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Abstract This paper consists mainly of a review and applications of our old results relating to the title.
We discuss how many elliptic fibrations and elliptic fibrations with infinite automorphism groups (or
Mordell–Weil groups) an algebraic K3 surface over an algebraically closed field can have. As examples
of applications of the same ideas, we also consider K3 surfaces with exotic structures: with a finite
number of non-singular rational curves, with a finite number of Enriques involutions, and with naturally
arithmetic automorphism groups.
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1. Introduction

This paper consists mainly of a review and applications of previous results of ours relating
to elliptic fibrations on K3 surfaces over algebraically closed fields (see [4–11], the most
important of which are our papers [5,7,10,11]).

This was the subject of our talk at the Oberwolfach workshop ‘Higher dimensional
elliptic fibrations’ in October 2010. Elliptic fibrations are especially interesting for Fano
and Calabi–Yau manifolds. Thus, it is interesting to study these fibrations in the case of
K3 surfaces that are two-dimensional Calabi–Yau manifolds.

We consider algebraic K3 surfaces X over arbitrary algebraically closed fields k.
In § 2, we discuss basic results by Piatetsky-Shapiro and Shafarevich [12]. In particular,

we discuss when a K3 surface X has an elliptic fibration.
In § 3, we discuss when a K3 surface X has an elliptic fibration with infinite automor-

phism group (or the Mordell–Weil group) (see [7]).
In § 4, we discuss our general results from [7, 10, 11] on the existence of non-zero

exceptional elements of the Picard lattice with respect to the automorphism group of a
K3 surface. Here, an element x of the Picard lattice SX is called exceptional with respect
to the automorphism group AutX if its orbit AutX(x) in SX is finite. These results will
provide the main tools for further applications.

c© 2013 The Edinburgh Mathematical Society 253

https://doi.org/10.1017/S0013091513000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000953


254 V. V. Nikulin

In § 5 (see also § 4), we discuss how many elliptic fibrations and elliptic fibrations with
infinite automorphism groups a K3 surface can have. In particular, for the Picard number
ρ(X) � 3, we show that a K3 surface X has an infinite number of elliptic fibrations, and
an infinite number of elliptic fibrations with infinite automorphism groups if it has one
of them and the Picard lattice SX is different from a finite number of exceptional Picard
lattices SX . This is mainly related to our results in [5,7,10,11].

As examples of applications of the same ideas, in § 6, we consider K3 surfaces with
exotic structures: with a finite number of non-singular rational curves, with a finite
number of Enriques involutions, and with naturally arithmetic automorphism groups.

2. Results by Piatetsky-Shapiro and Shafarevich on the existence of elliptic
fibrations on K3 surfaces

We recall that an algebraic K3 surface X is a non-singular projective algebraic surface
over an algebraically closed field k such that the canonical class KX = 0 and the irregu-
larity q(X) = dimH1(X, OX) = 0.

Furthermore, in this section, X is an algebraic K3 surface over an algebraically closed
field. We denote by SX the Picard lattice of X. It is well known that SX is a hyperbolic
(i.e. of signature (1, ρ(X)−1)) even integral lattice of rank ρ(X), where ρ(X) = rkSX is
the Picard number of X. It can be an arbitrary even hyperbolic lattice of rank ρ(X) � 22,
and it is an important invariant of X. Lattices of this kind are the primary focus of this
paper.

According to Piatetsky-Shapiro and Shafarevich [12], elliptic fibrations on X are in
one-to-one correspondence with primitive isotropic nef elements c ∈ SX . That is, c �= 0,
c2 = 0, c/n ∈ SX only for integers n = ±1, c · D � 0 for any effective divisor D on X.
For such c ∈ SX , the complete linear system |c| is one dimensional without base points,
and it gives an elliptic fibration |c| : X → P1, that is, the general fibre is an elliptic curve
(for char k = 2 or 3 it can be quasi-elliptic; see [13]).

The following facts were also observed in [12]. By the Riemann–Roch theorem for
surfaces, any irreducible curve D on X with negative square has D2 = −2, and it is then
rational non-singular; hence P1. It follows that the nef cone NEF(X) ⊂ V +(X) ⊂ SX ⊗R

(or M(X) = NEF(X)/R+ ⊂ L(SX) = V +(X)/R+) is a fundamental chamber for the
reflection group W (2)(SX) ⊂ O(SX) generated by the 2-reflections sδ : x → x + (x · δ)δ
in elements δ ∈ SX with δ2 = −2. Moreover, classes of non-singular rational curves on
X are in one-to-one correspondence with elements δ ∈ SX , with δ2 = −2, which are
perpendicular to codimension 1 faces of M(X) and directed outwards (see [13, § 3]). We
denote this set by P (M(X)). Here, R+ is the set of all positive real numbers, V +(X) is
a half-cone of the cone V (SX) of elements of SX ⊗ R with positive square, and L(SX) is
the hyperbolic space related to SX or X. We define by

A(M(X)) = {φ ∈ O(SX) | φ(V +(X)) = V +(X) and φ(M(X)) = M(X)}

the symmetry group of M(X); then, {±1}W (2)(SX) � A(M(X)) = O(SX) is the semi-
direct product. By the theory of arithmetic groups (or integral quadratic forms theory),
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the fundamental domain for O(SX) is the same as the fundamental domain for A(M(X))
in M(X). In particular, this fundamental domain is a finite rational polyhedron.

