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Abstract

Let X be an algebraic variety and let f :X 99KX be a rational self-map with a fixed
point q, where everything is defined over a number field K. We make some general
remarks concerning the possibility of using the behaviour of f near q to produce many
rational points on X. As an application, we give a simplified proof of the potential
density of rational points on the variety of lines of a cubic fourfold, originally proved
by Claire Voisin and the first author in 2007.

1. Introduction

Let X be an algebraic variety defined over a number field K. One says that the rational points are
potentially dense in X, or that X is potentially dense, if there is a finite extension L of K, such
that X(L) is Zariski-dense.1 For instance, unirational varieties are obviously potentially dense.
A well-known conjecture of Lang affirms that a variety of general type cannot be potentially
dense; more recently, the question of geometric characterization of potentially dense varieties
has been raised by several mathematicians, for example, by Abramovich and Colliot-Thélène
and especially by Campana [Cam04]. According to their points of view, one expects that the
varieties with trivial canonical class should be potentially dense. This is well known for abelian
varieties, but the simply connected case remains largely unsolved.

Bogomolov and Tschinkel [BT00] proved potential density of rational points for K3 surfaces
admitting an elliptic pencil, or an infinite automorphism group. Hassett and Tschinkel [HT00]
did this for certain symmetric powers of general K3 surfaces with a polarization of a suitable
degree. The key observation of their work was that those symmetric powers are rationally fibered
in abelian varieties over a projective space, and, as the elliptic K3 surfaces of [BT00], they admit a
multisection with potentially dense rational points, which one can translate by suitable fiberwise
rational self-maps to obtain the potential density of the ambient variety.

The K3 surfaces studied by Bogomolov and Tschinkel correspond to points lying on certain
proper subvarieties in the moduli space of polarized K3. It is still unknown whether a K3 surface
defined over a number field and ‘general’ in some sense, for instance, such that its Picard group
is Z, is potentially dense, and this question seems to be out of reach for the moment.

More recently, Amerik and Voisin [AV08] proved the potential density of the varieties of lines
of certain sufficiently general cubic fourfolds V defined over a number field. Such a variety of
lines X = F(V ) is an irreducible holomorphic symplectic fourfold, so it is a ‘higher-dimensional

1 As the referee observes, the question of potential density is relevant over an arbitrary field; most of our remarks
from § 2 also work over any field of finite type over Q, if one fixes a ‘suitable’ embedding of the field in Qp for a
suitable p.
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analogue’ of a K3 surface. For generic V (i.e. such that the corresponding point in the parameter
space is outside of a countable union of proper subvarieties), X has a cyclic Picard group.
A theorem of Terasoma [Ter85] implies that this is also true for X defined over a number field,
provided that the parameter point is outside of a thin subset in the parameter space (where
‘thin’ is understood in the sense of Hilbert irreducibility, see [Ser92]).

So far these are the only examples of a simply connected variety defined over a number field,
with trivial canonical class and cyclic Picard group, where the potential density is established.
The starting idea is in some sense similar to that of [BT00]: as noticed in [Voi04], X admits a
rational self-map f of degree 16. The map f is defined as follows: for a general line l ⊂ V , there
is a unique plane P tangent to V along l, and the map f sends l to the line l′ residual to l in
the intersection P ∩ V .

Moreover, X carries a two-parameter family Σb, b ∈B, of surfaces birational to abelian
surfaces; each Σb parameterizes lines contained in a hyperplane section of V with three double
points. It is proved in [AV08] that under certain genericity conditions on the pair (X, b), satisfied
by many pairs defined over a number field, the union of the iterates fn(Σb), n ∈ N is Zariski-
dense in X. Since rational points are potentially dense on abelian varieties, this clearly implies
that X is potentially dense. The proof is done in two steps: first one shows that for many (X, b)
defined over a number field, the number of iterates fn(Σb) is infinite, so that these iterates are at
least Zariski-dense in a divisor D. Already, at this first step, the proof is very involved, using, for
instance, `-adic Abel–Jacobi invariants in the continuous étale cohomology. Using more geometry
and some other `-adic Abel–Jacobi invariants, one excludes the case when the Zariski closure
of
⋃
n f

n(Σb) is a divisor. As a consequence of the proof, the genericity conditions one has to
impose on the pair (X, b) are rather complicated, and it is not obvious whether one can check
in practice if they are satisfied for a given (X, b) and if a given X is potentially dense.

The purpose of this article is to further investigate the connection between the existence of
‘sufficiently non-trivial’ rational self-maps and the potential density of rational points. In the
first part we prove, among other facts, that if the differential of a rational self-map f :X 99KX
at a non-degenerate fixed point q ∈X(Q̄) has multiplicatively independent eigenvalues, then the
rational points are potentially dense on X (Corollary 2.7). More precisely, we show that, under
this condition, one can find a point x ∈X(Q̄) such that the set of its iterates is Zariski-dense.
Note that this remains unknown for X and f as in [AV08], though the question has been raised
in [AC08] where it is shown that the map f :X 99KX does not preserve any rational fibration
and therefore the set of the iterates of a general complex point of X is Zariski-dense. A related
conjecture is stated in [Zha06], see Remark 2.12.

Unfortunately, it seems to be difficult to find interesting examples with multiplicatively
independent eigenvalues of the differential at a fixed point. There are certainly plenty of such
self-maps on rational varieties, but, since for those the potential density is obvious, we cannot
consider their self-maps as being ‘interesting’. In the case of [AV08], the eigenvalues of Dfq at a
fixed point q are 1, 1,−2 and −2 (Proposition 3.3). We do not know whether the multiplicative
independence could hold for some fixed point of a power of f .

Nevertheless, even the independence of certain eigenvalues gives interesting new information.
To illustrate this, we exploit this point of view in the second part, where a simplified proof of the
potential density of the variety of lines of the cubic fourfold is given. In fact, we actually prove
a somewhat stronger result. The first step of [AV08], that is, the existence of a surface Σ⊂X,
defined over a number field, which is birationally abelian and not preperiodic under f , now
becomes an immediate consequence of our general remarks. In particular, it holds for the variety

1820

https://doi.org/10.1112/S0010437X11005537 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X11005537


Remarks on endomorphisms and rational points

of lines of an arbitrary cubic fourfold. On the second step, we do need some extra geometry
since our eigenvalues are very far from the multiplicative independence, and, as we perform it,
some genericity conditions do appear. However, it is sufficient for us to ask that Pic(X) = Z in
order to show that the iterates fn(Σ) are Zariski-dense. Let us remark that this condition can
be verified, with an appropriate computer program, for an explicitly given X, in the same way
as it is done by van Luijk [vL07] for quartic K3 surfaces.

The paper is organized as follows: in § 2, we consider a smooth projective variety X with a
rational self-map f :X 99KX which has a fixed point q, where X, f , q are defined over a number
field K. We show (Proposition 2.2) that for a suitable prime p, the point q has an invariant
p-adic neighbourhood. Looking at the behaviour of f in this neighbourhood, we make a few
observations about the global properties of f under certain conditions on the eigenvalues of Dfq
(Corollaries 2.7 and 2.9). Our main tool is a linearization result (Theorem 4.1), due to Herman
and Yoccoz in the case when q is isolated. In § 4, we explain how to adapt their proof to the case
of non-isolated fixed points, which we need for our main application; that is, the new proof of
the potential density of the variety of lines on a cubic fourfold, explained in § 3 (our final result
is Theorem 3.11). Finally, in § 5 we prove a version of Noether normalization lemma which we
need in order to work in our invariant p-adic neighbourhood when q is not isolated; this section is
added following a referee’s remark since we could not find a proof of this lemma in the literature.

As a final remark for this introduction, let us mention that the variety of lines on a cubic
fourfold is the first in a series of examples of varieties with trivial canonical class admitting a
rational self-map of high degree. Indeed, as observed by Voisin in [Voi04], one can look at the
variety of k-dimensional projective subspaces contained in a cubic of dimension n; as soon as
n and k are chosen in such a way that the canonical class of this variety is trivial, the same
construction as above gives a rational self-map. It can be interesting to see what our method
gives for these examples; however, this is not an easy question since their dimension is very high.
More generally, it is a challenging problem to look for families of simply connected varieties with
trivial canonical class, such that the general member admits a rational self-map of high degree. It
is unclear when should such self-maps exist; on the other hand, so far there is only one negative
result in this direction: a few months after this paper had been written, Chen [Che] proved that
a generic K3 surface does not admit a rational self-map of degree greater than one.

Let us also mention that for varieties of lines of some special cubic fourfolds (roughly, of those
admitting a hyperplane section with six double points), the potential density is shown in [HT]
using the existence of an infinite-order birational automorphism on such varieties.

While finishing the writing of this paper, we have learned of a recent article [GT09], where a
question of a different flavour is approached by similar methods.

2. Invariant neighbourhoods

Let X be a smooth projective variety of dimension n and let f :X 99KX be a rational self-map,
both defined over a ‘sufficiently large’ number field K. We assume that f has a fixed point
q ∈X(K). This assumption is not restrictive if, for example, f is a regular and polarized (that
is, such that f∗L= L⊗k for a certain ample line bundle L and an integer k > 1) endomorphism:
indeed, in this case the set of periodic points in X(Q̄) is even Zariski-dense [Fak03], so replacing
f by a power and taking a finite extension of K if necessary, we find a fixed point.

We denote by OK the ring of integers of the number field K; for a point p, i.e. an equivalence
class of valuations of K, Kp denotes the corresponding completion, Op the ring of integers in Kp.
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Our starting point is that, for any fixed point q ∈X(K) and a suitable prime ideal p⊂OK ,
we can find a ‘p-adic neighbourhood’ Op,q of q, which is a subset of X(Kp) containing q, on which
f is well defined and which is f -invariant.

