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Abstract

We consider the uniqueness of an entire function and a linear differential polynomial generated by it. One
of our results improves a result of Li and Yang [‘Value sharing of an entire function and its derivatives’,
J. Math. Soc. Japan 51(4) (1999), 781–799].
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1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions in the open complex plane C.
For a ∈ C ∪ {∞}, we say that f and g share the value a CM (counting multiplicities)
or IM (ignoring multiplicities) if f − a and g − a have the same set of zeros counting
multiplicities or ignoring multiplicities, respectively.

In 1976, Rubel and Yang [10] first considered the problem of uniqueness of an
entire function f when it shares two values CM with its derivative f ′ and proved the
following theorem.

Theorem A [10]. Let f be a nonconstant entire function. If f and f ′ share two values
a and b CM, then f ≡ f ′.

Considering f (z) = eez ∫ z
0 e−et

(1 − et) dt [12, page 386], one can easily verify that
sharing of two values is essential.

In 1979, Mues and Steinmetz [9] improved Theorem A replacing CM shared values
by IM shared values. In 1990, Yang [13] extended Theorem A to any kth-order
derivative f (k) of the entire function f . In 2000, Li and Yang [8] improved the result of
Yang [13] and settled a conjecture of Frank [2] (see also [12, page 394]) affirmatively.
Their result can be stated as follows.

Theorem B [8]. Let f be a nonconstant entire function, k a positive integer and a and
b two distinct finite values. If f and f (k) share a and b IM, then f ≡ f (k).
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The natural extension of a derivative of an entire function f is a linear differential
polynomial generated by f . In 1994, Gu [3] extended Theorem A to a linear differential
polynomial. In order to state the result, we recall the definition of a small function: a
meromorphic function a = a(z) is called a small function of a meromorphic function f
if T (r, a) = S (r, f ), where S (r, f ) stands for any quantity satisfying S (r, f ) = o(T (r, f ))
as r→∞ possibly outside a set of finite linear measure.

Theorem C [3]. Let f be a nonconstant entire function, a and b be distinct finite
complex numbers and L( f ) = f (n) + a1 f (n−1) + · · · + an f , where a j ( j = 1, 2, . . . , n) are
small entire functions of f . If f and L( f ) share a and b CM and a + b , 0 or an . −1,
then f ≡ L( f ).

The following theorem of Bernstein et al. [1] is an improvement of Theorem C.

Theorem D [1]. Let f be a nonconstant entire function, a and b be distinct finite
complex numbers and L( f ) = bn f (n) + bn−1 f (n−1) + · · · + b1 f (1) + b0 f , where the b j

( j = 0, 1, 2, . . . , n) are small meromorphic functions of f . If f and L( f ) share a and
b CM, then f ≡ L( f ).

In contrast to the derivative of an entire function, we see in the following examples
that it is not possible in the case of a linear differential polynomial to replace any CM
shared value by an IM shared value.

Example 1.1. Let f = 1 + (ez − 1)2 and L( f ) = 1
2 f (2) − f (1). Then f and L( f ) share 1

IM and 2 CM but f . L( f ).

Example 1.2 [7]. Let f = 1
2 ez + 1

2 e−z and L( f ) = f (2) + f (1). Then f and L( f ) share 1
and −1 IM but f . L( f ).

Although one IM shared value and one CM shared value cannot ensure the equality
of an entire function with a linear differential polynomial generated by it, Li and Yang
[7] exhibited two possibilities in the following theorem.

Theorem E [7]. Let f be a nonconstant entire function and

L( f ) = b−1 +

n∑
j=0

b j f ( j), (1.1)

where b j ( j = −1, 0, 1, . . . , n) are small meromorphic functions of f . Let a and b be two
distinct finite values. If f and L( f ) share a CM and b IM, then either f ≡ L( f ) or f and
L( f ) have the following forms: f = b + (a − b)(eα − 1)2 and L( f ) = b + (a − b)(eα − 1),
where α is an entire function.

For two meromorphic functions f and g, let us denote by NE(r, a; f , g) the
reduced counting function of those common a-points of f and g that have the same
multiplicities. We put τ(a) = lim infr→∞ NE(r, a; f , g)/N(r, a; f ) if N(r, a; f ) . 0 and
τ(a) = 1 if N(r, a; f ) ≡ 0. Wang [11] improved Theorem E in the following manner.
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Theorem F [11]. Let f be a nonconstant entire function and L( f ) be defined by (1.1).
If f and L( f ) share two distinct finite values a and b IM and τ(a) > (n + 2)/(n + 3) for
one of the shared values, say a, then the conclusion of Theorem E holds.

