AN ENTIRE FUNCTION SHARING TWO VALUES WITH ITS LINEAR DIFFERENTIAL POLYNOMIAL

INDRAJIT LAHIRI

(Received 6 July 2017; accepted 14 July 2017; first published online 4 October 2017)

Abstract

We consider the uniqueness of an entire function and a linear differential polynomial generated by it. One of our results improves a result of Li and Yang ['Value sharing of an entire function and its derivatives', J. Math. Soc. Japan 51(4) (1999), 781-799].

2010 Mathematics subject classification: primary 30D35.
Keywords and phrases: entire function, linear differential polynomial, uniqueness.

1. Introduction, definitions and results

Let f and g be two nonconstant meromorphic functions in the open complex plane \mathbb{C}. For $a \in \mathbb{C} \cup\{\infty\}$, we say that f and g share the value $a \mathrm{CM}$ (counting multiplicities) or IM (ignoring multiplicities) if $f-a$ and $g-a$ have the same set of zeros counting multiplicities or ignoring multiplicities, respectively.

In 1976, Rubel and Yang [10] first considered the problem of uniqueness of an entire function f when it shares two values CM with its derivative f^{\prime} and proved the following theorem.

Theorem A [10]. Let f be a nonconstant entire function. If f and f^{\prime} share two values a and $b C M$, then $f \equiv f^{\prime}$.

Considering $f(z)=e^{e^{z}} \int_{0}^{z} e^{-e^{t}}\left(1-e^{t}\right) d t$ [12, page 386], one can easily verify that sharing of two values is essential.

In 1979, Mues and Steinmetz [9] improved Theorem A replacing CM shared values by IM shared values. In 1990, Yang [13] extended Theorem A to any k th-order derivative $f^{(k)}$ of the entire function f. In 2000, Li and Yang [8] improved the result of Yang [13] and settled a conjecture of Frank [2] (see also [12, page 394]) affirmatively. Their result can be stated as follows.

Theorem B [8]. Let f be a nonconstant entire function, k a positive integer and a and b two distinct finite values. If f and $f^{(k)}$ share a and $b I M$, then $f \equiv f^{(k)}$.

[^0]The natural extension of a derivative of an entire function f is a linear differential polynomial generated by f. In 1994, Gu [3] extended Theorem A to a linear differential polynomial. In order to state the result, we recall the definition of a small function: a meromorphic function $a=a(z)$ is called a small function of a meromorphic function f if $T(r, a)=S(r, f)$, where $S(r, f)$ stands for any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ possibly outside a set of finite linear measure.

Theorem C [3]. Let f be a nonconstant entire function, a and b be distinct finite complex numbers and $L(f)=f^{(n)}+a_{1} f^{(n-1)}+\cdots+a_{n} f$, where $a_{j}(j=1,2, \ldots, n)$ are small entire functions of f. If f and $L(f)$ share a and $b C M$ and $a+b \neq 0$ or $a_{n} \not \equiv-1$, then $f \equiv L(f)$.

The following theorem of Bernstein et al. [1] is an improvement of Theorem C.
Theorem D [1]. Let f be a nonconstant entire function, a and b be distinct finite complex numbers and $L(f)=b_{n} f^{(n)}+b_{n-1} f^{(n-1)}+\cdots+b_{1} f^{(1)}+b_{0} f$, where the b_{j} $(j=0,1,2, \ldots, n)$ are small meromorphic functions of f. If f and $L(f)$ share a and $b C M$, then $f \equiv L(f)$.

In contrast to the derivative of an entire function, we see in the following examples that it is not possible in the case of a linear differential polynomial to replace any CM shared value by an IM shared value.
Example 1.1. Let $f=1+\left(e^{z}-1\right)^{2}$ and $L(f)=\frac{1}{2} f^{(2)}-f^{(1)}$. Then f and $L(f)$ share 1 IM and 2 CM but $f \not \equiv L(f)$.

Example 1.2 [7]. Let $f=\frac{1}{2} e^{z}+\frac{1}{2} e^{-z}$ and $L(f)=f^{(2)}+f^{(1)}$. Then f and $L(f)$ share 1 and -1 IM but $f \not \equiv L(f)$.

Although one IM shared value and one CM shared value cannot ensure the equality of an entire function with a linear differential polynomial generated by it, Li and Yang [7] exhibited two possibilities in the following theorem.