More precisely, choose an affine neighbourhood U ⊂X of q, such that the restriction of f to
U is regular. By Noether normalization lemma, there is a finite K-morphism π = (x1, . . . , xn) :
U −→ An

K to the affine space. Recall that it can be obtained by embedding U into an affine space
and projecting from a suitable linear subspace at infinity; it is easy to see that this subspace
can moreover be chosen in such a way that π is étale at q. (In § 5, we prove a more general
fact, Theorem 5.2, which should be well known but for which we could not find a proof in the
literature.) We may suppose that q maps to 0.

The K-algebra O(U) is integral over K[x1, . . . , xn], i.e. it is generated over K[x1, . . . , xn]
by some regular functions xn+1, . . . , xm integral over K[x1, . . . , xn]. The coordinate ring of U
is included into the local ring of q and the latter is included into its completion: O(U)⊂OU,q ⊂
ÔU,q =K[[x1, . . . , xn]]. In particular, xn+1, . . . , xm become elements of K[[x1, . . . , xn]]. As f∗

defines an endomorphism of the ring OU,q and of its completion, the functions f∗x1, . . . , f
∗xm

also become power series in xi with coefficients in K.
We claim that the coefficients of the power series xn+1, . . . , xm, f

∗x1, . . . , f
∗xm are p-integral

for almost all primes p, that is,

xn+1, . . . , xm, f
∗x1, . . . , f

∗xm ∈ OK [1/N ][[x1, . . . , xn]]

for some integer N > 1. This is a consequence of the following well-known result (a stronger
version for n= 1 goes back to Eisenstein).

Lemma 2.1. Let k be a field of characteristic zero and let φ ∈ k[[x1, . . . xn]] be a function
algebraic over k(x1, . . . , xn). Then φ ∈A[[x1, . . . xn]], where A is a finitely generated
Z-subalgebra of k.

Proof. Let G be a minimal polynomial of φ over k[x1, . . . , xn], so G(φ) = 0 and G′(φ) 6= 0. Then
G′(φ) ∈msrms+1 for some s> 0, where m is the maximal ideal in k[[x1, . . . , xn]].

Denote by φd the only polynomial of degree less than d congruent to φ modulo md. For a
formal series Φ in x and an integer m denote by Φ(m) the homogeneous part of Φ of degree m.
Clearly, G′(φd)(m) is independent of d for d >m.

We are going to show by induction on d that the coefficients of the homogeneous component
of φ of degree d belong to the Z-subalgebra of k generated by coefficients of G (as a polynomial
in n+ 1 variables), by coefficients of φs+1 and by the inverse of a certain (non-canonical)
polynomial D in coefficients of G and in coefficients of φs+1. To define D, choose a valuation
v of rank n of the field k(x1, . . . , xn), trivial on k, such that v(xi)> v(k(x1, . . . , xi−1)×) for
all 1 6 i6 n (equivalently, 0< v(xm1

1 )< · · ·< v(xmn
n ) for all m1, . . . , mn > 0). Then D is the

coefficient of the monomial in G′(φs+1)(s) with the minimal valuation (such a monomial is unique,
in fact two distinct monomials have distinct valuations).

For d6 s there is nothing to prove, so let d > s. Let ∆d := φ− φd, so ∆d ∈md. Then 0 =
G(φd + ∆d)≡G(φd) +G′(φd)∆d (mod ∆2

d), so in particular, G(φd)(d+s) +G′(φd)(s)(∆d)(d) = 0,
or equivalently, G(φd)(d+s) +G′(φs+1)(s)φ(d) = 0, and thus, φ(d) =−G(φd)(d+s)/G′(φs+1)(s).

The field of rational functions k(x1, . . . , xn) is embedded into its completion with respect
to v, and by our choice of v this completion can be identified with the field of iterated Laurent
series k((x1)) · · · ((xn)). In particular, (G′(φs+1)(s))−1 becomes an iterated Laurent series, whose
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coefficients are polynomials over Z in the coefficients of G′(φs+1)(s) and in D−1 (write G′(φs+1)(s)
as a product of its minimal valuation monomial and a rational function, then write the inverse of
the rational function as a geometric series). Then, by induction assumption, the coefficients
of φ(d) are polynomials over Z in coefficients of G, coefficients of φs+1 and in D−1. 2

Therefore, for almost all primes p⊂OK , the coefficients of the power series
xn+1, . . . , xm, f

∗x1, . . . , f
∗xn are integral in Kp. Choose a p satisfying this condition and such

that, moreover, the irreducible polynomials Pi(T ) = Pi(x1, . . . , xn; T ) ∈K[x1, . . . , xn; T ] which
are minimal monic polynomials of xi for n < i6m, have p-integral coefficients and the elements
P ′i (0, . . . , 0; xi(q)) are invertible in Op for each n < i6m (this last condition holds for almost
all primes p since the morphism x is étale at q).

Define the system of p-adic neighbourhoods Op,q,s, s> 1, of the point q as follows:

Op,q,s = {t ∈ U(Kp) | xi(t)≡ xi(q) mod ps for all 1 6 i6m}.

We set Op,q :=Op,q,1.

Proposition 2.2. (1) For any s> 1, the functions x1, . . . , xn give a bijection between Op,q,s

and the nth cartesian power of ps.

(2) The set Op,q contains no indeterminacy points of f .

(3) One has f(Op,q,s)⊆Op,q,s for any s> 1. Moreover, f :Op,q,s
∼−→Op,q,s is bijective if

detDfq is invertible in Op.

(4) The Q̄-points of X are dense in Op,q,s for any s> 1.

Proof. These properties are clear from the definition and the inclusion of the elements
x1, . . . , xm, f

∗x1, . . . , f
∗xm into Op[[x1, . . . , xn]].

(1) The map x from Op,q,s to the nth cartesian power of ps is injective, since the coordinates
xn+1, . . . , xm of a point t are determined uniquely by the coordinates x1, . . . , xn and the
condition t ∈Op,q. Indeed, consider the equation Pi(xi) = Pi(x1, . . . , xn; xi) = 0, where Pi is
the minimal monic polynomial of xi for n < i6m. For fixed values of x1, . . . , xn ∈ p this equation
has precisely deg Pi solutions (with multiplicities) in K̄p. As P ′i (xi(q)) ∈ O

×
p , xi(t)≡ xi(q) (mod p)

is a simple root of Pi (mod p), and thus, any root congruent to xi(q) modulo p is not congruent
to any other root modulo p.

It is surjective, since xn+1, . . . , xm are convergent series on ps with constant values modulo ps.
(2) The functions f∗xi, 1 6 i6m, are convergent series on Op,q.

(3) The functions f∗xi on the nth cartesian power of ps, 1 6 i6m, are constant modulo ps.
This shows that f(Op,q,s)⊆Op,q,s. If detDfq 6= 0 then the inverse map f−1 is well defined in a
neighbourhood of 0. If detDfq ∈ O×p then f−1 is defined by series in Op[[x1, . . . , xn]], i.e. it is
well defined on Op,q.

(4) The Q̄-points are dense in the nth cartesian power of ps and they lift uniquely to algebraic
points of Op,q,s. 2

Let λ1, . . . , λn be the eigenvalues of the tangent map Dfq. We assume from now on that q is
a non-degenerate fixed point of f , meaning, by definition, that λi 6= 0 for all i. Note that the λi
are algebraic numbers. Extending, if necessary, the field K, we may assume that λi ∈K. The
following is a consequence of the p-adic versions of several well-known results in dynamics and
number theory.
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Proposition 2.3. Assume that λ1, . . . , λn are multiplicatively independent. Then in some p-
adic neighbourhood Op,q,s, the map f is equivalent to its linear part Λ (i.e. there exists a formally
invertible n-tuple of formal power series h= (h(1), . . . , h(n)) in n variables (x1, . . . , xn) = x,
convergent together with its formal inverse on a neighbourhood of zero, such that h(λ1x1, . . . ,
λnxn) = f(h(x1, . . . , xn))).

Proof. It is well known that in absence of relations

λm1
1 · · · λmn

n = λj , 1 6 j 6 n, m=
∑

mi > 2, mi > 0,

known as ‘resonances’, there is a unique formal linearization of f , obtained by formally solving
the equation f(h(x)) = h(Λ(x)); the expressions λm1

1 · · · λmn
n − λj appear in the denominators

of the coefficients of h (see for example [Arn88]). The problem is of course whether h has non-
zero radius of convergence, that is, whether the denominators are ‘not too small’. By Siegel’s
theorem (see [HY83] for its p-adic version) this is the case as soon as the numbers λi satisfy the
diophantine condition

|λm1
1 · · · λmn

n − λj |p >Cm−α

for some C, α > 0. By [Yu90], this condition is always satisfied by the algebraic numbers. 2

When the fixed point q is not isolated, the eigenvalues λi are always resonant. However, as
follows from the results proved in § 4, if ‘all resonances come from the fixed subvariety’, the
linearization is still possible.

More precisely, extending K if necessary, we may choose q ∈X(K) which is a smooth point
of the fixed point locus of f . Let F be the irreducible component of this locus containing q. Let
r = dim F . By a version of Noether’s normalization lemma (Theorem 5.2 below), we may assume
that our finite morphism π = (x1, . . . , xn) : U −→ An

K which is étale at q, maps F ∩ U onto the
coordinate plane {xr+1 = · · ·= xn = 0}.

Proposition 2.4. Let q be a smooth point of the fixed point locus of f as above. Suppose
that the tangent map Dfq is semisimple and that its eigenvalues λ1, . . . , λn satisfy the
condition λ

mr+1

r+1 · · · λmn
n 6= λi for all integer mr+1, . . . , mn > 0 with mr+1 + · · ·+mn > 2 and

all i, r < i6 n (and λ1 = · · ·= λr = 1).