It follows that there exist only a finite number of elliptic pencils on X up to the action
of A(M(X)). Similarly, there exist only a finite number of non-singular rational curves
on X up to the action of A(M(X)). Moreover, for any isotropic element c′ ∈ SX , there
exists w ∈ W (2)(SX) such that ±w(c′) is nef. Thus, X has an elliptic fibration if and only
if the Picard lattice SX represents 0: there exists 0 �= x ∈ SX with x2 = 0. In particular,
this is valid if ρ(X) � 5.

The fundamental result of [12], which follows from the Global Torelli theorem for
K3 surfaces (also proved in [12]), is that the action of AutX in SX has only a finite
kernel (see also [13] if char k > 0), and for char k = 0 it gives a finite index subgroup
in A(M(X)). In particular, for char k = 0, up to finite groups, we have the natural
isomorphisms of groups

AutX ≈ A(M(X)) ∼= O+(SX)/W (2)(SX),

where O+(SX) = {φ ∈ O(SX) | φ(V +(X)) = V +(X)} is the subgroup of O(SX) of
index 2. It follows that, for char k = 0, a K3 surface X has only a finite number of
elliptic fibrations and non-singular rational curves up to the action of the automorphism
group AutX. This is the same as for all nef elements h ∈ SX with a fixed positive square
h2 > 0.

3. The existence of elliptic fibrations with infinite automorphism groups on
K3 surfaces

Furthermore, X is a K3 surface over an algebraically closed field k.
Let c ∈ SX be a primitive isotropic nef element. By the theory of elliptic surfaces,

see, for example, [14, Chapter VII] (or by the Global Torelli theorem for K3 surfaces, if
char k = 0), the group Aut(c) of automorphisms of the elliptic fibration |c| : X → P1 is,
up to finite index, the abelian group Zr(c), where

r(c) = rk c⊥ − rk(c⊥)(2). (3.1)

Here c⊥ is the orthogonal complement to c in SX (obviously, rk c⊥ = ρ(X) − 1), and the
sublattice (c⊥)(2) ⊂ c⊥ is generated by c and by all elements with square (−2) in c⊥.
Equivalently, (c⊥)(2) is generated by all irreducible components of fibres of |c| : X → P1.
In particular, Aut(c) is finite if and only if either ρ(X) = 2, or c⊥ is generated by c and
by elements with square (−2), up to finite index. Up to finite index, Aut(c) is the same as
the Mordell–Weil group of the elliptic fibration c when we consider only automorphisms
from Aut(c) that act trivially on the base P1.

We then ask the following interesting question.

When does X have elliptic fibrations with infinite automorphism groups?

This is important, for example, for studying the dynamics of AutX (see, for exam-
ple, [1]) and the arithmetic of X.
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The main obstruction to the existence of the fibrations in question is the finiteness of
the automorphism group AutX of X. Indeed, if AutX is finite, then the automorphism
groups of all elliptic fibrations c on X are also finite, since Aut(c) ⊂ AutX.

Surprisingly, for ρ(X) � 6, this obstruction is sufficient and necessary according to [7],
and is valid for k of any characteristic. These results can be formulated for arbitrary
hyperbolic lattices S if one fixes a fundamental chamber M ⊂ L(S) for W (2)(S) and
considers the fundamental primitive isotropic elements c ∈ S, that is, R+c ∈ M̄. Instead
of AutX, one should consider the symmetry group A(M) ⊂ O+(S) or O+(S)/W (2)(S).

By (3.1), all elliptic fibrations on X have finite automorphism groups if and only if the
hyperbolic lattice S = SX satisfies the property

rk(c⊥) = rk(c⊥)(2) for any isotropic c ∈ S. (3.2)

We have the following results from [7].

Theorem 3.1. Let S be an even hyperbolic lattice of rank ρ = rkS � 6 (respectively,
X is a K3 surface over an algebraically closed field, and ρ(X) � 6). The following three
conditions are then equivalent.

(a) S satisfies (3.2) (respectively, the automorphism groups of all elliptic fibrations on
X are finite).

(b) The group A(M) ∼= O+(S)/W (2)(S) is finite (respectively, AutX is finite).

(c) The lattice S belongs to the finite list of even hyperbolic lattices below, found in [7]
(respectively, S = SX is one of the lattices from the list).

The list of lattices found in [7] is the following. (We use notation from [4,7], which
is now standard: ⊕ is the orthogonal sum of lattices; U is the even unimodular lattice
of signature (1, 1); An, Dm and Ek are negative definite root lattices corresponding to
the root systems An, Dm and Ek, respectively; S(λ) is obtained from a lattice S by
multiplication of its form by λ ∈ Z; and 〈A〉 is a lattice with the matrix A in some basis.)