Theorem E [7]. Let f be a nonconstant entire function and

$$
\begin{equation*}
L(f)=b_{-1}+\sum_{j=0}^{n} b_{j} f^{(j)} \tag{1.1}
\end{equation*}
$$

where $b_{j}(j=-1,0,1, \ldots, n)$ are small meromorphic functions of f. Let a and b be two distinct finite values. If f and $L(f)$ share a CM and b IM, then either $f \equiv L(f)$ or f and $L(f)$ have the following forms: $f=b+(a-b)\left(e^{\alpha}-1\right)^{2}$ and $L(f)=b+(a-b)\left(e^{\alpha}-1\right)$, where α is an entire function.

For two meromorphic functions f and g, let us denote by $\bar{N}_{E}(r, a ; f, g)$ the reduced counting function of those common a-points of f and g that have the same multiplicities. We put $\tau(a)=\liminf _{r \rightarrow \infty} \bar{N}_{E}(r, a ; f, g) / \bar{N}(r, a ; f)$ if $\bar{N}(r, a ; f) \not \equiv 0$ and $\tau(a)=1$ if $\bar{N}(r, a ; f) \equiv 0$. Wang [11] improved Theorem E in the following manner.

Theorem F [11]. Let f be a nonconstant entire function and $L(f)$ be defined by (1.1). If f and $L(f)$ share two distinct finite values a and b IM and $\tau(a)>(n+2) /(n+3)$ for one of the shared values, say a, then the conclusion of Theorem E holds.

Since $\tau(a)>1-1 /(n+3)$, we may suspect that f and $L(f)$ enjoy the advantage of sharing the value $a \mathrm{CM}$ in some sense, at least for large values of n.

If we look again at Theorem E, then we see that in the case of nonequality of f and $L(f)$, almost all the b-points of f and $L(f)$ are double and simple, respectively, whereas the a-points of f and $L(f)$ are almost all simple. In fact, we shall show that the simple a-points and b-points of f play a decisive role to ascertain the equality of f and $L(f)$. Also, we shall see that the simple a-points of f still play a crucial role even if the other value b is shared IM. To this end, we need the following idea of value sharing.

Definition 1.3. Let f and g be meromorphic functions and $a \in \mathbb{C} \cup\{\infty\}$. We denote by $\bar{E}(a ; f)$ the set of all distinct a-points of f.

Let $A \subset \mathbb{C}$ and k be a nonnegative integer or infinity. We denote by $E_{k}(a ; f, A)$ the collection of those a-points of f that belong to A, where an a-point of f with multiplicity p is counted p times if $p \leq k$ and $k+1$ times if $p \geq k+1$.

Also by $\bar{N}_{A}(r, a ; f)$ we denote the reduced counting function of those a-points of f that lie in A. We now put $A=\bar{E}(a ; f) \cap \bar{E}(a ; g)$ and $B=\bar{E}(a ; f) \Delta \bar{E}(a ; g)$, where Δ denotes the symmetric difference of sets.

We shall say that f and g share the value a with weight k in the weak sense, written symbolically f, g share $(a, k)^{*}$, if $E_{k}(a ; f, A)=E_{k}(a ; g, A)$ and $\bar{N}_{B}(r, a ; f)=S(r, f)$ and $\bar{N}_{B}(r, a ; g)=S(r, g)$.

It is clear that if f, g share $(a, k)^{*}$, then f, g share $(a, p)^{*}$ for every integer p with $0 \leq p<k$. Further, f, g share $(a, 0)^{*}$ if and only if f, g share the value $a \mathrm{IM}^{*}$ and f, g share the value $a \mathrm{CM}^{*}$ if f, g share $(a, \infty)^{*}$. For the definitions of IM^{*} and CM^{*}, we refer to [7]. We further note that the notion of weighted sharing in the weak sense coincides with that of weighted sharing (see $[5,6]$ for the definition) if $B=\emptyset$.

If $a=a(z)$ is a small function of f and g, then we shall say that f, g share $(a, k)^{*}$ if $f-a$ and $g-a$ share $(0, k)^{*}$.

We now state the results of the paper.
Theorem 1.4. Let f be a nonconstant entire function and $L(f)$ be defined by (1.1). Suppose that a and b are two distinct finite complex numbers. If f and $L(f)$ share $(a, 1)^{*}$ and $(b, 1)^{*}$, then $f \equiv L(f)$.