Suppose moreover that the eigenvalues of Dfq are constant in a neighbourhood of q in F .
Then, for each q as above, the map f can be linearized in some p-adic neighbourhood Op,q,s

of q, i.e. there exists a formally invertible n-tuple of formal power series h= (h(1), . . . , h(n)) in
n variables (x1, . . . , xn) = x, convergent together with its formal inverse on a neighbourhood of
zero, such that h(λ1x1, . . . , λnxn) = f(h(x1, . . . , xn)).

Proof. Taking into account that the λi are algebraic numbers and so the bad diophantine
approximation condition

|λmr+1

r+1 · · · λ
mn
n − λj |p >C

( ∑
r<i6n

mi

)−α
is automatically satisfied for some C, α > 0, whenever

∑
r<i6n mi > 2; this is just Theorem 4.1

below. 2

Remark 2.5. It might be worthwhile to mention explicitly that since the sum of the mi in the
condition of this proposition must be at least two, the relation λi = λj is not a resonance for i, j
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between r + 1 and n, in other words, linearization is still possible when some (or even all) of the
non-trivial eigenvalues are equal.

In order to apply these propositions to the study of iterated orbits of algebraic points, we
need the following lemma.2

Lemma 2.6. Let a1, a2, . . . be a sequence in K×p tending to 0. Let b1, b2, . . . be a sequence of
pairwise distinct elements in O×p . Then we have the following.

(1) There exists an s ∈ N such that
∑

i>1 aib
s
i 6= 0.

(2) If, moreover, bi/bj is not a root of unity for any i > j > 1, then any infinite subset
S ⊂ N contains an element s such that

∑
i>1 aib

s
i 6= 0 (in other words, the set of s ∈ N such

that
∑

i>1 aib
s
i = 0 is finite).

Proof. Renumbering if necessary, we may suppose that |a1|= |a2|= · · ·= |aN |> |ai| for any
i > N . Suppose that

∑
i>1 aib

s
i = 0 for every s ∈ S, where S is a subset of N.

(1) First assume that S = N. By our assumption, for any polynomial P ,
∑

i>1 aiP (bi) = 0. By
the triangle inequality, we shall get a contradiction as soon as we find a polynomial P such that
|P (bk)|< |P (b1)| for 2 6 k 6N and |P (bk)|6 |P (b1)| for k > N . To construct such a P , choose
an ideal q = ps such that the bi are pairwise distinct modulo q for i= 1, . . . , N and let

P (x) =
∏

b∈Op/q,b1 6∈b

(x− b̄),

where b̄ denotes any representative of the class b. An easy check gives that |P (x)|= |P (b1)| when
x≡ b1 (mod q) and |P (x)|< |P (b1)| otherwise, so P has the required properties.

(This polynomial P has been indicated to us by A. Chambert-Loir.)

(2) Now let S ⊂ N be an arbitrary infinite set. Take an integer M > 0 such that |bM − 1|<
|p|1/(p−1) for all b ∈ O×p (this is possible since O×p is compact, equivalently, the residue rings are
finite), then ci := log bMi is defined for all i and exp(ci) = bMi . Since no quotient bi/bj is a root of
unity, the ci are pairwise distinct. We claim that for a certain sequence a′1, a

′
2, . . . in K×p tending

to 0, we can write identities
∑

i>1 a
′
ic
m
i = 0 for all m ∈ N, so this case reduces to that of S = N.

Indeed, consider S as a subset of Zp; it has a limit point s0. For a sequence of m-tuples j1 >
j2 > · · ·> jm in S such that j1 ≡ j2 ≡ · · · ≡ jm (modM) and lim j1 = lim j2 = · · ·= lim jm = s0,
and any analytic function g on Zp, one has

g(m)(s0)
m!

= lim
m∑
l=1

g(jl)∏
k 6=l(jl − jk)

(the Newton interpolation formula).

Pick a class modulo M which contains a sequence in S converging to s0. There is an analytic
function gi such that gi(k) = bki when k is in this class. By the formula above, we have

g
(m)
i (s0) =

cmi
Mm

gi(s0) =m! lim
m∑
l=1

g(jl)∏
k 6=l(jl − jk)

,

2 We thank the referee for pointing out that somewhat stronger assumptions from a previous version are not used
in the proof.
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where all the jl are in the same class modulo M . This gives
∞∑
i=1

aigi(s0)cmi =Mmm! lim
m∑
l=0

1∏
k 6=l(jl − jk)

∞∑
i=1

aigi(jl) = 0

since the jl are in S. This holds for any m ∈ N and the ci are pairwise distinct, so that we are
back to the case S = N. 2

The referees have pointed out the relation of this lemma with the p-adic proof of the Skolem–
Mahler–Lech theorem, where the vanishing of finite sums

∑k
i=1 aib

s
i for a certain fixed number k

is dealt with.
From now on, we assume that p is chosen so that all λi belong to O×p (this is of course the

case for almost all p).
The first part of the lemma (case S = N) immediately implies the following corollary.

Corollary 2.7. If λ1, . . . , λn are multiplicatively independent, the rational points on X are
potentially dense. More precisely, there is a point t ∈X(Q̄) with Zariski-dense iterated orbit
{f i(t) | i ∈ N}.

Proof. Since the algebraic points are dense in Op,q,s and the union of the y-coordinate hyperplanes
is a proper closed subset, we can find a point t ∈X(Q̄) which is contained in Op,q,s, away from
the coordinate hyperplanes in the local coordinates (y1, . . . , yn) linearizing f . We claim that the
iterated orbit of such a point is Zariski-dense in X. Indeed, if not, there is a regular function G on
U vanishing at f i(t) for all i; in the local linearizing coordinates on Op,q,s, G becomes a convergent
power series G=

∑
I aIy

I . If t= (t1, . . . , tn), we get
∑

I aIt
I(λI)i = 0 for all i ∈ N. Since the λi

are multiplicatively independent, the λI are pairwise distinct, contradicting Lemma 2.6(1). 2

Another useful version of this corollary is the following.

Corollary 2.8. Let n be a natural number, T be the nth cartesian power of O×p and
Λ = (λ1, . . . , λn) ∈ T , where λ1, . . . , λn are multiplicatively independent. Let S ⊂ N be an
infinite subset. Then the set {Λi | i ∈ S} is ‘analytically dense’ in T , that is, for any non-zero
Laurent series Φ =

∑
I aIy

I convergent on T , there is an s ∈ S such that Φ(Λs) 6= 0.

Proof. Otherwise, after a renumbering of aI as ai and setting bi = λI for i corresponding to I,
we get

∑
i>1 aib

s
i = 0 for all s ∈ S. This contradicts Lemma 2.6. 2

The case S 6= N yields the following remark which is useful in the study of the case when the
fixed point q is not isolated (as in the next section).

Corollary 2.9. Under assumptions of Proposition 2.4, let Y ⊂ U be such an irreducible
subvariety that, possibly after a finite field extension, Y (Kp) meets a sufficiently small (i.e. where
f can be linearized) p-adic neighbourhood of q. Suppose that the multiplicative subgroup
H ⊂O×p generated by the eigenvalues λ1, . . . , λn of Dfq is torsion-free. Let S ⊂ N be an infinite
subset. Then the Zariski closure of the union

⋃
i∈S f

i(Y ) is independent of S, and, therefore, is
irreducible.

Proof. To check the independence of S, let us show that any regular function G on U vanishing on⋃
i∈S f

i(Y ) vanishes also on f i(Y ) for any i> 1. The vanishing of G on an irreducible subvariety
Z is equivalent to the vanishing of G at a generic point of Z. Here, for a field extension L/K,
a ‘generic point’ of Z is an L-rational point in the complement to the union of all divisors on Z
defined over K (i.e. a field embedding K(Z) ↪→ L over K).
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Let y1, . . . , yn be local coordinates at q linearizing and diagonalizing f on a neighbourhood
Op,q,s meeting Y (Kp). We claim that, possibly after a finite extension of K, Y (Kp) meets Op,q,s

at a generic point. Indeed, after a finite extension of K, one can find a point u of Y in Op,q,s and
then ‘deform’ u to a generic point.3

As f i(Y )(Kp) ∩Op,q,s contains f i(Y (Kp) ∩Op,q,s), each f i(Y )(Kp) meets Op,q,s at a generic
point.

The function G becomes a convergent power series
∑

I aIy
I on Op,q,s. For any point

t= (t1, . . . , tn) ∈ Y (Kp) ∩Op,q,s the series G vanishes at the points f i(t) for all i ∈ S (that is,∑
I aIλ

iItI =
∑

I:tI 6=0 aIλ
iItI = 0 for all i ∈ S) and it remains to show that G vanishes also at

the points f i(t) for all i> 1.
The set of multi-indices I ∈ Zn>0 splits into the following equivalence classes: I ∼ I ′ if λI = λI

′
.

By Lemma 2.6, the sum of aItI over each equivalence class is zero, and thus,
∑

I aIλ
iItI = 0 for

all i> 1.
At least one of the irreducible components of the Zariski closure of

⋃
i∈S f

i(Y ) contains
infinitely many of the f i(Y ). Any such component contains

⋃
i>1 f

i(Y ), i.e. the Zariski closure
of
⋃
i∈S f

i(Y ) is irreducible. 2

Finally, the following is an obvious generalization of Corollary 2.7.
Corollary 2.10. Under the assumptions of Proposition 2.4, let t be a sufficiently general
algebraic point of U in a sufficiently small p-adic neighbourhood of q and H be the multiplicative
group generated by λ1, . . . , λn. Then the dimension of the Zariski closure of the f -orbit {f i(t) |
i ∈ N} is greater than or equal to the rank r of H. In particular, if the eigenvalues of the tangent
map Dfq are multiplicatively independent then the rational points on X are potentially dense.