The list of all even hyperbolic lattices S with [O(S) : W (2)(S)] < ∞ and rkS � 6
(see [7]) is

S = U ⊕ 2E8 ⊕ A1; U ⊕ 2E8; U ⊕ E8 ⊕ E7; U ⊕ E8 ⊕ D6; U ⊕ E8 ⊕ D4 ⊕ A1;

U ⊕ E8 ⊕ D4, U ⊕ D8 ⊕ D4, U ⊕ E8 ⊕ 4A1;

U ⊕ E8 ⊕ 3A1, U ⊕ D8 ⊕ 3A1, U ⊕ A3 ⊕ E8;

U ⊕ E8 ⊕ 2A1, U ⊕ D8 ⊕ 2A1, U ⊕ D4 ⊕ D4 ⊕ 2A1, U ⊕ A2 ⊕ E8;

U ⊕ E8 ⊕ A1, U ⊕ D8 ⊕ A1, U ⊕ D4 ⊕ D4 ⊕ A1, U ⊕ D4 ⊕ 5A1;

U ⊕ E8, U ⊕ D8, U ⊕ E7 ⊕ A1, U ⊕ D4 ⊕ D4,

U ⊕ D6 ⊕ 2A1, U(2) ⊕ D4 ⊕ D4, U ⊕ D4 ⊕ 4A1, U ⊕ 8A1, U ⊕ A2 ⊕ E6;

U ⊕ E7, U ⊕ D6 ⊕ A1, U ⊕ D4 ⊕ 3A1, U ⊕ 7A1, U(2) ⊕ 7A1,

U ⊕ A7, U ⊕ A3 ⊕ D4, U ⊕ A2 ⊕ D5, U ⊕ D7, U ⊕ A1 ⊕ E6;
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U ⊕ D6, U ⊕ D4 ⊕ 2A1, U ⊕ 6A1, U(2) ⊕ 6A1, U ⊕ 3A2, U ⊕ 2A3,

U ⊕ A2 ⊕ A4, U ⊕ A1 ⊕ A5, U ⊕ A6, U ⊕ A2 ⊕ D4, U ⊕ A1 ⊕ D5, U ⊕ E6;

U ⊕ D4 ⊕ A1, U ⊕ 5A1, U(2) ⊕ 5A1, U ⊕ A1 ⊕ 2A2,

U ⊕ 2A1 ⊕ A3, U ⊕ A2 ⊕ A3, U ⊕ A1 ⊕ A4, U ⊕ A5, U ⊕ D5;

U ⊕ D4, U(2) ⊕ D4, U ⊕ 4A1, U(2) ⊕ 4A1, U ⊕ 2A1 ⊕ A2,

U ⊕ 2A2, U ⊕ A1 ⊕ A3, U ⊕ A4, U(4) ⊕ D4, U(3) ⊕ 2A2.

Thus, a K3 surface X over an algebraically closed field, and with ρ(X) � 6, has an
elliptic fibration with infinite automorphism group if and only if its Picard lattice SX is
different from each lattice of this finite list. If the Picard lattice SX of X is one of the
lattices from the list, then not only are the automorphism groups of all elliptic fibrations
on X finite, but the full automorphism group AutX is also finite.

If rkS = 5, then a similar theorem is valid if one excludes two infinite series of even
hyperbolic lattices (see [7]).

Theorem 3.2. Let S be an even hyperbolic lattice of rank rkS = 5, let S be different
from the lattices 〈2m〉 ⊕ D4, m � 5, and 〈2 · 32n−1〉 ⊕ 2A2, n � 2 (respectively, a K3
surface X over an algebraically closed field has ρ(X) = 5 and SX different from the
lattices of these two series).

The following three conditions are then equivalent.

(a) S satisfies (3.2) (respectively, automorphism groups of all elliptic fibrations on X

are finite).

(b) The group A(M) ∼= O+(S)/W (2)(S) is finite (respectively, AutX is finite).

(c) The lattice S belongs to the finite list of even hyperbolic lattices of rank 5 below,
found in [7] (respectively, SX is one of the lattices from this list).

If S is one of the lattices 〈2m〉 ⊕ D4, m � 5, and 〈2 · 32n−1〉 ⊕ 2A2, n � 2, then S

satisfies (3.2), but the group A(M) ∼= O+(S)/W (2)(S) is infinite (equivalently, if SX

is one of the lattices from these two series, then all elliptic fibrations on X have finite
automorphism groups, but AutX is infinite if char k = 0).

The list of lattices of rank 5 found in [7] is as follows.

The list of all even hyperbolic lattices S with [O(S) : W (2)(S)] < ∞ and rkS = 5
(see [7]) is

S = U ⊕ 3A1, U(2) ⊕ 3A1, U ⊕ A1 ⊕ A2, U ⊕ A3, U(4) ⊕ 3A1, 〈2k〉 ⊕ D4,

k = 2, 3, 4, 〈6〉 ⊕ 2A2.

Thus, a K3 surface X, with ρ(X) = 5 and any char k, has elliptic fibrations with infinite
automorphism groups if and only if its Picard lattice SX is different from each lattice of
this finite list and from the lattices of the two infinite series in Theorem 3.2. If the Picard
lattice of X is one of the lattices from the finite list, then not only are the automorphism
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groups of all elliptic fibrations on X finite, but the full automorphism group AutX is
also finite. If the Picard lattice of X is one of the lattices from the two infinite series of
lattices of Theorem 3.2, then the automorphism groups of all elliptic fibrations on X are
finite, but AutX is infinite if char k = 0 (if char k > 0, it is not known).