By virtue of Examples 1.1 and 1.2, we see that the weight of the sharing of none of a and b can be reduced to zero. However, in such a case we can prove the following result, which improves Theorem E.

Theorem 1.5. Let f be a nonconstant entire function and $L(f)$ be defined by (1.1). Suppose that a and b are two distinct finite complex numbers. If f and $L(f)$ share $(a, 1)^{*}$ and $(b, 0)^{*}$, then the conclusion of Theorem E holds.

As consequences of Theorems 1.4 and 1.5, respectively, we obtain the following corollaries.

Corollary 1.6. Let f be a nonconstant entire function and $L(f)$ be defined by (1.1). Suppose that a and b are two distinct finite complex numbers. If f and $L(f)$ share a, b $I M$ and f and $L(f)$ have the same set of simple a-points and b-points, then $f \equiv L(f)$.

Corollary 1.7. Let f be a nonconstant entire function and $L(f)$ be defined by (1.1). Suppose that a and b are two distinct finite complex numbers. If f and $L(f)$ share $a, b I M$ and f and $L(f)$ have the same set of simple a-points, then the conclusion of Theorem E holds.

Li and Yang [7] exhibited by an example that Theorem E is not valid for meromorphic functions. However, they proved the following extension of Theorem E.

Theorem G [7]. Let f be a nonconstant meromorphic function with $N(r, f)=S(r, f)$ and $L(f)$ be defined by (1.1). Let $a(\not \equiv \infty)$ and $b(\not \equiv \infty)$ be two distinct small functions of f. If f and $L(f)$ share a $C M^{*}$ and b IM*, then either $f \equiv L(f)$ or f and $L(f)$ have the following forms: $f=b+(a-b)\left(e^{\alpha}-1\right)^{2}$ and $L(f)=b+(a-b)\left(e^{\alpha}-1\right)$, where α is an entire function.

It is possible to improve Theorems 1.4 and 1.5 along the lines of Theorem G.
For a meromorphic function f and $a \in \mathbb{C} \cup\{\infty\}$, we denote by $\bar{N}_{k)}(r, a ; f)$ (respectively $\bar{N}_{(k}(r, a ; f)$) the reduced counting function of a-points of f with multiplicities at most (at least) k. For standard definitions and notations of value distribution theory, we refer to [4] and [12].

2. Lemmas

In this section we present necessary lemmas. The first is a consequence of the second fundamental theorem.

Lemma 2.1. Let f and g be two meromorphic functions sharing $(a, 0)^{*},(b, 0)^{*}$ and $(\infty, 0)^{*}$, where a and b are two distinct finite complex numbers. Then

$$
T(r, f) \leq 3 T(r, g)+S(r, f) \quad \text { and } \quad T(r, g) \leq 3 T(r, f)+S(r, g)
$$

Note. Lemma 2.1 implies that $S(r, f)=S(r, g)$.
The following lemma can be proved in a similar manner to [7, Lemma 5].
Lemma 2.2. Let f be a nonconstant entire function and $L(f)$ be defined by (1.1). Let a and b be two distinct finite complex numbers. If f and $L(f)$ share $(a, 0)^{*}$ and $(b, 0)^{*}$, then

$$
T(r, f)=\bar{N}(r, a ; f)+\bar{N}(r, b ; f)+S(r, f)
$$

provided $f \not \equiv L(f)$.

3. Proofs of the theorems

Proof of Theorem 1.4. Let $g=L(f)$ and

$$
\phi=\frac{f^{\prime}(f-g)}{(f-a)(f-b)}
$$

Since f and g share $(a, 1)^{*},(b, 1)^{*}$ and $(\infty, 0)^{*}$, by Lemma 2.1, $S(r, g)=S(r, f)$. We suppose that $f \not \equiv g$. Then, by the hypothesis, $N(r, \phi)=S(r, f)$. Since

$$
\phi=\frac{1-b_{0}}{a-b}\left(\frac{a f^{\prime}}{f-a}-\frac{b f^{\prime}}{f-b}\right)-\frac{b_{-1}}{a-b}\left(\frac{f^{\prime}}{f-a}-\frac{f^{\prime}}{f-b}\right)-\frac{f^{\prime}}{f-a} \sum_{j=1}^{n} \frac{b_{j} f^{(j)}}{f-b}
$$

from the lemma of the logarithmic derivative we see that $m(r, \phi)=S(r, f)$ and so $T(r, \phi)=S(r, f)$.