(Here, as in the previous corollary, a sufficiently small neighbourhood is such a neighbourhood
that f is linearizable in it, and a sufficiently general algebraic point is just an algebraic point
outside the union of the coordinate hyperplanes in the linearizing coordinates.)

Proof. Let y1, . . . , yn be local coordinates at q linearizing and diagonalizing f in a neighbourhood
Op,q,s. Replacing f by a power, we may assume that the eigenvalues λi generate a torsion-free
group. Take a point t= (t1, . . . , tn) ∈Op,q,s away from the coordinate hyperplanes and consider
the natural embedding of the nth cartesian power T of O×p :

t : T →Op,q,s, (µ1, . . . , µn) 7→ (µ1t1, . . . , µntn).

On the image of T , we can find a monomial coordinate change such that in the new coordinates
y′1, . . . , y

′
n one has

f(y′1, . . . , y
′
n) = (λ′1y

′
1, . . . , λ

′
ry
′
r, y
′
r+1, . . . , y

′
n),

where λ′1, . . . , λ
′
r ∈H are multiplicatively independent (Euclid’s algorithm). Now Corollary 2.8

(applied to the rth cartesian power of O×p acting on r first coordinates and to Λ = (λ′1, . . . , λ
′
r))

asserts that the ‘analytic closure’ of the f -orbit of t contains the torus {(y′1, . . . , y′n) ∈ T | y′r+1 =
tr+1, . . . , y

′
n = tn} (notice that since it is about Laurent series, we can allow monomial coordinate

changes as above). 2

3 Choose some xi1 , . . . , xidim Y whose restriction to Y are algebraically independent. This defines a generically finite

morphism γ : Y →Adim Y
k . Choose a sequence of (ordered) dim Y -tuples of algebraically independent elements in

ps tending to γ(u). By Krasner’s lemma, it lifts (possibly after a finite extension of Kp) to a sequence of unordered
deg γ-tuples of generic points of Y tending to an unordered deg γ-tuple containing u. This means that all the
elements of the sequence, except for a finite number of them, contain a point of Op,q,s.
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To end this section, let us mention that our considerations yield a simple and self-contained
proof of the well-known result that rational points are potentially dense on abelian varieties (see
for example [HT00, Proposition 3.1]). The following is a result of a discussion with A. Chambert-
Loir.

Proposition 2.11. Let A=A1 × · · · ×An be a product of simple abelian varieties, let
k1, . . . , kn be multiplicatively independent positive integers and set f :A→A, f = f1 × · · · × fn,
where for each i, fi is the multiplication by ki on Ai. Then there exist points x ∈A(Q̄) with
Zariski-dense iterated orbit {fm(x) |m ∈ N}.

Proof. Take a suitable number field K, p⊂OK and for each i, a p-adic neighbourhood Oi such
that fi is linearized in Oi. Work in the linearizing coordinates. The same argument as in the
above corollaries shows that for a point (x1, . . . , xn) ∈O1 × · · · ×On, xi 6= 0, the iterated orbit
is analytically dense in l1 × · · · × ln, where li ⊂Oi is the line through the origin generated by xi.
Induction by n and the simplicity of the Ai show that l1 × · · · × ln is not contained in a proper
abelian subvariety of A. Since its Zariski closure is invariant by f , it must coincide with A. 2

Since any abelian variety is isogeneous to a product of simple abelian varieties, this
proposition proves that abelian varieties are potentially dense. Note that, unlike [HT00,
Proposition 3.1], it does not show the existence of an algebraic point generating a Zariski-dense
subgroup.

Remark 2.12. Let f be a polarized endomorphism of a smooth projective variety X. Zhang
conjectures in [Zha06] that one can find a point in X(Q̄) with a Zariski-dense iterated orbit.
According to our Corollary 2.7, this conjecture is true provided that some power of f has a
non-degenerate fixed point with multiplicatively independent eigenvalues of the tangent map.
Unfortunately not all polarized endomorphisms have this property: a simple example is the
endomorphism of Pn, n > 1, taking all homogeneous coordinates to the mth power, m> 1.

3. Variety of lines of the cubic fourfold

The difficulty in using the results of the previous section to prove potential density of rational
points is that it can be hard to find an interesting example such that the eigenvalues of the tangent
map at some fixed point are multiplicatively independent. For instance, if f is an automorphism
and X is a projective K3 surface, or, more generally, an irreducible holomorphic symplectic
variety, then the product of the eigenvalues is always a root of unity, as noticed for instance
in [Bea83].

So even when a linearization in the neighbourhood of a fixed point is possible, the orbit
of a general algebraic point may be contained in a relatively small analytic subvariety of the
neighbourhood (of course this subvariety does not have to be algebraic, but it is unclear how to
prove that it actually is not). Nevertheless, with some additional geometric information, one can
still follow this approach to prove the potential density.

In the rest of this note, we illustrate this by giving a simplified proof of the potential density
of the variety of lines of a cubic fourfold, which is the main result of [AV08]. The proof uses
several ideas from [AV08], but we think that certain aspects become more transparent thanks
to the introduction of the ‘dynamical’ point of view and the use of p-adic neighbourhoods. In
particular, as it is already mentioned in the introduction, we obtain slightly stronger results.
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We recall the setting of [AV08] (the facts listed below are taken from [Ame09, Voi04]). Let V
be a smooth cubic in P5 and letX ⊂G(1, 5) be the variety of lines on V .4 This is a smooth fourfold
with trivial canonical class, in fact an irreducible holomorphic symplectic fourfold: H2,0(X) is
generated by a nowhere-vanishing form σ. For a general line l ⊂ V , there is a unique plane P
tangent to X along l (consider the Gauss map, it sends l to a conic in the dual projective space).
The map f maps l to the residual line l′. It multiplies the form σ by −2; in particular, its degree
is 16. If V does not contain planes, the indeterminacy locus S ⊂X consists of points such that
the image of the corresponding line by the Gauss map is a line (and the mapping is 2:1). This
is a surface resolved by a single blow-up; for a general V (‘general’ meaning ‘outside of a proper
subvariety in the parameter space’) it is smooth and of general type. The universal family of lines,
viewed as a correspondence between V to X, induces the isomorphism between the primitive
fourth cohomology of V and the primitive second cohomology of X (see [BD85]). This implies
that for a generic V , and thus for a generic X (‘generic’ meaning ‘outside of a countable union of
proper subvarieties in the parameter space’), the Picard group of X is cyclic and so the Hodge
structure on H2(X)prim is irreducible (thanks to h2,0(X) = 1). The space of algebraic cycles
of codimension two on X is then generated by H2 = c21(U∗) and ∆ = c2(U∗), where U is the
restriction of UG(1,5), the universal rank-two bundle on the Grassmannian G(1, 5). One deduces
from Terasoma’s theorem [Ter85] that this condition Pic(X) = Z is also satisfied by a ‘sufficiently
general’ X defined over a number field, in fact even over Q; ‘sufficiently general’ meaning ‘outside
of a thin subset in the parameter space’ (thin in the sense of Hilbert irreducibility as in [Ser92]).
One computes that the cohomology class of S is 5(H2 −∆) to conclude that S is irreducible and
non-isotropic with respect to σ.

3.1 Fixed points and linearization
The fixed point set F of our rational self-map f :X 99KX is the set of points such that along the
corresponding line l, there is a tritangent plane to V . Strictly speaking, this is the closure of
the fixed point set, since some of such points are in the indeterminacy locus; but for simplicity
we shall use the term ‘fixed point set’ as far as there is no danger of confusion.

Proposition 3.1. The fixed point set F of f is an isotropic surface, which is of general type if
X is general.

Proof. It is clear from f∗σ =−2σ that F is isotropic. Since σ is non-degenerate, the dimension
of F is at most two. Let I ⊂G(1, 5)×G(2, 5) with projections p1, p2 be the incidence variety
{(l, P ) | l ⊂ P} and let F ⊂ I × PH0(OP5(3)) denote the variety of triples {(l, P, V ) | V ∩ P = 3l}.
This is a projective bundle over I, so F is smooth and thus its fiber F ′V over a general
V ∈ PH0(OP5(3)) is also smooth. This fiber clearly projects generically one-to-one on the
corresponding F = FV , since along a general line l ⊂ V there is only one tangent plane, and a
fortiori only one tritangent plane if any; so F ′ = F ′V is a desingularization of F . Since dim(I) = 11
and since intersecting the plane P along the triple line l imposes nine conditions on a cubic V ,
we conclude that F ′ and F are surfaces.

To compute the canonical class, remark that F ′ is the zero locus of a section of a globally
generated vector bundle on I. This vector bundle is the quotient of p∗2S

3U∗G(2,5) (where UG(2,5)

denotes the tautological subbundle on G(2, 5)) by a line subbundle L3 whose fiber at (l, P ) is
the space of degree-three homogeneous polynomials on P with zero locus l. One computes that

4 Here and below, G(k, n) denotes the Grassmannian of k-dimensional projective subspaces in Pn.
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the class of L3 is three times the difference of the inverse images of the Plücker hyperplane
classes on G(2, 5) and G(1, 5), and it follows that the canonical class of F is p∗2(3c1(U∗)), which
is ample (we omit the details since an analogous computation is given in [Voi98], and a more
detailed version of it in [Pac03]). 2

Remark 3.2. Since F is isotropic and S is not, S cannot coincide with a component of F . In
fact, a dimension count shows that F ∩ S is a curve.

Proposition 3.3. Let q be a smooth point of F out of the indeterminacy locus of f . Then the
tangent map Dfq is diagonalized with eigenvalues 1, 1,−2,−2.