If the Picard number ρ(X) = 4 or 3, no results, similar to those of Theorems 3.1
and 3.2, are known, except the results that we cite at the end of this section.

If ρ(X) = 2, then the automorphism groups of all elliptic fibrations on X are evidently
finite. If ρ(X) = 1, then X has no elliptic fibrations.

In particular, Theorems 3.1 and 3.2 describe all even hyperbolic lattices S having
the finite group A(M) ∼= O+(S)/W (2)(S) (they are called elliptically 2-reflective) of
rank ρ = rkS � 5. A similar finite description of elliptically 2-reflective even hyperbolic
lattices was obtained for ρ = 4 (14 lattices) in [18] (see also [9]), and for ρ = 3 (26 lattices)
in [8]. (As a correction to the list of lattices in [8], the lattices S′

6,1,2 and S6,1,1 are
isomorphic.) Finiteness was also generalized to arbitrary arithmetic hyperbolic reflection
groups and the corresponding reflective hyperbolic lattices over rings of integers of totally
real algebraic number fields (see [5,6,9,16] and also [17]).

4. Elliptic fibrations with infinite automorphism groups and exceptional
elements in Picard lattices for K3 surfaces

In what follows, X is a K3 surface over an algebraically closed field.
We consider the following general notion. For a hyperbolic lattice S and a subgroup

G ⊂ O(S), we call x ∈ S exceptional with respect to G if its stabilizer subgroup Gx

has finite index in G; equivalently, the orbit G(x) is finite. All exceptional elements with
respect to G define the exceptional sublattice E ⊂ S with respect to G. Since S is
hyperbolic, logically the following four cases are possible.

(i) Elliptic type of G. The exceptional sublattice E for G is hyperbolic. Obviously, G

is then finite and E = S. Then E is called hyperbolic.

(ii) Parabolic type of G. The exceptional sublattice E for G is semi-negative definite
and has a one-dimensional kernel. Then E is called parabolic.

(iii) Hyperbolic type of G. The exceptional sublattice E for G is negative definite. Then
E is called elliptic.

(iv) General hyperbolic type of G. The exceptional sublattice E for G is 0.

Replacing G by the action of AutX in SX , we obtain the following main definition. An
element of the Picard lattice x ∈ SX is called exceptional (with respect to AutX) if its
stabilizer subgroup (AutX)x has finite index in AutX; equivalently, the orbit (AutX)(x)
of x is finite.

All exceptional elements of SX define a primitive sublattice E(SX). We call it the
exceptional sublattice of the Picard lattice (for AutX). This sublattice was introduced

https://doi.org/10.1017/S0013091513000953 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000953


Elliptic fibrations on K3 surfaces 259

in [7] (therein, it was denoted by R(SX)), and the results that we discuss below were
mentioned, and in fact proved, in [7,10,11] (see [11, § 3]). We simply give more details
below.

We assume that X has at least one elliptic fibration c with infinite automorphism
group. We then have the following statement, where for a sublattice F ⊂ SX we denote
by Fpr ⊂ SX the primitive sublattice Fpr = SX ∩ (F ⊗ Q) ⊂ SX ⊗ Q generated by F .

Theorem 4.1. Let X be a K3 surface over an algebraically closed field that has at
least one elliptic fibration with infinite automorphism group.

The exceptional sublattice E(SX) is then equal to

E(SX) =
⋂

c

(c⊥)(2)pr , (4.1)

where c runs through all elliptic fibrations on X with infinite automorphism groups (or
the Mordell–Weil groups).

In particular, two exceptional sublattices of SX , for AutX and for the subgroup of
AutX generated by the Mordell–Weil groups of all elliptic fibrations with infinite auto-
morphism groups on X, coincide.

Proof. Simple calculations, using the theory of elliptic surfaces (see [14, Chap-
ter VII]), show (see [7]) that exceptional elements for (AutX)c (equivalently, for the
Mordell–Weil group of the elliptic fibration |c|) in SX define the sublattice (c⊥)(2)pr . It
follows that E(SX) ⊂ Ell(SX), where Ell(SX) is the right-hand side of (4.1).

Since X has at least one elliptic fibration with infinite automorphism group and SX is
hyperbolic, Ell(SX) is either semi-negative definite with a one-dimensional kernel Zc (that
is, Ell(SX) is parabolic), when X has only one elliptic fibration c with infinite automor-
phism group, or Ell(SX) is negative definite (that is, Ell(SX) is elliptic), when X has more
than one elliptic fibration with infinite automorphism groups. In both cases, AutX gives
the finite action on Ell(SX). It follows that Ell(SX) ⊂ E(SX). Thus, E(SX) = Ell(SX).