Let z_{0} be a zero of $f-a$ with multiplicity $p(\geq 2)$ and a zero of $g-a$ with multiplicity $q(\geq 2)$. Then z_{0} is a zero of ϕ with multiplicity at least $\min \{p, q\}-1 \geq 1$. Hence,

$$
\bar{N}_{(2}(r, a ; f \mid g=a, \geq 2) \leq N(r, 0 ; \phi)=S(r, f),
$$

where $\bar{N}_{(2}(r, a ; f \mid g=a, \geq 2)$ denotes the reduced counting function of those multiple a-points of f which are also multiple a-points of g. Since f and g share $(a, 1)^{*}$,

$$
\bar{N}_{(2}(r, a ; f)=\bar{N}_{(2}(r, a ; f \mid g=a, \geq 2)+\bar{N}_{(2}(r, a ; f \mid g=a,=1)=S(r, f),
$$

where $\bar{N}_{(2}(r, a ; f \mid g=a,=1)$ denotes the reduced counting function of multiple a points of f which are also simple a-points of g. Similarly, $\bar{N}_{(2}(r, b ; f)=S(r, f)$.

In view of Lemma 2.2, we consider the following cases.
Case I. $\bar{N}(r, a ; f) \neq S(r, f)$. We put

$$
\beta=\frac{g^{\prime}}{g-b}-\frac{f^{\prime}}{f-b}
$$

Since f and g share $(b, 1)^{*}$,

$$
N(r, \beta)=\bar{N}(r, \beta) \leq \bar{N}_{(2}(r, b ; f)+S(r, f)=S(r, f)
$$

Since $m(r, \beta)=S(r, f)$, we obtain $T(r, \beta)=S(r, f)$.
Now, from the definition of ϕ,

$$
\begin{equation*}
\phi \frac{f-a}{f^{\prime}}=1-\frac{g-b}{f-b} \tag{3.1}
\end{equation*}
$$

Differentiating (3.1) and using (3.1) again,

$$
\begin{equation*}
(\phi+\beta) \frac{f^{\prime}}{f-a}-\phi \frac{f^{\prime \prime}}{f^{\prime}}+\phi^{\prime}-\phi \beta=0 \tag{3.2}
\end{equation*}
$$

Since $\bar{N}(r, a ; f) \neq S(r, f)$ and $\bar{N}_{(2}(r, a ; f)=S(r, f)$, it follows from (3.2) that $\phi+\beta \equiv 0$ and so

$$
\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\phi^{\prime}}{\phi}+\frac{g^{\prime}}{g-b}-\frac{f^{\prime}}{f-b}=0
$$

Integration gives $\phi(f-b)=c f^{\prime}(g-b)$, where c is a nonzero constant. Now, using the definition of ϕ,

$$
\begin{equation*}
f-g=c(f-a)(g-b) \tag{3.3}
\end{equation*}
$$

From (3.3),

$$
\begin{equation*}
\frac{f-b}{g-b}=c\left(f-\frac{a c-1}{c}\right) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{g-a}{f-a}=-c\left(g-\frac{b c+1}{c}\right) . \tag{3.5}
\end{equation*}
$$

Since f and g share $(a, 1)^{*}$ and $(b, 1)^{*}$, it follows from (3.4) and (3.5) that

$$
\bar{N}\left(r, \frac{a c-1}{c} ; f\right)=\bar{N}\left(r, 0 ; \frac{f-b}{g-b}\right) \leq \bar{N}_{(2}(r, b ; f)+S(r, f)=S(r, f)
$$

and
$\bar{N}\left(r, \frac{b c+1}{c} ; g\right)=\bar{N}\left(r, 0 ; \frac{g-a}{f-a}\right) \leq \bar{N}_{(2}(r, a ; g)+S(r, g)=\bar{N}_{(2}(r, a ; f)+S(r, g)=S(r, g)$ and, by the second fundamental theorem,

$$
\begin{equation*}
T(r, f)=\bar{N}(r, a ; f)+S(r, f) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
T(r, g)=\bar{N}(r, b ; g)+S(r, g)=\bar{N}(r, b ; f)+S(r, g) \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7) and Lemma 2.2, we find that $T(r, g)=S(r, g)$, which is a contradiction.