Proof. This follows from the fact that f∗σ =−2σ and the fact that the map is the identity on
the lagrangian plane TpF ⊂ TpX. Let e1, e2, e3, e4 be the Jordan basis with e1, e2 ∈ TpF . There
is no Jordan cell corresponding to the eigenvalue 1, since in this case e4 would be an eigenvector
with eigenvalue 4, but then σ(e1, e4) = σ(e2, e4) = σ(e3, e4) = 0, contradicting the fact that σ is
non-degenerate. By the same reason, the eigenvalues at e3 and e4 are both equal to ±2. Suppose
that Dfq is not diagonalized, so sends e3 to ±2e3 and e4 to e3 ± 2e4. In both cases σ(e3, e4) = 0.
If e3 goes to 2e3, we immediately see that e3 ∈Ker(σ), which is a contradiction. Finally, if
Dfq(e3) =−2e3 and Dfq(e4) = e3 − 2e4, we have

−2σ(e1, e4) = σ(e1, e3)− 2σ(e1, e4),

so that σ(e1, e3) = 0, but by the same reason σ(e2, e3) = 0, which is again a contradiction to
non-degeneracy of σ. 2

Proposition 3.4. (1) Let q ∈X(K) be a fixed point of f as in Proposition 3.3 and let Op,q be
its p-adic neighbourhood for a suitable p, as in the previous section. Then f is equivalent to its
linear part in a sufficiently small subneighbourhood Op,q,s; that is, there exists a quadruple of
power series h= hq in four variables (t1, t2, t3, t4) = t such that h(t1, t2,−2t3,−2t4) = f ◦ h(t),
convergent together with its inverse in some neighbourhood of zero.

(2) In the complex setting, the analogous statements are true. Moreover, the maps ht1,t2 ,
where ht1,t2(x, y) = h(t1, t2, x, y) extend to global meromorphic maps from C2 to X.

Proof. (1) Since the couple of non-trivial eigenvalues (−2,−2) is non-resonant, this is just the
Proposition 2.4.

(2) In the complex case, the linearization is a variant of a classical result due to
Poincaré [Poi28]. One writes the formal power series in the same way as in the p-adic setting,
thanks to the absence of the resonances; but it is much easier to prove its convergence thanks
to the fact that now λ3 = λ4 =−2 and |−2|> 1, and so the absolute values of the denominators
which appear when one computes the formal power series are bounded from below (these
denominators are in fact products of the factors of the form λm3

3 λm4
4 − λi for m3 +m4 > 2,

m3, m4 > 0). For the sake of brevity, we refer to [Ron08] which proves the analogue of Theorem 4.1
in the complex case and under a weaker diophantine condition on the eigenvalues (Rong assumes
moreover that |λi|= 1, but as we have just indicated, in our case all estimates only become easier,
going back to [Poi28]).

To extend the maps ht1,t2 to C2, set

ht1,t2(x) = f r(ht1,t2((−2)−rx)),

where (−2)−rx is sufficiently close to zero; one checks that this is independent of the choices
made. 2
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We immediately get the following corollary (which follows from the results of [AV08], but for
which there was no elementary proof).

Corollary 3.5. There exist points in X(Q̄) which are not preperiodic for f .

Proof. Indeed, Q̄-points are dense in Op,q. Take one in a suitable invariant subneighbourhood
and use the linearization given by the proposition above. 2

Remark 3.6. If f were regular, this would follow from the theory of canonical heights; but this
theory does not seem to work sufficiently well for polarized rational self-maps.

3.2 Non-preperiodicity of certain surfaces
The starting point of [AV08] was the observation that X is covered by a two-parameter family
Σb, b ∈B of birationally abelian surfaces, namely, surfaces parametrizing lines contained in a
hyperplane section of V with three double points. On a generic X, a generic such surface has
cyclic Neron–Severi group [AV08]; moreover, for many X defined over a number field, there are
many Σb defined over a number field with the same property, as shown by an argument similar
to that of Terasoma [Ter85].

In [AV08], it is shown that the union of the iterates of a suitable Σb defined over a number
field and with cyclic Neron–Severi group is Zariski-dense in X. The first step is to prove non-
preperiodicity, that is, the fact that the number of fk(Σb), k ∈ N, is infinite. Already at this
stage the proof is highly non-trivial, using the `-adic Abel–Jacobi invariant in the continuous
étale cohomology.

In this subsection, we give an elementary proof of the non-preperiodicity of a suitable Σ = Σb

defined over a number field, which is based on Proposition 3.4. Moreover, this works without any
assumptions on its Néron–Severi group, and also for any X, not only for a ‘sufficiently general’
one.

Lemma 3.7. Let Σ⊂X be a surface parameterizing lines contained in a hyperplane section of
V with three double points and no other singularities, as above. Then Σ cannot be invariant
by f .

Proof. The surface Σ is the variety of lines contained in the intersection Y = V ∩H, where H is
a hyperplane in P5 tangent to V at exactly three points. For a general line l corresponding to a
point of Σ, there is a unique plane P tangent to V along l, and the map f sends l to the residual
line l′. If Σ is invariant, l′ and therefore P lie in H, and P is tangent to Y along l. However, this
means that l is ‘of the second type’ on Y in the sense of Clemens–Griffiths (i.e. the Gauss map of
Y ⊂H = P4 maps l to a line in (P4)∗ as a double covering, or equivalently, the normal bundle
of l in U is Ol(−1)⊕Ol(1)), see [CG72, 6.6, 6.19]. At the same time it is well known that a general
line on a cubic threefold with double points is ‘of the first type’ (i.e. has trivial normal bundle,
or equivalently is mapped bijectively onto a conic by the Gauss map; see [CG72, Beginning of
§ 7] for dimension estimates in the case of a cubic n-fold), which is a contradiction. 2

Passing to the p-adic setting and taking a Σ meeting a small neighbourhood of a general
fixed point q of f , we see by Corollary 2.9 that the Zariski closure of ∪kfk(Σ) is irreducible.
Since Σ cannot be f -invariant by the lemma above, this means that Σ is not preperiodic and so
the Zariski closure D of ∪kfk(Σ) is at least a divisor.

Coming back to the complex setting and taking a Σ passing close to q in both p-adic and
complex topologies, let us make a few remarks on the geometry of D.
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In a neighbourhood of our fixed point q, the intersections of D with the images of ht1,t2 are
f -invariant analytic subsets. From the structure of f as in Proposition 3.4 we deduce that such
a subset is either the whole image of ht1,t2 , or a finite union of ‘lines through the origin’ (that is,
images of such lines by ht1,t2). If the last case holds generically, D must contain F by dimension
reasons. If the generic case is the first one, D might only have a curve in common with F .

To sum up, we have the following theorem.

Theorem 3.8. Let X be the variety of lines of a smooth cubic fourfold V , and let q be a smooth
point of F outside of the indeterminacy locus of f , as above. For any Σ as in Lemma 3.7 meeting
a sufficiently small neighbourhood of q, the Zariski closure D of ∪kfk(Σ) is of dimension at least
three. If it is of dimension three, this is an irreducible divisor which either contains the surface
of fixed points F , or has a curve in common with F . In this last case, D contains corresponding
‘leaves’ (images of C2 from Proposition 3.4) through the points of this curve.

3.3 Potential density
In this subsection, we exclude the case when D is a divisor, under the assumption that
Pic(X) = Z. So let us assume, by contradiction, that D is a divisor (irreducible by Theorem 3.8).

Let µ : D̃→D ⊂X denote a desingularization of D; D̃ is equipped with a rational self-map
f̃ satisfying µf̃ = fµ.

Our proof is a case-by-case analysis on the Kodaira dimension of D (meaning the Kodaira
dimension of any desingularization). To start with, this Kodaira dimension cannot be maximal
because of the presence of a self-map of infinite order (that f cannot be of finite order on D
is immediate, for instance, from f∗σ =−2σ; the fact that any dominant rational self-map of a
variety of general type is of finite order is well known, see for example [Kob98, Theorem 7.6.1]).
In [AV08], we already have simple geometric arguments ruling out the cases of κ(D) =−∞ and
κ(D) = 0. Though the main part of the discussion in [AV08] is quite different from ours, these
two cases also occur there at a certain point and are just sketched below for the convenience of
the reader.

Case κ(D) =−∞. This is especially simple since then the holomorphic 2-form would be coming
from the rational quotient of D, but Σ, being non-uniruled, must dominate the rational quotient
and thus Σ would not be isotropic [AV08, p. 400].

Case κ(D) = 0. This is much less obvious and uses the fact that Pic(X) = Z or, equivalently, that
the Hodge structure H2(X)prim is irreducible of rank 22. Namely, an argument using Minimal
Model theory and the existence of an holomorphic 2-form on D gives that D must be rationally
dominated by an abelian threefold or by a product of a K3 surface with an elliptic curve.
However, the second transcendental Betti number of those varieties cannot exceed 21, which
contradicts the fact that D̃ carries an irreducible Hodge substructure of rank 22; see [AV08,
Proposition 3.4] for details.

We now treat the Cases κ(D) = 2 and κ(D) = 1.

Case κ(D) = 2. We need the following lemma.

Lemma 3.9. On an X with cyclic Picard group, the points of period 3 with respect to f form
a curve.