This completes the proof. �

As above, for an abstract hyperbolic lattice S (replacing SX), a fundamental chamber
M ⊂ L(S) for the reflection group W (2)(S) (replacing M(X) = NEF(X)/R+ ⊂ L(SX)),
and for the group A(M) of symmetries of M (replacing AutX), we can similarly consider
the exceptional elements x ∈ S for A(M) and the sublattice E(S) ⊂ S of all exceptional
elements for A(M). For a fundamental primitive isotropic element c ∈ S for M (replacing
an elliptic fibration of X), we can similarly consider the stabilizer subgroup A(M)c ⊂
A(M) (replacing the automorphism group Aut(c) of the elliptic fibration c on X). As
for K3 surfaces, we have isomorphism up to finite groups:

A(M)c ≈ Zr(c), r(c) = rk c⊥ − rk(c⊥)(2). (4.2)

Using (4.2), exactly the same considerations as for Theorem 4.1 give a similar result for
arbitrary hyperbolic lattices.
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Theorem 4.2. Let S be a hyperbolic lattice over Z, let M ⊂ L(S) be a fundamen-
tal chamber for W (2)(S) and let A(M) ⊂ O+(S) be its symmetry group. We assume
that S has at least one fundamental primitive isotropic element c with infinite stabilizer
subgroup A(M)c.

The exceptional sublattice E(S) for A(M) is then equal to

E(S) =
⋂

c

(c⊥)(2)pr , (4.3)

where c runs through all fundamental primitive isotropic elements c for M with infinite
stabilizer subgroups A(M)c.

For the K3 surfaces X and SX , we take M = M(X) = NEF(X)/R+. By [12], the
fundamental primitive isotropic elements for M and the elliptic fibrations on X give the
same set. The right-hand sides of (4.1) and (4.3) give the same result. Thus, we obtain
the following result, which shows that the calculations of exceptional sublattices of SX

for the geometric group AutX and for the lattice-theoretic group A(M(X)) give the
same result.

Theorem 4.3. Let X be a K3 surface over an algebraically closed field, having at
least one elliptic fibration with infinite automorphism group.

The exceptional sublattices E(SX) ⊂ SX for AutX and for A(M(X)) are then equal.

We have the following general result obtained in [7,8,10,11,18].

Theorem 4.4. For each fixed ρ � 3, the number of hyperbolic lattices S of rank ρ

having non-zero exceptional sublattices E(S) ⊂ S for A(M) is finite.

Proof. For hyperbolic E(S) (equivalently, when A(M) is finite), finiteness was proved
in [7,8,18] (discussed in § 3). The full list of such hyperbolic lattices S is known.

For parabolic E(S), finiteness was proved in [10], but the list of such hyperbolic lattices
S is not known.

For elliptic E(S) �= {0}, finiteness was proved in [11], but the list of such hyperbolic
lattices S is not known. �

Since rkSX � 22 for K3 surfaces, using Theorem 4.4, we can introduce the following
finite set of even hyperbolic lattices S of 3 � rkS � 22.

Definition 4.5. SEK3 is the set of all even hyperbolic lattices S such that rkS � 3,
E(S) �= 0 for A(M), where M ⊂ L(S) is a fundamental chamber for W (2)(S), and S is
isomorphic to the Picard lattice of some K3 surface X over an algebraically closed field.
By Theorem 4.4, the set SEK3 is finite.

We denote by SEK3e, SEK3p and SEK3h subsets of SEK3 corresponding to A(M)
of elliptic type (i.e. finite), parabolic type and hyperbolic type (equivalently, E(S) = S,
E(S) is semi-negative definite and has a one-dimensional kernel, E(S) �= 0 is negative
definite), respectively.

Combining Theorems 4.1–4.4, we obtain the main results.
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Theorem 4.6. Let X be a K3 surface over an algebraically closed field, let ρ(X) � 3
and let X have an elliptic fibration with infinite automorphism group. Assume that SX

is different from lattices belonging to the finite set SEK3.
The exceptional sublattice E(SX) ⊂ SX for AutX is then equal to 0.
Moreover, the exceptional sublattice E(SX) ⊂ SX is equal to 0 for the subgroup of

AutX generated by automorphism groups of all elliptic fibrations on X with infinite
automorphism groups (or by their Mordell–Weil groups).

Moreover, we have the equality
⋂

c

(c⊥)(2)pr = E(SX) = {0}, (4.4)

where c runs through all elliptic fibrations on X with infinite automorphism groups.

This theorem shows that, except for a finite number of Picard lattices from SEK3, a
K3 surface X has many elliptic fibrations with infinite automorphism groups if it has
one of them: (4.4) quantifies exactly how many. We also discuss directly the number of
elliptic fibrations in the next section.

It would be interesting to find the finite set of Picard lattices SEK3 of K3 surfaces.
Only its subset SEK3e is known.

For ρ(X) = 1, the exceptional sublattice is equal to SX . For ρ(X) = 2, the exceptional
sublattice is equal to SX if X has an elliptic fibration. Indeed, in both these cases, AutX

is finite since O(SX) is finite (this was observed in [12]). Thus, only the case of ρ(X) � 3,
which we considered above, is interesting.

5. The number of elliptic fibrations and elliptic fibrations with infinite
automorphism groups on K3 surfaces

Using Theorem 4.6, we obtain the following results, which show that, for ρ(X) � 3,
the K3 surface X has an infinite number of elliptic fibrations, and an infinite number
of elliptic fibrations with infinite automorphism groups if it has one of them, if SX is
different from a finite number of exceptional Picard lattices.