Case II. $\bar{N}(r, b ; f) \neq S(r, f)$. We put

$$
\gamma=\frac{g^{\prime}}{g-a}-\frac{f^{\prime}}{f-a}
$$

Since f and g share $(a, 1)^{*}$,

$$
N(r, \gamma)=\bar{N}(r, \gamma) \leq \bar{N}_{(2}(r, a ; f)+S(r, f)=S(r, f)
$$

Also, $m(r, \gamma)=S(r, f)$ and so $T(r, \gamma)=S(r, f)$.
From the definition of ϕ,

$$
\begin{equation*}
\phi \frac{f-b}{f^{\prime}}=1-\frac{g-a}{f-a} . \tag{3.8}
\end{equation*}
$$

Differentiating (3.8) and using (3.8) again,

$$
\begin{equation*}
(\phi+\gamma) \frac{f^{\prime}}{f-b}-\phi \frac{f^{\prime \prime}}{f^{\prime}}+\phi^{\prime}-\gamma \phi=0 \tag{3.9}
\end{equation*}
$$

Since $\bar{N}(r, b ; f) \neq S(r, f)$ and $\bar{N}_{(2}(r, b ; f)=S(r, f)$, from (3.9) we get $\phi+\gamma \equiv 0$. So,

$$
\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\phi^{\prime}}{\phi}+\frac{g^{\prime}}{g-a}-\frac{f^{\prime}}{f-a}=0
$$

Proceeding as in Case I,

$$
\bar{N}\left(r, \frac{a c+1}{c} ; g\right)=S(r, g) \quad \text { and } \quad \bar{N}\left(r, \frac{b c-1}{c} ; f\right)=S(r, f) .
$$

By the second fundamental theorem, we have $T(r, f)=\bar{N}(r, b ; f)+S(r, f)$ and $T(r, g)=\bar{N}(r, a ; g)+S(r, g)$. Since $\bar{N}(r, a ; g)=\bar{N}(r, a ; f)+S(r, g)$, it follows from Lemma 2.2 that $T(r, g)=S(r, g)$, which is a contradiction. This proves the theorem.

Proof of Theorem 1.5. Let $g=L(f)$ and define ϕ as in the proof of Theorem 1.4. Since f and g share $(a, 1)^{*},(b, 0)^{*}$ and $(\infty, 0)^{*}$, by Lemma 2.1, $S(r, f)=S(r, g)$. Suppose that $f \not \equiv g$. By the hypothesis, $T(r, \phi)=S(r, f)$. Since f and g share $(a, 1)^{*}$, as in the proof of Theorem 1.4, $\bar{N}_{(2}(r, a ; f)=S(r, f)$.

We first suppose that $\bar{N}(r, b ; f)=S(r, f)$. Then, by Lemma 2.2, $\bar{N}(r, a ; f) \neq S(r, f)$. Proceeding as the proof of Case I of Theorem 1.4,

$$
T(r, g)=\bar{N}(r, b ; g)+S(r, g)=\bar{N}(r, b ; f)+S(r, g)=S(r, g)
$$

which is a contradiction. Therefore, $\bar{N}(r, b ; f) \neq S(r, f)$. Now, proceeding as the proof of Case II of Theorem 1.4, we obtain (3.9).

Suppose that $\phi+\gamma \equiv 0$. Then, from (3.9),

$$
\begin{equation*}
\frac{f^{\prime \prime}}{f^{\prime}}-\frac{\phi^{\prime}}{\phi}+\frac{g^{\prime}}{g-a}-\frac{f^{\prime}}{f-a}=0 \tag{3.10}
\end{equation*}
$$

Integrating (3.10) and using the definition of ϕ,

$$
\begin{equation*}
c_{1}(f-g)=(g-a)(f-b) \tag{3.11}
\end{equation*}
$$

where c_{1} is a nonzero constant. Let z_{1} be a b-point of f with multiplicity p and a b-point of g with multiplicity q. From (3.11), it follows that $p \leq q$. By the Taylor expansion in some neighbourhood of z_{1}, we get $f(z)-b=\alpha_{p}\left(z-z_{1}\right)^{p}+O\left(z-z_{1}\right)^{p+1}$ and $g(z)-b=\beta_{q}\left(z-z_{1}\right)^{q}+O\left(z-z_{1}\right)^{q+1}$, where $\alpha_{p} \beta_{q} \neq 0$.