Since τ(a) > 1 − 1/(n + 3), we may suspect that f and L( f ) enjoy the advantage of
sharing the value a CM in some sense, at least for large values of n.

If we look again at Theorem E, then we see that in the case of nonequality of f
and L( f ), almost all the b-points of f and L( f ) are double and simple, respectively,
whereas the a-points of f and L( f ) are almost all simple. In fact, we shall show that
the simple a-points and b-points of f play a decisive role to ascertain the equality of
f and L( f ). Also, we shall see that the simple a-points of f still play a crucial role
even if the other value b is shared IM. To this end, we need the following idea of value
sharing.

Definition 1.3. Let f and g be meromorphic functions and a ∈ C ∪ {∞}. We denote by
E(a; f ) the set of all distinct a-points of f .

Let A ⊂ C and k be a nonnegative integer or infinity. We denote by Ek(a; f , A)
the collection of those a-points of f that belong to A, where an a-point of f with
multiplicity p is counted p times if p ≤ k and k + 1 times if p ≥ k + 1.

Also by NA(r, a; f ) we denote the reduced counting function of those a-points of
f that lie in A. We now put A = E(a; f ) ∩ E(a; g) and B = E(a; f )∆E(a; g), where ∆

denotes the symmetric difference of sets.
We shall say that f and g share the value a with weight k in the weak sense, written

symbolically f , g share (a, k)∗, if Ek(a; f , A) = Ek(a; g, A) and NB(r, a; f ) = S (r, f ) and
NB(r, a; g) = S (r, g).

It is clear that if f , g share (a, k)∗, then f , g share (a, p)∗ for every integer p with
0 ≤ p < k. Further, f , g share (a, 0)∗ if and only if f , g share the value a IM∗ and f , g
share the value a CM∗ if f , g share (a,∞)∗. For the definitions of IM∗ and CM∗, we
refer to [7]. We further note that the notion of weighted sharing in the weak sense
coincides with that of weighted sharing (see [5, 6] for the definition) if B = ∅.

If a = a(z) is a small function of f and g, then we shall say that f , g share (a, k)∗ if
f − a and g − a share (0, k)∗.

We now state the results of the paper.

Theorem 1.4. Let f be a nonconstant entire function and L( f ) be defined by (1.1).
Suppose that a and b are two distinct finite complex numbers. If f and L( f ) share
(a, 1)∗ and (b, 1)∗, then f ≡ L( f ).

By virtue of Examples 1.1 and 1.2, we see that the weight of the sharing of none of
a and b can be reduced to zero. However, in such a case we can prove the following
result, which improves Theorem E.

Theorem 1.5. Let f be a nonconstant entire function and L( f ) be defined by (1.1).
Suppose that a and b are two distinct finite complex numbers. If f and L( f ) share
(a, 1)∗ and (b, 0)∗, then the conclusion of Theorem E holds.
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As consequences of Theorems 1.4 and 1.5, respectively, we obtain the following
corollaries.

Corollary 1.6. Let f be a nonconstant entire function and L( f ) be defined by (1.1).
Suppose that a and b are two distinct finite complex numbers. If f and L( f ) share a, b
IM and f and L( f ) have the same set of simple a-points and b-points, then f ≡ L( f ).

Corollary 1.7. Let f be a nonconstant entire function and L( f ) be defined by (1.1).
Suppose that a and b are two distinct finite complex numbers. If f and L( f ) share
a, b IM and f and L( f ) have the same set of simple a-points, then the conclusion of
Theorem E holds.

Li and Yang [7] exhibited by an example that Theorem E is not valid for
meromorphic functions. However, they proved the following extension of Theorem E.

Theorem G [7]. Let f be a nonconstant meromorphic function with N(r, f ) = S (r, f )
and L( f ) be defined by (1.1). Let a (.∞) and b (.∞) be two distinct small functions
of f . If f and L( f ) share a CM∗ and b IM∗, then either f ≡ L( f ) or f and L( f ) have
the following forms: f = b + (a − b)(eα − 1)2 and L( f ) = b + (a − b)(eα − 1), where α
is an entire function.