Theorem 5.1. Let X be a K3 surface over an algebraically closed field, let ρ(X) � 3
and let X have at least one elliptic fibration.

Then, X has an infinite number of elliptic fibrations if SX is different from the finite
set of Picard lattices SX when the number of elliptic fibrations is finite. This holds for
the following cases.

• SX ∈ SEK3e; in particular, AutX is finite.

• SX ∈ SEK3p and X has only one elliptic fibration; in particular, X has one elliptic
fibration with an infinite automorphism group, and no other elliptic fibrations.

Proof. We assume that X has a finite number of elliptic fibrations. Then, M(X) has
only a finite number of fundamental primitive isotropic elements, which are all exceptional
for A(M(X)). It follows that E(SX) �= 0 and SX ∈ SEK3. We consider two cases.
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Case 1. We assume that all elliptic fibrations on X have finite automorphism groups
(equivalently, fundamental primitive isotropic elements c for M(X) have finite stabilizer
subgroups A(M(X))c). Then, A(M(X)) is finite and SX ∈ SEK3e. Conversely, if SX ∈
SEK3e, then M(X) is a fundamental chamber for the arithmetic group W (2)(SX) in
L(SX), and it has only a finite number of fundamental primitive isotropic elements.
Thus, X has only a finite number of elliptic fibrations.

Case 2. We assume that X has an elliptic fibration c with the infinite automorphism
group Aut(c). Since the number of elliptic fibrations on X is finite, all of them are
exceptional for AutX, and E(SX) is not 0. Since AutX is infinite, E(SX) cannot be
hyperbolic. Since elliptic fibrations give isotropic elements, E(SX) cannot be elliptic
(i.e. negative definite). Thus, E(SX) is parabolic and SX ∈ SEK3p. By Theorem 4.1, we
have that

E(SX) =
⋂

c

(c⊥)(2)pr ,

where c runs through all elliptic fibrations on X with infinite automorphism groups. Since
E(SX) is parabolic, it follows that X has only one elliptic fibration c with infinite auto-
morphism group and AutX = Aut(c). Since all elliptic fibrations on X are exceptional
for AutX, they must also have infinite automorphism groups, and they must be equal
to c. Thus, X has only one elliptic fibration c.

Conversely, we assume that SX ∈ SEK3p and that X has only one elliptic fibration.
Then, E(SX) �= SX and AutX is infinite. Since X has only one elliptic fibration c,
AutX = Aut(c) is its automorphism group, which is infinite.

This completes the proof. �
Theorem 5.2. Let X be a K3 surface over an algebraically closed field, let ρ(X) � 3

and let X have at least one elliptic fibration with infinite automorphism group.
Then, X has an infinite number of elliptic fibrations with infinite automorphism groups

if SX is different from the finite set of Picard lattices SX when the number of elliptic
fibrations on X with infinite automorphism groups is finite:

• SX ∈ SEK3p; in particular, X has only one elliptic fibration with infinite automor-
phism group.

Proof. If the number of elliptic fibrations on X with infinite automorphism groups is
finite, all of them are exceptional for AutX, and E(SX) is not trivial. Then, SX ∈ SEK3,
which is finite by Theorem 4.6. Since each of these elliptic fibrations is exceptional for
AutX and corresponds to an isotropic element, E(SX) cannot be elliptic (that is, negative
definite). Since AutX is infinite, E(SX) cannot be hyperbolic either. Thus, E(SX) is
parabolic and has a one-dimensional kernel. By Theorem 4.1,

E(SX) =
⋂

c

(c⊥)(2)pr ,

where c runs through all elliptic fibrations on X with infinite automorphism groups.
Since E(SX) is parabolic, it follows that X has only one elliptic fibration c with infinite
automorphism group.
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Conversely, if X has only one elliptic fibration c with infinite automorphism group,
then E(SX) = (c⊥)(2)pr is parabolic and SX ∈ SEK3p.

This completes the proof. �

If ρ(X) = 1 or 2, then X has two elliptic fibrations or fewer, and these cases are trivial.

6. Applications to K3 surfaces with exotic structures

Here, we give some other applications of finiteness of the set of Picard lattices of K3
surfaces with the non-trivial exceptional sublattice E(SX), and elliptic fibrations with
an infinite automorphism group.

6.1. K3 surfaces with a finite number of non-singular rational curves

Recently, Matsushita asked me what we can say about K3 surfaces with a finite number
of non-singular rational (equivalently, irreducible) (−2)-curves. We have the following
theorem.

Theorem 6.1. A K3 surface X over an algebraically closed field has no non-singular
rational curves if and only if its Picard lattice SX has no elements with square (−2).

If a K3 surface X over an algebraically closed field has non-singular rational curves
(equivalently, its Picard lattice SX has elements with square (−2)), then their number is
finite in only the following cases (1) and (2):

(1) ρ(X) = 2,

(2) ρ(X) � 3 and the Picard lattice SX is elliptically 2-reflective: [O(SX) : W (2)(SX)] <

∞. The number of elliptically 2-reflective hyperbolic lattices is finite, and they are
enumerated in [7,8,18] (for ρ(X) � 5, they are listed in § 3).

