ≥ j}. �
THEOREM 4.3. Let f be a function satisfying (H′

f ) on a reflexive Banach space
X = Y ⊕ Z with dim(Y ) = k < +∞. Assume that (i) of Theorem 4.1 holds, f (0) = 0,
D(�) is a cone, in addition to the following:

(H1) There exist constants c0 > 0, c1 > 0, α > 1, μ > 0 such that

μ�(x) − �0(x; x) + (μ + 1)�(x) − �(2x) ≥ c0‖x‖α − c1 for all x ∈ D(�).

(H2) Every sequence {xn} in X such that xn ⇀ x and lim infn→+∞ �0(xn; x − xn) ≥ 0
possesses a strongly convergent subsequence.

(H3) There exists an increasing sequence {En} of finite-dimensional subspaces of X
containing Y with limn→+∞ dim En = +∞ and there exists a constant a > 0 such
that for each n

μ�(x) − �0(x; x) ≥ 0 for all x ∈ En with ‖x‖ > a
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and

lim sup
t→+∞

�(tx)
tμ

< − max
Sa(En)

� uniformly with respect to x ∈ Sa(En).

Then f has an unbounded sequence of critical values.

Proof. Let us verify that f satisfies the (PS)f -condition. Let {xn} be a sequence in
X such that {f (xn)} is bounded and holds

�0(xn; v − xn) + �(v) − �(xn) ≥ −εn‖v − xn‖ for all v ∈ X, (43)

where εn ↓ 0. Therefore, for some M > 0, we have

�(xn) + �(xn) ≤ M for all n.

Combining this and (43) written with v = 2xn yields

μM + ‖xn‖ ≥ μ�(xn) − �0(xn; xn) + (μ + 1)�(xn) − �(2xn) ≥ c0‖xn‖α − c1.

Since α > 1, we infer that {xn} is bounded in X . Let x ∈ X be such that xn ⇀ x, where
a subsequence is considered if necessary. Exploiting (43) with v = x, one has

lim inf
n→+∞ �0(xn; x − xn) ≥ lim inf

n→+∞ �(xn) − �(x) ≥ 0.

Thus, the (PS)f -condition follows from (H2).
For every t > 1 and x ∈ X , using Lebourg’s mean value theorem, we find z∗ ∈

∂s(s−μ�(sx))(τ ) with some τ ∈]1, t[ such that

t−μ�(tx) − �(x) = z∗(t − 1) ≤ τ−(μ+1) (�0(τx; τx) − μ�(τx)
)

(t − 1).

Now fix a positive integer n. Making use of the above inequality and the first part of
assumption (H3), we find for every x ∈ Sa(En) that

f (tx) ≤ tμ(t − 1)
τμ+1

(
�0(τx; τx) − μ�(τx)

) + tμ�(x) + �(tx)

≤ tμ
(

�(tx)
tμ

+ max
Sa(En)

�

)
.

Then the second part of (H3) provides bn ∈ � and tn >
ρ

a such that

�(tnx)
tμn

≤ bn < − max
Sa(En)

� for all x ∈ Sa(En).

We see that condition (ii′) holds with Rn = tna for every n. So, owing to Theorem 4.2,
our conclusion is achieved. �
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