It is possible to improve Theorems 1.4 and 1.5 along the lines of Theorem G.
For a meromorphic function f and a ∈ C ∪ {∞}, we denote by Nk)(r, a; f )

(respectively N(k(r, a; f )) the reduced counting function of a-points of f with
multiplicities at most (at least) k. For standard definitions and notations of value
distribution theory, we refer to [4] and [12].

2. Lemmas

In this section we present necessary lemmas. The first is a consequence of the
second fundamental theorem.

Lemma 2.1. Let f and g be two meromorphic functions sharing (a, 0)∗, (b, 0)∗ and
(∞, 0)∗, where a and b are two distinct finite complex numbers. Then

T (r, f ) ≤ 3T (r, g) + S (r, f ) and T (r, g) ≤ 3T (r, f ) + S (r, g).

Note. Lemma 2.1 implies that S (r, f ) = S (r, g).

The following lemma can be proved in a similar manner to [7, Lemma 5].

Lemma 2.2. Let f be a nonconstant entire function and L( f ) be defined by (1.1). Let a
and b be two distinct finite complex numbers. If f and L( f ) share (a, 0)∗ and (b, 0)∗,
then

T (r, f ) = N(r, a; f ) + N(r, b; f ) + S (r, f ),

provided f . L( f ).
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3. Proofs of the theorems

Proof of Theorem 1.4. Let g = L( f ) and

φ =
f ′( f − g)

( f − a)( f − b)
.

Since f and g share (a, 1)∗, (b, 1)∗ and (∞, 0)∗, by Lemma 2.1, S (r, g) = S (r, f ). We
suppose that f . g. Then, by the hypothesis, N(r, φ) = S (r, f ). Since

φ =
1 − b0

a − b

(
a f ′

f − a
−

b f ′

f − b

)
−

b−1

a − b

(
f ′

f − a
−

f ′

f − b

)
−

f ′

f − a

n∑
j=1

b j f ( j)

f − b
,

from the lemma of the logarithmic derivative we see that m(r, φ) = S (r, f ) and so
T (r, φ) = S (r, f ).

Let z0 be a zero of f − a with multiplicity p (≥ 2) and a zero of g − a with
multiplicity q (≥ 2). Then z0 is a zero of φ with multiplicity at least min{p, q} − 1 ≥ 1.
Hence,

N(2(r, a; f | g = a,≥ 2) ≤ N(r, 0; φ) = S (r, f ),

where N(2(r, a; f | g = a,≥ 2) denotes the reduced counting function of those multiple
a-points of f which are also multiple a-points of g. Since f and g share (a, 1)∗,

N(2(r, a; f ) = N(2(r, a; f | g = a,≥ 2) + N(2(r, a; f | g = a,= 1) = S (r, f ),

where N(2(r, a; f | g = a,= 1) denotes the reduced counting function of multiple a-
points of f which are also simple a-points of g. Similarly, N(2(r, b; f ) = S (r, f ).

In view of Lemma 2.2, we consider the following cases.

Case I. N(r, a; f ) , S (r, f ). We put

β =
g′

g − b
−

f ′

f − b
.

Since f and g share (b, 1)∗,

N(r, β) = N(r, β) ≤ N(2(r, b; f ) + S (r, f ) = S (r, f ).

Since m(r, β) = S (r, f ), we obtain T (r, β) = S (r, f ).
Now, from the definition of φ,

φ
f − a

f ′
= 1 −

g − b
f − b

. (3.1)

Differentiating (3.1) and using (3.1) again,

(φ + β)
f ′

f − a
− φ

f ′′

f ′
+ φ′ − φβ = 0. (3.2)

Since N(r, a; f ) , S (r, f ) and N(2(r, a; f ) = S (r, f ), it follows from (3.2) that φ + β ≡ 0
and so

f ′′

f ′
−
φ′

φ
+

g′

g − b
−

f ′

f − b
= 0.
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Integration gives φ( f − b) = c f ′(g − b), where c is a nonzero constant. Now, using the
definition of φ,

f − g = c( f − a)(g − b). (3.3)

From (3.3),
f − b
g − b

= c
(

f −
ac − 1

c

)
(3.4)

and
g − a
f − a

= −c
(
g −

bc + 1
c

)
. (3.5)