Proof. Let S = SX and let M = M(X) be the fundamental chamber for W (2)(S).
The non-singular rational curves on X are then in one-to-one correspondence with ele-
ments of the set P (M) of perpendicular vectors to M with square (−2) and directed
outwards.

If S has no elements with square (−2), then P (M) is empty and X has no non-singular
rational curves.

We assume that S has an element δ with δ2 = −2. Then, ±w(δ) gives one of the
elements of P (M) for some w ∈ W (2)(S), the set P (M) is not empty, and X contains a
non-singular rational curve.

Since S is hyperbolic and S has elements with square (−2), ρ(X) = rkS � 2.
Let ρ(X) = 2. Then, M = V +(S)/R+ is an interval, and elements of P (M) correspond

to terminals of this interval. Thus, P (M) has not more than two elements, and the
number of non-singular rational curves on X is one or two.

Let ρ(X) � 3, and let P (M) be non-empty and finite. All elements of P (M) are
then exceptional for the symmetry group A(M) ⊂ O+(S) of M, and the exceptional
sublattice E(S) is not 0. Then, by Theorem 4.4 (from [7,8,10,11,18]), S is one of a
finite number of hyperbolic lattices of rank less than or equal to 22.
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Actually, the main idea of the proof of this theorem in [8,10,11] is that P (M) has the
elements δ1, . . . δρ ∈ S, ρ = rkS, which generate S ⊗ Q and δi · δj � 19, 1 � i < j � ρ.
(These elements define a narrow part of M.) It follows that P (M) generates S ⊗ Q, the
group A(M) ∼= O+(S)/W (2)(S) is finite since P (M) is finite, the lattice S is elliptically
2-reflective, [O(S) : W (2)(S)] < ∞, and the number of such lattices is finite.

This completes the proof. �

6.2. K3 surfaces with a finite number of Enriques involutions

Here, we restrict our study to basic fields k of char k �= 2.
We recall that an involution σ on a K3 surface X over an algebraically closed field k of

char k �= 2 is called an Enriques involution if σ has no fixed points on X. Then X/{id, σ}
is an Enriques surface (see [2]). It is well known (see [2]) that σ in SX has the eigenvalue 1
part that is isomorphic to the standard hyperbolic lattice Sσ

X
∼= U(2)⊕E8(2) of rank 10.

A general K3 surface with an Enriques involution has SX = Sσ
X

∼= U(2) ⊕ E8(2), and
only a finite number of Enriques involutions (if char k = 0, only one).

We have the following result.

Theorem 6.2. Let X be a K3 surface over an algebraically closed field k of char k �= 2,
and let X have an Enriques involution.

If X has only a finite number of Enriques involutions, then either SX is isomorphic to
U(2) ⊕ E8(2), or SX belongs to the finite set SEK3.

In particular, if SX is different from the lattices of these two finite sets, then X has an
infinite number of Enriques involutions.

Proof. Let σ be an Enriques involution on X.
Since Sσ

X
∼= U(2) ⊕ E8(2) is a sublattice of SX , it follows that ρ(X) � 10.

Let ρ(X) = 10. Then, SX = Sσ
X , and σ is the identity on SX . Since AutX has only

a finite kernel in SX , it follows that X has only a finite number of Enriques involutions
(only one if char k = 0).

Let ρ(X) > 10. For each Enriques involution σ on X, the orthogonal complement
Sσ = (Sσ

X)⊥ in SX is then a non-zero negative definite sublattice of SX , which has a
finite number of automorphisms. If X has only a finite number of Enriques involutions,
then all these orthogonal complements are contained in the exceptional sublattice E(SX)
of SX for AutX, and E(SX) �= {0}. Since ρ(X) � 10 � 6, by Theorem 3.1 either AutX

is finite and X has only a finite number of Enriques involutions, and SX ∈ SEK3e, or
X has an elliptic fibration with an infinite automorphism group. By Theorem 4.3, the
exceptional sublattices of SX for AutX and for A(M(X)) are the same, and SX ∈ SEK3.
By Theorem 4.4 (from [7,8,10,11,18]), the set SEK3 is finite.

This completes the proof. �

The method of the proof is so general that, by the same considerations, one can prove
similar results for other types of involutions or automorphisms on K3 surfaces, and other
structures on K3 surfaces.
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6.3. K3 surfaces with naturally arithmetic automorphism groups

This is related to the recent preprint by Totaro [15].

Definition 6.3. Let X be a K3 surface over an algebraically closed field, and let SX

be its Picard lattice.
We say that the automorphism group AutX is naturally arithmetic if there exists a

sublattice K ⊂ SX such that the action of AutX in SX identifies AutX as a subgroup of
finite index in O(K). More precisely, there exists a subgroup G ⊂ AutX of finite index
such that K is G-invariant, and the natural homomorphism G → O(K) has finite kernel
and cokernel.

For example, if AutX is finite, then one can take K = {0} ⊂ SX , and AutX is
naturally arithmetic. Thus, all K3 surfaces with elliptically 2-reflective Picard lattices
SX (for ρ(X) � 5, see the list in § 3) have naturally arithmetic automorphism groups.