Proof. Let l1 be (a line corresponding to) such a point, l2 = f(l1), l3 = f2(l1), so that f(l3) = l1.
There are thus planes P1, P2, P3, such that P1 is tangent to V along l2 and contains l3, etc.
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Clearly, the planes P1, P2, P3 are pairwise distinct. The span of the planes Pj is a projective
3-space Q. Let us denote the two-dimensional cubic, intersection of V and Q, by W . We can
choose the coordinates (x : y : z : t) on Q such that l1 is given by y = z = 0, etc. Then the
intersection of W and P1 is given by the equation z2y = 0, etc. The only other monomial from
the equation of W , up to a constant, can be xyz, since it has to be divisible by the three
coordinates. Therefore W is a cone (with vertex at 0) over the cubic given by the equation

ax2y + by2z + cy2z + dxyz = 0

in the plane at infinity. Now a standard dimension count [Ame09] shows that a general cubic
admits a one-parameter family of two-dimensional linear sections which are cones, and if some
special cubic admits a two-parameter family of such linear sections, then some of them would
degenerate into the union of a plane and a quadratic cone, contradicting Pic(X) = Z (recall
that by [BD85], the primitive classes of algebraic 2-cycles on V correspond to primitive divisor
classes on X). Each cone on V gives rise to a plane cubic on X. This cubic is invariant under f ,
and f acts by multiplication by −2 for a suitable choice of zero point on the cubic. Indeed, by
construction of f , for x on such a cubic, f(x) is just the second intersection point of the cubic
and its tangent line at x. The points of period 3 with respect to f lie on such cubics and are
their points of 9-torsion. 2

Remark 3.10. In fact the lemma says slightly more: it applies to the indeterminacy points which
are ‘3-periodic in the generalized sense’, that is, points appearing if one replaces the condition
‘f(l1) = l2, f(l2) = l3, f(l3) = l1’ by ‘l2 ∈ f(l1), l3 ∈ f(l2), l1 ∈ f(l3)’; here by f(l1) we mean the
rational curve which is the image of l1 by the correspondence which is the graph of f (equivalently,
l2 ∈ f(l1) says that for some plane P3 tangent to V along l1, the residual line in P3 ∩ V is l2).

By blowing-up D̃, we may assume that the Iitaka fibration D̃→B is regular. Its general
fiber is an elliptic curve. By [NZ07, Theorem A], the rational self-map f̃ descends to B and
induces a transformation of finite order, so the elliptic curves are invariant by a power of f̃ .
From Proposition 3.4, we obtain that they are in fact invariant by f̃ itself: indeed, locally in a
neighbourhood of our fixed point q, the curves invariant by f are the same as the curves invariant
by its power. On each elliptic curve, there is a finite (non-zero) number of points of period three,
since f̃ acts as multiplication by −2. We have two possibilities.

(1) These are mapped to points of period three (in the generalized sense as in the Remark 3.10)
on X (or the surface formed by those points of period three on D̃ is contracted to any other
curve on X). Then we claim that any preimage of our surface by an iteration of f̃ is contracted
as well, and this gives a contradiction since there are infinitely many of such preimages.

Indeed, the claim would be completely obvious from the equality µ ◦ f̃ = f ◦ µ (recall that µ
denotes the map from D̃ to X) if f were regular. Since f is only rational, we have to consider
specially the case when either the surface F3 of period-three points on D̃ or any of its preimages
is mapped into the indeterminacy locus S. However, since the map f is defined along the image
of a general elliptic curve of D̃ (or at least each of the branches of this image at a singular point),
one sees that also in this case F3 must be contracted to a set of points described by Remark 3.10;
moreover, we know from [Ame09] that the resolution of indeterminacy of f obtained by blowing-
up S does not contract surfaces, and so the preimages of F must be contracted by µ as well even
if some of them are mapped to S.

(2) This surface dominates a component of the surface of fixed points of f . In this case,
several points of period three must collapse to the same fixed point p. However, then the
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resulting branches of each elliptic curve near the generic fixed point are interchanged by f ,
which contradicts the local description of f in Proposition 3.4.

This rules out the possibility κ(D) = 2.

Finally, let us consider the following.

Case κ(D) = 1. The Iitaka fibration D̃→ C maps D̃ to a curve C and the general fiber U is of
Kodaira dimension zero. As before, by [NZ07] f̃ induces a finite order automorphism on C, and
one deduces from Proposition 3.4 (applied to f) that this is in fact the identity. We have two
possible subcases.

Subcase 1: U is not isotropic with respect to the holomorphic 2-form σ. We use the idea
from [AV08] as in the case κ(D) = 0. Namely, since X is generic, the Hodge structure H2

prim(X,Q)
is simple. As the pull-back of σ to D̃ is non-zero, H2(D̃,Q) carries a simple Hodge substructure
of rank 22. Since U is non-isotropic, the same is true for U , but a surface of Kodaira dimension
zero never satisfies this property.

Subcase 2: U is isotropic with respect to σ. The kernel of the pull-back σD of σ to D̃ gives a
locally free subsheaf of rank one in the tangent bundle TD̃, which is in fact a subsheaf of TU
since U is isotropic. There is thus a foliation in curves on U , and this foliation has infinitely
many algebraic leaves (these are intersections of U with the iterates of our original surface Σ).
By Jouanolou’s theorem [Jou78], this is a fibration. In other words, D is (rationally) fibered over
a surface T in integral curves of the kernel of σD, and U projects to a curve; as U varies, such
curves cover T . These cannot be rational curves since the surface T is not uniruled (indeed, the
form σD must be a lift of a holomorphic 2-form on T ). Therefore these are elliptic curves, and,
since κ(U) = 0, so are the fibers of ξ :D 99K T .

Recall from Theorem 3.8 that either D contains F , or it contains a curve on F ; and in this
last case, locally near generic such point, D is a fibration in (isotropic) two-dimensional disks
over a curve; in particular, such a point is a smooth point of D. If D contains F , we get a
contradiction with Proposition 3.1: indeed, F must be dominated by a union of fibers of ξ, but
F is of general type and the fibers are elliptic. If D contains a curve on F , then we look at the
‘leaf’ (image of C2 from the Proposition 3.4) at a general point q of this curve. If the closure
of such a leaf does not coincide with the image of U , their intersection is an invariant curve,
that is, the image of a line through the origin. Since U and the leaf are both isotropic, this
must be an integral curve of the kernel of the restriction of σ to D. However, U varies in a
family, and this implies that the restriction of σ to D is zero at q, a contradiction since σ is
non-degenerate.

Finally, if the image of U and the closure of a general leaf coincide, then U is mapped onto
itself by f |U and at some point of U the tangent map is just the multiplication by −2. We recall
that by definition κ(U) = 0 and so either the geometric genus of U or its mth plurigenus for
some m> 0 is equal to 1. The rational self-map f preserves the spaces of pluricanonical forms,
so it must multiply some non-zero pluricanonical form by a scalar. However, because of what we
know about the tangent map, this scalar can only be equal to 4, and so the degree of f |U is 16,
contradicting the calculations of [Ame09] as in [AV08, Proof of Proposition 2.3].

We thus come to a conclusion that D cannot be a divisor, so D =X. Since rational points
are potentially dense on Σ and the iterates of Σ are Zariski-dense in D, X is potentially dense.
To sum up, we have proved the following result.
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Theorem 3.11. Let X = F(V ) be the variety of lines of a cubic fourfold V , defined over a
number field. If Pic(X) = Z (or, equivalently, if the group of algebraic cycles in the middle
cohomology of V is cyclic), then X is potentially dense.

Remark 3.12. Here, unlike in the proof of non-preperiodicity from the previous subsection, we
do need a genericity condition, that is, Pic(X) = Z. It would be interesting to check whether one
can modify the argument to get rid of this assumption.

4. A version of Siegel’s theorem

In this section we explain how to modify the proof of Siegel’s theorem on linearization of p-adic
diffeomorphisms given in [HY83, Theorem 1, § 4, page 423] in order to adapt it to the situation
where the fixed point is not isolated.

Let k be a complete non-archimedean non-discrete field with the absolute value | |k : k×→
R×>0. For any ρ ∈ R×>0, the set B = Bρ := {a ∈ k | |a|k < ρ} is called the open disc of radius ρ over
k; for any s ∈ N an s-dimensional open polydisc is the sth cartesian power Bs = Bsρ of a disc.

An analytic diffeomorphism of Bs is a self-bijection given, together with its inverse, by an
s-tuple of convergent formal power series in s variables over k.

We fix a pair of non-negative integers r < n. Denote by p1 : Bn = Br × Bn−r→Br and
p2 : Bn→Bn−r the natural projections.

Theorem 4.1. Let f be an analytic diffeomorphism of a polydisc Bn over k. Assume that the
following conditions hold.

(i) The fixed-point-set F of f is Br × {(0)} ⊂ Br × Bn−r = Bn.

(ii) The tangent map of f is diagonalizable over k at all points q ∈ F , only r of its eigenvalues
are equal to 1, and that its eigenvalues λr+1, . . . , λn, distinct from 1, are constant and satisfy
the following bad diophantine approximation property:

|λir+1

r+1 · · · λ
in
n − λj |k > C(ir+1 + · · ·+ in)−β for some β, C > 0, (1)

any r < j 6 n and (ir+1, . . . , in) ∈ Zn−r>0 such that ir+1 + · · ·+ in > 2.

Then, for any q ∈ F , there exist a neighbourhood Vq of q and an analytic diffeomorphism h
of Vq, identical on the intersection with F and such that h−1(f(h(x))) = Λ(x) for any x ∈ Vq,
where Λ(x1, . . . , xn) = (x1, . . . , xr, λr+1xr+1, . . . , λnxn).

The desired diffeomorphism h is a solution of the equation Ψ(h) = 0, where Ψ(h) := f ◦ h−
h ◦ Λ is a non-linear operator in an appropriate space.

4.1 Plan of the proof
Corollary 4.3 allows us to choose a diffeomorphism h0 of the whole polydisc such that f ,
conjugated by h0, coincides with Λ on ‘the first infinitesimal neighbourhood of F ’.5 Next, it
is easy to see that in the non-resonant case there is a unique formal solution h of the equation
Ψ(h) = 0 coincident with h0 on ‘the first infinitesimal neighbourhood of F ’. The remaining task
is to show the convergence of the formal solution. For that, one follows the same procedure as
in [HY83], but instead of working in the spaces A2

ρ(k
n) and B2

ρ(kn) of loc. cit. we work in smaller

5 Our modest purposes do not require the use of scheme-like structures, a drawback of avoiding such a language
being that the infinitesimal neighbourhoods are not formally defined.
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(when r > 0) spaces A(r)
ρ (kn) and B(r)

ρ (kn), cf. below. Instead of showing the convergence of the
formal solution, one constructs h as the limit (in an appropriate non-archimedean Banach space)
of the sequence of approximations h0, h1, h2, . . . , obtained by the Newton’s method. In fact, hi
is a diffeomorphism of the open ρi-neighbourhood (possibly onto a neighbourhood of different
radius) of a fixed point of f for each i> 1, where ρ0 > ρ1 > ρ2 > · · · is a decreasing sequence of
radii with a positive lower bound.