We suppose that $p<q$. Then, in some neighbourhood of z_{1},

$$
\frac{f(z)-g(z)}{f(z)-b}=\frac{\alpha_{p}+O\left(z-z_{1}\right)}{\alpha_{p}+O\left(z-z_{1}\right)} .
$$

Therefore, putting $z=z_{1}$ in (3.11), we get $c_{1}=b-a$ and so again from (3.11) we obtain $(f-a)(g-b) \equiv 0$, which is a contradiction. Therefore, $p=q$ and so f and g share $(b, \infty)^{*}$. Then, by Theorem $1.4, f \equiv g$, which is a contradiction.

Hence, $\phi+\gamma \not \equiv 0$. So, from (3.9),

$$
\bar{N}_{1)}(r, b ; f) \leq N(r, 0 ; \phi+\gamma)+S(r, f)=S(r, f)
$$

Let z_{2} be a b-point of f with multiplicity greater than or equal to $n+2$. If z_{2} is a b-point of g, then, from (1.1) and the hypothesis, $b=b_{-1}\left(z_{2}\right)+b b_{0}\left(z_{2}\right)$. If $b \not \equiv b_{-1}(z)+b b_{0}(z)$, then

$$
\bar{N}_{(n+2}(r, b ; f) \leq N\left(r, b ; b_{-1}+b b_{0}\right)+S(r, f)=S(r, f)
$$

If $b \equiv b_{-1}(z)+b b_{0}(z)$, then, from (1.1), $g-f=\left(b_{0}-1\right)(f-b)+\sum_{j=1}^{n} b_{j} f^{(j)}$. Hence, if z_{2} is not a pole of any one of $b_{j}(j=0,1,2, \ldots, n)$, then z_{2} is a multiple zero of $g-f$ and so is a zero of ϕ. Therefore, $\bar{N}_{(n+2}(r, b ; f) \leq N(r, 0 ; \phi)+\sum_{j=0}^{n} N\left(r, \infty ; b_{j}\right)=S(r, f)$. Hence, in any case, $\bar{N}_{(n+2}(r, b ; f)=S(r, f)$.

Next let z_{3} be a b-point of f with multiplicity $p(2 \leq p \leq n+1)$. If z_{3} is not a pole of $\phi^{\prime}-\phi \gamma$, then we see from (3.9) that $\phi\left(z_{3}\right)+p \gamma\left(z_{3}\right)=0$.

We suppose that $\phi(z)+p \gamma(z) \not \equiv 0$ for any $p \in\{2,3, \ldots, n+1\}$. Then, from above,

$$
\bar{N}_{n+1)}(r, b ; f)-\bar{N}_{1)}(r, b ; f) \leq \sum_{p=2}^{n+1} N(r, 0 ; \phi+p \gamma)+N\left(r, \infty ; \phi^{\prime}-\phi \gamma\right)=S(r, f)
$$

and so $\bar{N}_{n+1)}(r, b ; f)=S(r, f)$. Therefore,

$$
\bar{N}(r, b ; f)=\bar{N}_{n+1)}(r, b ; f)+\bar{N}_{(n+2}(r, b ; f)=S(r, f),
$$

which is a contradiction. Therefore, there exists a $p \in\{2,3, \ldots, n+1\}$ such that $\phi(z)+p \gamma(z) \equiv 0$. Then, from (3.9),

$$
\left(1-\frac{1}{p}\right) \frac{f^{\prime}}{f-b}-\frac{f^{\prime \prime}}{f^{\prime}}+\frac{\phi^{\prime}}{\phi}-\frac{g^{\prime}}{g-a}+\frac{f^{\prime}}{f-a}=0 .
$$

Integrating and using the definition of ϕ,

$$
\begin{equation*}
(f-g)^{p}=c_{2}(f-b)(g-a)^{p} \tag{3.12}
\end{equation*}
$$

where c_{2} is a nonzero constant. Suppose that $\bar{N}(r, a ; f)=S(r, f)$. Since f and g share $(a, 1)^{*}$, we have $\bar{N}(r, a ; g)=S(r, f)=S(r, g)$. So, f and g share the value $a \mathrm{CM}^{*}$. Then, by Theorem G , there exists an entire function α such that $f=b+(a-b)\left(e^{\alpha}-1\right)^{2}$. Hence, $f-a=(a-b) e^{\alpha}\left(e^{\alpha}-2\right)$ and so