Since f and g share (a, 1)∗ and (b, 1)∗, it follows from (3.4) and (3.5) that

N
(
r,

ac − 1
c

; f
)

= N
(
r, 0;

f − b
g − b

)
≤ N(2(r, b; f ) + S (r, f ) = S (r, f )

and

N
(
r,

bc + 1
c

; g
)

= N
(
r, 0;

g − a
f − a

)
≤ N(2(r, a; g) + S (r, g) = N(2(r, a; f ) + S (r, g) = S (r, g)

and, by the second fundamental theorem,

T (r, f ) = N(r, a; f ) + S (r, f ) (3.6)

and
T (r, g) = N(r, b; g) + S (r, g) = N(r, b; f ) + S (r, g). (3.7)

From (3.6) and (3.7) and Lemma 2.2, we find that T (r, g) = S (r, g), which is a
contradiction.

Case II. N(r, b; f ) , S (r, f ). We put

γ =
g′

g − a
−

f ′

f − a
.

Since f and g share (a, 1)∗,

N(r, γ) = N(r, γ) ≤ N(2(r, a; f ) + S (r, f ) = S (r, f ).

Also, m(r, γ) = S (r, f ) and so T (r, γ) = S (r, f ).
From the definition of φ,

φ
f − b

f ′
= 1 −

g − a
f − a

. (3.8)

Differentiating (3.8) and using (3.8) again,

(φ + γ)
f ′

f − b
− φ

f ′′

f ′
+ φ′ − γφ = 0. (3.9)
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Since N(r, b; f ) , S (r, f ) and N(2(r, b; f ) = S (r, f ), from (3.9) we get φ + γ ≡ 0. So,

f ′′

f ′
−
φ′

φ
+

g′

g − a
−

f ′

f − a
= 0.

Proceeding as in Case I,

N
(
r,

ac + 1
c

; g
)

= S (r, g) and N
(
r,

bc − 1
c

; f
)

= S (r, f ).

By the second fundamental theorem, we have T (r, f ) = N(r, b; f ) + S (r, f ) and
T (r, g) = N(r, a; g) + S (r, g). Since N(r, a; g) = N(r, a; f ) + S (r, g), it follows from
Lemma 2.2 that T (r, g) = S (r, g), which is a contradiction. This proves the
theorem. �

Proof of Theorem 1.5. Let g = L( f ) and define φ as in the proof of Theorem 1.4.
Since f and g share (a, 1)∗, (b, 0)∗ and (∞, 0)∗, by Lemma 2.1, S (r, f ) = S (r, g).
Suppose that f . g. By the hypothesis, T (r, φ) = S (r, f ). Since f and g share (a, 1)∗,
as in the proof of Theorem 1.4, N(2(r, a; f ) = S (r, f ).

We first suppose that N(r, b; f ) = S (r, f ). Then, by Lemma 2.2, N(r, a; f ) , S (r, f ).
Proceeding as the proof of Case I of Theorem 1.4,

T (r, g) = N(r, b; g) + S (r, g) = N(r, b; f ) + S (r, g) = S (r, g),

which is a contradiction. Therefore, N(r, b; f ) , S (r, f ). Now, proceeding as the proof
of Case II of Theorem 1.4, we obtain (3.9).

Suppose that φ + γ ≡ 0. Then, from (3.9),

f ′′

f ′
−
φ′

φ
+

g′

g − a
−

f ′

f − a
= 0. (3.10)

Integrating (3.10) and using the definition of φ,

c1( f − g) = (g − a)( f − b), (3.11)

where c1 is a nonzero constant. Let z1 be a b-point of f with multiplicity p and a
b-point of g with multiplicity q. From (3.11), it follows that p ≤ q. By the Taylor
expansion in some neighbourhood of z1, we get f (z) − b = αp(z − z1)p + O(z − z1)p+1

and g(z) − b = βq(z − z1)q + O(z − z1)q+1, where αpβq , 0.
We suppose that p < q. Then, in some neighbourhood of z1,

f (z) − g(z)
f (z) − b

=
αp + O(z − z1)
αp + O(z − z1)

.