4.2 ‘The first infinitesimal neighbourhood of F ’
Let yj : Bn→B1 be the projection to the jth factor, 1 6 j 6 n.

Lemma 4.2. Let f be such an analytic diffeomorphism of a polydisc Bn over k that the fixed
point set F of f is Br × {(0)} ⊂ Br × Bn−r = Bn. Assume that only r eigenvalues of the tangent
map of f at any q ∈ F are equal to 1. Then there exists an analytic diffeomorphism h of Bn
identical on F and such that the power series expression of p1 ◦ h−1 ◦ f ◦ h is p1 modulo terms
quadratic in yr+1, . . . , yn.

Proof. Modulo terms quadratic in p2 (that is, in yr+1, . . . , yn), the formal series expansion of f
is id +

∑n
i=r+1 ai(p1)yi =: Ξ for some analytic ai = (a′i, a

′′
i ) : Br→Bn = Br × Bn−r. We rewrite

Ξ = (p1 + a′p2; p2 + a′′p2), where a′ = a′(p1) is the matrix with columns a′i(p1) for r < i6 n
and a′′ = a′′(p1) is the matrix with columns a′′i (p1) for r < i6 n (so a′′ is an (n− r)× (n− r)-
matrix, invertible since f is a diffeomorphism). Let h= (p1 + a′(a′′)−1p2; p2). Then, modulo
terms quadratic in p2, h−1 ≡ (p1 − a′(a′′)−1p2; p2), f ◦ h≡ (p1 + a′(a′′)−1p2 + a′p2; p2 + a′′p2),
and finally, h−1 ◦ f ◦ h≡ (p1; p2 + a′′p2). 2

Corollary 4.3. In the setting of Lemma 4.2, assume the following conditions hold.

(i) The tangent maps of f at all points of F are semisimple.

(ii) Their eigenvalues λ1, . . . , λn do not vary.

Then there exists an analytic diffeomorphism h of Bn, identical on F , and such that the power
series expression of h−1 ◦ f ◦ h is (λ1y1, . . . , λnyn) modulo terms quadratic in yr+1, . . . , yn.

Proof. By Lemma 4.2, we may assume that p1 ◦ f ≡ p1 (where ≡ is modulo terms quadratic in
yr+1, . . . , yn). Then we look for a diffeomorphism h such that h−1 ◦ f ◦ h≡ (λ1y1, . . . , λnyn),
p1 ◦ h= p1 and h is linear on the fibers of p1.

In the setting of the proof of Lemma 4.2, this is equivalent to looking for an h which is:

(i) identical on y1, . . . , yr;

(ii) linear in the coordinates yr+1, . . . , yn with functions of y1, . . . , yr as coefficients; and

(iii) making diagonal the matrix a′′: h−1 ◦ Ξ ◦ h≡ (λ1y1, . . . , λnyn).

(Recall that f ≡ Ξ = (p1; (1 + a′′)p2).)
After a k-linear change of p2-coordinates we may assume that a′′ is diagonal at

some point q ∈ F , so if the vectors {e1, . . . , en} correspond to the coordinates y1, . . . , yn
then {er+1, . . . , en} are eigenvectors of a′′(q). Let πi :=

∏
j:λj 6=λi

(λi − λj)−1(a′′ − λj + 1) be
a projector onto the λi-eigenspace of a′′. Then {πiei}r<i6n is a system of eigenvectors
of a′′ and its reduction modulo the maximal ideal in k[[x1, . . . , xr]] is the eigenbasis
{er+1, . . . , en} of a′′(q). This means that π1e1, . . . , πnen generate the tangent bundle,
cf. [AM69, Proposition 2.8]. We set h(p1, p2) :=

∑r
i=1 yiei +

∑n
i=r+1 yiπiei =: (p1;A(p1)p2)
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for a matrix A(p1). Then h−1(p1, p2) = (p1;A(p1)−1p2), f(h(p1, p2))≡ (p1; (1 + a′′)Ap2) and
h−1(f(h(p1, p2)))≡ (p1;A−1(1 + a′′)Ap2). One has A−1a′′Aei =A−1a′′πiei = (λi − 1)A−1πiei =
(λi − 1)ei, and thus, h−1 ◦ f ◦ h≡ (p1; Λ′p2), where Λ′ is the diagonal matrix with
entries λr+1, . . . , λn. 2

4.3 Newton’s method

From now on we assume that f is in the form attained in Corollary 4.3, and that y1, . . . , yn are
the corresponding coordinates.

Let Λ be the linear part of f , i.e. an n× n diagonal matrix with entries λ1, . . . , λn, the first r
ones being equal to 1.

For any real ρ > 0 define the spaces:

• Aρ(kn) := {φ=
∑

I aIx
I ∈ k[[x1, . . . , xn]] | sup |aI |kρ|I| =: ‖φ‖ρ <∞} of the formal series

convergent and bounded on Bnρ (this is a non-archimedean Banach algebra; notation
coincides with that of [HY83]);

• A(r)
ρ (kn) consisting of all φ ∈Aρ(kn) such that φ(x1, . . . , xr, 0, . . . , 0) = 0 and (∂φ/∂xi)

(x1, . . . , xr, 0, . . . , 0) = 0 for all r < i6 n (this is the ideal in Aρ(kn) generated by xixj for
all r < i6 j 6 n; A(0)

ρ (kn) is denoted in [HY83] by A2
ρ(k

n));

• B(r)
ρ (kn) := {φ ∈A(r)

ρ (kn) | φ ◦ Λ ∈A(r)
ρ (kn)}, so, in particular,B(r)

ρ (kn) =A
(r)
ρ (kn) if |λ1|k =

· · ·= |λn|k = 1.

We consider f as an n-tuple of formal series convergent and bounded on Bnρ for an
appropriate ρ. In fact, f − Λ ∈ (A(r)

ρ (kn))n, since f is in the form attained in Corollary 4.3.
Replacing if necessary f by uf(u−1x) (u ∈ k, |u|k� 1), we may assume that f is convergent
and bounded on Bn1 and ‖f − Λ‖1 is as small as we want. (Given a non-archimedean Banach
space with norm ‖ ‖, we endow its arbitrary finite cartesian power with the ‘max norm’:
‖(u1, . . . , us)‖ := max(‖u1‖, . . . , ‖us‖). Examples are (Aρ(kn))n and End(kn)∼= kn

2
.)

We assume that λr+1, . . . , λn satisfy the bad diophantine approximation property (1). The set
x+ (A(r)

ρ (kn))n is a group (with respect to the composition) acting on A(r)
ρ (kn). We are looking

for a root of the equation Ψ(h) = 0 in x+ (A(r)
1/2(kn))n, which is of the form h(x) = limi→∞ hi(x),

where hi(x)− x ∈ (A(r)
ρi (kn))n ⊂ (A(r)

1/2(kn))n with ρi = 1/2 + 2−i−1 for all integer i> 0.

The sequence h0, h1, h2, . . . is constructed inductively, following the Newton’s method: let
L= Lρ : (B(r)

ρ (kn))n→ (A(r)
ρ (kn))n be the linear operator, defined by Lw = w ◦ Λ− Λ ◦ w; set

h0 = id and define hi+1 so that

Ψ(hi) = (Dhi ◦ Λ)(LEi), (2)

where Ei := (Dhi)−1 · (hi+1 − hi). To make this work, we have to invert L.

The injectivity of L is evident: φ=
∑

I aIx
I 7→ (

∑
I(λ

I − λi)a(i)
I x

I)16i6n, where λI =
λi11 · · · λinn . Moreover, it is also evident that for any g ∈ (A(r)

ρ (kn))n there exists a unique
n-tuple of formal series w such that Lw = g, w(p1; 0) = 0 and (∂w/∂xi)(p1; 0) = 0 for all r < i6 n.
According to Lemma 4.4, Lρ is ‘almost surjective’. In particular, the formal solution Ei of (2)
belongs, in fact, to (B(r)

ρi−δ(k
n))n for any positive δ.
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It follows from the continuity of Ψ (see [HY83, Lemma 14]) and the identity

Ψ(h+ ε) = f ◦ (h+ ε)− f ◦ h+ Ψ(h)− ε ◦ Λ
= [f ◦ (h+ ε)− f ◦ h+DΨ(h) · E −Df ◦ h · ε] + Ψ(h)− (Dh ◦ Λ)(LE), (3)

where E := (Dh)−1 · ε, that if the sequence (hi)i>0 converges to h∞ then Ψ(h∞) = 0.
It remains to show that hi+1 − hi ∈ (A1/2(kn))n and ‖hi+1 − hi‖1/2 tends to 0.
For that we need the following version of [HY83, Lemma 15] (with the same proof).

Lemma 4.4. For any δ > 0 and any g ∈ (A(r)
ρ (kn))n the solution w of the linear equation

Lw = g belongs to (B(r)
ρ−δ(k

n))n and satisfies ‖w‖ρ−δ 6 C1(‖g‖ρ/δβ)ρβ, ‖Dw‖ρ−δ 6 C1(‖g‖ρ/δβ)
(ρβ/(ρ− δ)), ‖Dw ◦ Λ‖ρ−δ 6 C1(‖g‖ρ/δβ)(ρβ/(ρ− δ)), where C1 is a constant depending only on

C, β (from the bad diophantine approximation condition (1)) and ‖Λ‖. (We put on (B(r)
ρ (kn))n

the max norm: ‖φ‖ρ = max(‖φ‖ρ, ‖φ ◦ Λ‖ρ).)