$$
\bar{N}(r, a ; f)=\bar{N}\left(r, 2 ; e^{\alpha}\right)+S\left(r, e^{\alpha}\right)=T\left(r, e^{\alpha}\right)+S\left(r, e^{\alpha}\right)=\frac{1}{2} T(r, f)+S(r, f)
$$

which is a contradiction. Therefore, $\bar{N}(r, a ; f) \neq S(r, f)$.
Let z_{4} be an a-point of f and g with respective multiplicities q and s. From (3.12), we see that $s \leq q$. We suppose that $s<q$. From (3.12), $c_{2}=(-1)^{p} /(a-b)$. So, again from (3.12),

$$
\begin{equation*}
f=b+(-1)^{p}(a-b)(h-1)^{p} \tag{3.13}
\end{equation*}
$$

and

$$
g=b+\frac{(a-b)(h-1)}{h}\left[(-1)^{p}(h-1)^{p-1}+1\right],
$$

where $h=(f-a) /(g-a)$. Since f is entire, from (3.13), we see that h is also entire. Also, (3.13) implies that

$$
p T(r, h)=T(r, f)+S(r, f)
$$

Further, we see that $\bar{N}(r, 0 ; h) \leq \bar{N}_{(2}(r, a ; f)+S(r, f)=S(r, f)=S(r, h)$. Therefore, by the second fundamental theorem, $\bar{N}(r, d ; h) \neq S(r, f)$ for a complex number d $(\neq 0, \infty)$ with $(-1)^{p}(d-1)^{p-1}+1=0$. Since f and g share $(b, 0)^{*}$, we must have $p=2$. Hence, $f-a=(a-b) h(h-2)$ and $g-a=(a-b)(h-2)$. Since z_{4} is a common zero of $f-a$ and $g-a$, we have $s=q$, which is a contradiction to the supposition. Therefore, f and g share $(a, \infty)^{*}$. Now we achieve the result by Theorem G. This proves the theorem.

Acknowledgement

The author is thankful to the referee for valuable suggestions towards the improvement of the paper.

References

[1] C. A. Bernstein, D. C. Chang and B. Q. Li, 'On uniqueness of entire functions in \mathbb{C}^{n} and their partial differential polynomials', Forum Math. 8 (1996), 379-396.
[2] G. Frank, 'Lecture notes on sharing values of entire and meromorphic functions', in: Workshops in Complex Analysis, Tianjin, China, 1991.
[3] Y. X. Gu, 'Uniqueness of an entire function and its differential polynomial', Acta Math. Sin. 37(6) (1994), 791-798.
[4] W. K. Hayman, Meromorphic Functions (Clarendon Press, Oxford, 1964).
[5] I. Lahiri, 'Weighted sharing and uniqueness of meromorphic functions', Nagoya Math. J. 161 (2001), 193-206.
[6] I. Lahiri, 'Weighted value sharing and uniqueness of meromorphic functions', Complex Var. Theory Appl. 46(3) (2001), 214-253.
[7] P. Li and C. C. Yang, 'Value sharing of an entire function and its derivatives', J. Math. Soc. Japan 51(4) (1999), 781-799.
[8] P. Li and C. C. Yang, 'When an entire function and its linear differential polynomial share two values', Illinois J. Math. 44(2) (2000), 349-362.
[9] E. Mues and N. Steinmetz, 'Meromorphe Funktionen die mit ihrer Ableitung Werte teilen', Manuscripta Math. 29 (1979), 195-206.
[10] L. A. Rubel and C. C. Yang, 'Values shared by an entire function and its derivatives', in: Proc. Conf. Complex Analysis, University of Kentucky, Lexington, KY, 1976, Lecture Notes in Mathematics, 599 (Springer, Berlin, 1977), 101-103.
[11] J. Wang, 'Entire functions that share two values with their derivatives', Indian J. Pure Appl. Math. 34(3) (2003), 371-383.
[12] C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions (Science Press/Kluwer Academic, Dordrecht, 2003).
[13] L. Z. Yang, 'Entire functions that share finite values with their derivatives', Bull. Aust. Math. Soc. 41 (1990), 337-342.

INDRAJIT LAHIRI, Department of Mathematics, University of Kalyani,
 West Bengal 741235, India
 e-mail: ilahiri@hotmail.com

[^0]: (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