We have the following result, which uses the Global Torelli theorem for K3 surfaces [12],
and it is valid over C (or over an algebraically closed field k of char k = 0).

Theorem 6.4. Let X be a K3 surface over C. Then AutX is naturally arithmetic in
only the following cases (1), (2) and (3).

(1) The Picard lattice SX has no elements with square (−2).

(2) SX has elements with square (−2) and ρ(X) = 2.

(3) SX has elements with square (−2), ρ(X) � 3, and SX is one of the lattices from
the subset (described in the proof) of the finite set SEK3.

In particular, if ρ(X) � 3 and SX has elements with square (−2), then AutX is not
naturally arithmetic, except for a finite number of Picard lattices SX .

Proof. We identify AutX with its action in SX . By [12], the automorphism group
AutX is a subgroup of finite index in A(M), where M = M(X), and O+(SX) =
A(M) � W (2)(SX) is the semi-direct product. We can consider A(M) instead of AutX.
Thus, the natural arithmeticity of AutX depends on SX only. If SX has no elements with
square (−2), then W (2)(SX) is trivial, and A(M) and AutX are naturally arithmetic
(one can take K = SX). We obtain the case (1).

If SX has elements with square (−2) and ρ(X) = 2, then A(M) and AutX are finite,
and they are naturally arithmetic (one can take K = {0}). We obtain the case (2).

We assume that SX has elements with square (−2), ρ(X) � 3, and AutX is naturally
arithmetic for some sublattice K ⊂ SX . We show that the exceptional sublattice E(SX)
for A(M) (or AutX) is then not trivial.

We assume that W (2)(SX) is finite. The group W (2)(SX) is generated by the reflec-
tions sδ, where δ ∈ P (M), and all such reflections are different. It follows that
P (M) is finite and non-empty (equivalently, the number of non-singular rational curves
on X is finite and non-empty). By Theorem 6.1, SX is then elliptically 2-reflective,
[O(SX) : W (2)(SX)] < ∞, the groups A(M) and AutX are finite, and the exceptional
sublattice E(SX) = SX is not trivial.
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We assume that W (2)(SX) is infinite. Then W (2)(SX) and O+(SX) act transitively on
an infinite number of fundamental chambers for W (2)(SX) in L(SX). But A(M) sends
M to itself. Thus, A(M) has an infinite index in O+(SX). It follows that K ⊂ SX has
rkK < rkSX , and the orthogonal complement E = K⊥ in SX is not 0.

If K is negative definite, then A(M) and AutX are finite, and E(SX) = SX is not
trivial.

If K is semi-negative definite and not negative definite, then it has a one-dimensional
kernel Zc, where c is exceptional, and E(SX) is not trivial.

If K is hyperbolic, then E = K⊥ is negative definite and non-zero. It gives a non-
trivial sublattice in E(SX), since E has a finite automorphism group. Thus, E(SX) is
not trivial.

By Theorem 4.4, the lattice SX is one of a finite number of hyperbolic lattices S

with 3 � rkS � 22 and with non-trivial exceptional sublattice E(S) for A(M). Thus,
SX belongs to the finite set SEK3 of hyperbolic lattices.

This completes the proof. �

Because of Theorem 6.4, the following result is important. It has been known for many
years, and is a corollary of results of [4], but it was never published.

Theorem 6.5. Let X be a K3 surface over C, and let ρ(X) = rkSX � 12.
Then, SX has elements with square (−2). In particular, X contains a non-singular

rational curve P1.

Proof. The Picard lattice S = SX is a primitive sublattice of the lattice H2(X, Z) =
L, which is an even unimodular lattice of signature (3, 19). It is unique up to isomor-
phisms. The transcendental lattice T = S⊥

L has rank less than or equal to 10, and
rkT + rk(T ∗/T ) � 20 = rkL − 2. By [4, Theorem 1.14.4], the lattice T has a unique
primitive embedding into L, up to isomorphisms. Thus, for any primitive embedding
T ⊂ L, we have that (T )⊥

L
∼= S = SX .

On the other hand, by [4, Theorem 1.12.2], the lattice T ⊕〈−2〉 has a primitive embed-
ding into L. For this primitive embedding, T⊥

L contains a sublattice 〈−2〉. Thus, S = SX

also contains a primitive sublattice 〈−2〉. Equivalently, there exists δ ∈ SX with δ2 = −2.
This completes the proof. �

From Theorems 6.4 and 6.5, we obtain the following.

Corollary 6.6. Up to isomorphisms, there exist only a finite number of Picard lattices
SX of K3 surfaces over C such that rkSX = ρ(X) � 12 and AutX is naturally arithmetic.

On the contrary, by [4, Theorem 1.12.4], any even hyperbolic lattice S of rkS � 11
has a primitive embedding into an even unimodular lattice of signature (3, 19). Thus, by
the epimorphicity of the Torelli map for K3 surfaces (see [3]), the lattice S is isomorphic
to the Picard lattice SX of a K3 surface X over C. It follows that, for each 1 � ρ � 11,
there exist an infinite number of non-isomorphic Picard lattices SX of K3 surfaces over C

such that rkSX = ρ, SX has no elements with square (−2) and, thus, AutX is naturally
arithmetic.
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