From Lemma 4.4 we get

‖Ei‖ρi+1 6 C2
‖Ψ(hi)‖ρi

(ρi − ρi+1)β
‖(Dhi ◦ Λ)−1‖ρi 6 C2

‖Ψ(hi)‖ρi

(ρi − ρi+1)β
, (4)

‖DEi‖ρi+1 6 C2(‖Ψ(hi)‖ρi/(ρi − ρi+1)β), ‖DEi ◦ Λ‖ρi+1 6 C2(‖Ψ(hi)‖ρi/(ρi − ρi+1)β), where we
have used the estimate ‖Dhi ◦ Λ− id‖< 1/2 and the following lemma (which is evident from the
identity (1− x)−1 =

∑
i>0 x

i for ‖x‖< 1).
Let Aρ(kn, End(kn)) be the non-archimedean Banach algebra of the formal series (with

coefficients in End(kn)) that are convergent and bounded on Bnρ .

Lemma 4.5 [HY83, Lemma 13]. If ϕ ∈Aρ(kn, End(kn)) and ‖ϕ‖ρ < 1 then 1 + ϕ is invertible in
Aρ(kn, End(kn)) and ‖(1 + ϕ)−1 − 1‖ρ = ‖ϕ‖ρ.

It follows from the estimates ‖Dhi‖ρi 6 1, ‖Dh−1
i ‖ρi 6 1, ‖Dhi ◦ Λ‖ρi 6 1, ‖(Dhi ◦ Λ)−1‖ρi 6

1 that hi − hi+1 ∈ (B(r)
ρi+1(kn))n and satisfies the same estimates as Ei:

‖hi+1 − hi‖ρi+1 6 C2
‖Ψ(hi)‖ρi

(ρi − ρi+1)β
. (5)

Using Cauchy’s formula [HY83, Lemma 10] ‖DΨ(h) · E‖ρ−δ 6 2‖Ψ(h)‖ρ−δ‖E‖ρ−δ, the
estimate (4) and Taylor’s formula [HY83, Proposition 7]

‖f ◦ (h+ ε)− f ◦ h−Df ◦ h · ε‖ρ−δ 6 4‖f‖1‖ε‖2ρ−δ
we deduce from (3) the estimate

‖Ψ(hi+1)‖ρi+1 6
K

(ρi − ρi+1)2β
‖Ψ(hi)‖2ρi

, (6)

where K >C2
2 is a constant depending only on C, β, ‖Λ‖, ‖f‖1, cf. [HY83, p. 425].

As ‖f − Λ‖1 can be made arbitrary small, we may assume that ‖Ψ(h0)‖1 <K−12−6β, where
h0 = id. Let us show by induction that ‖Ψ(hi)‖ρi <K−12−2β(i+3). By (6) and the induction
assumption, ‖Ψ(hi+1)‖ρi+1 <K−1(ρi − ρi+1)−2β2−4β(i+3) =K−12−2β(i+4), completing induction.
From (5) we get ‖hi+1 − hi‖ρi+1 6 C2K

−12−β(i+4), so ‖hi+1 − hi‖ρi+1 tends to 0. This completes
the proof of Theorem 4.1.
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5. Noether normalization

Lemma 5.1. Let k be an infinite field, r > 1 an m> 0 be integers, Ar
k = Ym ⊃ Ym−1 ⊃ · · · ⊃ Y0 ⊃

Y−1 := ∅ be a chain of closed embeddings of equidimensional affine varieties over k, dim Yj =: dj ,
r > dm−1 > · · ·> d1 > d0 > 0, and for each 0 6 j 6m, qj be a smooth closed point of YjrYj−1,
smooth also as a point of Ys for s > j. Let g a regular function on Ar

k with differential non-
vanishing at q0, . . . , qm: Dgqj 6= 0. Then there exists an affine linear morphism ϕ : Ar

k→ Ar−1
k

such that:

• (ϕ, g) : Ar
k→ Ar−1

k ×k A1
k is finite;

• (ϕ, g) is étale at q0, . . . , qm;

• ϕ(qj) 6∈ ϕ(Yj−1) for all 1 6 j < m.

Proof. Let x1, . . . , xr be affine coordinates on Ar
k, so that g becomes a polynomial in

x1, . . . , xr. Set ϕ= id + xr · a for some a = (a1, . . . , ar−1) ∈ kr−1. Then the morphism (ϕ, g)
is étale at qs for all a ∈ kr−1 outside the affine hyperplane {a ∈ kr−1 |

∑r−1
i=1 ai(∂g/∂xi)(qs) =

(∂g/∂xr)(qs)} ⊂ Ar−1
k . It is well known after E. Noether (cf. [AM69, ch. 5, Exercise 16], or

[Eis95, Theorem 13.2(c)]) that (ϕ, g) is a finite morphism for all a ∈ kr−1 outside a hypersurface
in Ar−1

k . The set ϕ−1(ϕ(qs)) is an affine line through qs (here qsi := xi(qs)):

ϕ−1(ϕ(qs)) = {(qs1 + a1(qsr − u), qs2 + a2(qsr − u), . . . , qs1 + ar−1(qsr − u), u) | u ∈ k}.

For any j < m, the codimension of Yj−1 in Ar
k is at least two, so the set of affine lines in Ar

k,
passing through qj and a point of Yj−1, is a proper closed subset in Pr−1

k . Therefore, for any
point a outside a proper closed subset in Ar−1

k ⊂ Pr−1
k the set ϕ−1(ϕ(qj)) does not meet Yj−1,

and thus ϕ(qj) 6∈ ϕ(Yj−1) for all 1 6 j < m. 2

Theorem 5.2. Let k be an infinite field, m> 0 be an integer, Ym ⊃ Ym−1 ⊃ · · · ⊃ Y0 ⊃ Y−1 := ∅
be a chain of closed embeddings of equidimensional affine varieties over k, dim Yj =: dj , dm >
dm−1 > · · ·> d1 > d0 > 0, and for each 0 6 j 6m, qj be a smooth closed point of YjrYj−1,
smooth also as a point of Ys for s > j.

Then there exists a finite morphism f : Ym→ Ad
k inducing a morphism onto a flag of affine

subspaces (a commutative diagram):

Ym

f

��

⊃ Ym−1

��

⊃ · · · ⊃ Y1

��

⊃ Y0

��
Adm
k

⊃ Adm−1

k
⊃ · · · ⊃ Ad1

k
⊃ Ad0

k

such that f(qj) 6∈ Adj−1

k for all 1 6 j 6m, and f is étale at each qj whenever qj is a smooth point
of Ym. For any closed embedding ι : Ym ↪→ Ar

k, f can be chosen to be the composition of ι with

an affine linear projection Ar
k→ Adm

k .

Proof. This proof follows closely that of [Eis95, Theorem 13.3]. It is enough to treat the case
Ym = Adm

k . (If Ym is a proper closed subset in Ar
k then one can consider the longer chain

Ym+1 := Ar
k ⊃ Ym ⊃ Ym−1 ⊃ · · · ⊃ Y1 ⊃ Y0 and choose any closed point qm+1 ∈ Ym+1rYm.) After

inserting into the chain Y• intermediate pointed varieties (and adding a chain of pointed
subvarieties of Y0) we may assume that dj = j for all 0 6 j 6m. We proceed by induction on m.
The case m= 1 is evident: f can be any polynomial with a non-zero non-critical value at q1
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and vanishing on Y0 with a non-critical value at q0. For arbitrary m> 1, let g : Ym→ A1
k be a

morphism vanishing on Ym−1, non-zero at qm and non-critical at q0, . . . , qm. By Lemma 5.1,
there exists a linear morphism ϕ : Ym→ Am−1

k such that:

(i) (ϕ, g) is finite;

(ii) (ϕ, g) : Ym→ Am−1
k ×k A1

k is étale at q0, . . . , qm;

(iii) ϕ(qj) 6∈ ϕ(Yj−1) for all 1 6 j < m.

Set Y ′j := (ϕ, g)(Yj) and q′j := (ϕ, g)(qj) for all 1 6 j 6 s. Then Y ′m−1 = Am−1
k × {0} is the

hyperplane in Am−1
k ×k A1

k. We note that q′j 6∈ Y ′j−1, so the induction assumption can be applied
to choose a finite endomorphism f ′ of Ym−1, étale at q′0, . . . , q

′
m and inducing a commutative

diagram of the following type.

Am−1
k × {0} = Y ′m−1

f ′

��

⊃ Y ′m−2

��

⊃ · · · ⊃ Y ′0

��
Am−1
k ⊃ Am−2

k ⊃ · · · ⊃ A0
k

Then we set f = (f ′ × idA1
k
) ◦ (ϕ, g). 2
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trivial, Pure Appl. Math. Q. 4 (2008), 509–545.

AV08 E. Amerik and C. Voisin, Potential density of rational points on the variety of lines of a cubic
fourfold, Duke Math. J. 145 (2008), 379–408, arXiv:0707.3948.

Arn88 V. I. Arnold, Geometrical methods in the theory of ordinary differential equations, Grundlehren
der Mathematischen Wissenschaften, vol. 250, second edition (Springer, New York, 1988).

AM69 M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra (Addison-Wesley,
Reading, MA, 1969).

Bea83 A. Beauville, Some remarks on Kähler manifolds with c1 = 0, in Classification of algebraic and
analytic manifolds (Katata, 1982), Progress in Mathematics, vol. 39 (Birkhäuser Boston, Boston,
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