Therefore, putting z = z1 in (3.11), we get c1 = b − a and so again from (3.11) we
obtain ( f − a)(g − b) ≡ 0, which is a contradiction. Therefore, p = q and so f and g
share (b,∞)∗. Then, by Theorem 1.4, f ≡ g, which is a contradiction.

Hence, φ + γ . 0. So, from (3.9),

N1)(r, b; f ) ≤ N(r, 0; φ + γ) + S (r, f ) = S (r, f ).
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Let z2 be a b-point of f with multiplicity greater than or equal to n + 2. If
z2 is a b-point of g, then, from (1.1) and the hypothesis, b = b−1(z2) + bb0(z2). If
b . b−1(z) + bb0(z), then

N(n+2(r, b; f ) ≤ N(r, b; b−1 + bb0) + S (r, f ) = S (r, f ).

If b ≡ b−1(z) + bb0(z), then, from (1.1), g − f = (b0 − 1)( f − b) +
∑n

j=1 b j f ( j). Hence,
if z2 is not a pole of any one of b j ( j = 0, 1, 2, . . . , n), then z2 is a multiple zero of g − f
and so is a zero of φ. Therefore, N(n+2(r, b; f ) ≤ N(r, 0;φ) +

∑n
j=0 N(r,∞; b j) = S (r, f ).

Hence, in any case, N(n+2(r, b; f ) = S (r, f ).
Next let z3 be a b-point of f with multiplicity p (2 ≤ p ≤ n + 1). If z3 is not a pole

of φ′ − φγ, then we see from (3.9) that φ(z3) + pγ(z3) = 0.
We suppose that φ(z) + pγ(z) . 0 for any p ∈ {2, 3, . . . , n + 1}. Then, from above,

Nn+1)(r, b; f ) − N1)(r, b; f ) ≤
n+1∑
p=2

N(r, 0; φ + pγ) + N(r,∞; φ′ − φγ) = S (r, f )

and so Nn+1)(r, b; f ) = S (r, f ). Therefore,

N(r, b; f ) = Nn+1)(r, b; f ) + N(n+2(r, b; f ) = S (r, f ),

which is a contradiction. Therefore, there exists a p ∈ {2, 3, . . . , n + 1} such that
φ(z) + pγ(z) ≡ 0. Then, from (3.9),(

1 −
1
p

) f ′

f − b
−

f ′′

f ′
+
φ′

φ
−

g′

g − a
+

f ′

f − a
= 0.

Integrating and using the definition of φ,

( f − g)p = c2( f − b)(g − a)p, (3.12)

where c2 is a nonzero constant. Suppose that N(r, a; f ) = S (r, f ). Since f and g share
(a, 1)∗, we have N(r, a; g) = S (r, f ) = S (r, g). So, f and g share the value a CM∗. Then,
by Theorem G, there exists an entire function α such that f = b + (a − b)(eα − 1)2.
Hence, f − a = (a − b)eα(eα − 2) and so

N(r, a; f ) = N(r, 2; eα) + S (r, eα) = T (r, eα) + S (r, eα) = 1
2 T (r, f ) + S (r, f ),

which is a contradiction. Therefore, N(r, a; f ) , S (r, f ).
Let z4 be an a-point of f and g with respective multiplicities q and s. From (3.12),

we see that s ≤ q. We suppose that s < q. From (3.12), c2 = (−1)p/(a − b). So, again
from (3.12),

f = b + (−1)p(a − b)(h − 1)p (3.13)

and
g = b +

(a − b)(h − 1)
h

[(−1)p(h − 1)p−1 + 1],
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where h = ( f − a)/(g − a). Since f is entire, from (3.13), we see that h is also entire.
Also, (3.13) implies that

pT (r, h) = T (r, f ) + S (r, f ).

Further, we see that N(r, 0; h) ≤ N(2(r, a; f ) + S (r, f ) = S (r, f ) = S (r, h). Therefore,
by the second fundamental theorem, N(r, d; h) , S (r, f ) for a complex number d
(, 0,∞) with (−1)p(d − 1)p−1 +1 = 0. Since f and g share (b, 0)∗, we must have p = 2.
Hence, f − a = (a − b)h(h − 2) and g − a = (a − b)(h − 2). Since z4 is a common zero of
f − a and g − a, we have s = q, which is a contradiction to the supposition. Therefore,
f and g share (a,∞)∗. Now we achieve the result by Theorem G. This proves the
theorem. �
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