ON ADDITIVITY OF CENTRALISERS

Daniel Eremita and Dijana Ilišević

Let R be a ring and let M be a bimodule over R. We consider the question of when a map $\varphi: R \rightarrow M$ such that $\varphi(a b)=\varphi(a) b$ for all $a, b \in R$ is additive.

1. Introduction and preliminaries

Let R be a ring (not necessarily with an identity element) and let M be a bimodule over R. A left centraliser φ is a map $\varphi: R \rightarrow M$ such that $\varphi(a b)=\varphi(a) b$ for all $a, b \in R$. The notion of a right centraliser is defined analogously. We consider the question of when a left centraliser is additive.

The systematic study of centralisers was initiated by Johnson in [4]. Among many results presented in this pioneering paper, we emphasize automatic linearity of a left centraliser $\varphi: \mathcal{K}(X) \rightarrow \mathcal{K}(X)$, where $\mathcal{K}(X)$ denotes the algebra of all compact operators on a Banach space X. Furthermore, in [8] Saworotnow and Giellis proved that each left centraliser $\varphi: A \rightarrow A$ on a semisimple complemented algebra A is linear. Thus, the aim of our paper is to generalise these results in the setting of rings. In particular, we shall see that every left centraliser $\varphi: R \rightarrow R$ is automatically additive if R is either a prime ring with a nonzero idempotent or a semiprime ring whose socle is essential. We were also motivated by similar results on additivity of isomorphisms $[5,6,7]$ and derivations [2] on rings.

Let $\varphi: R \rightarrow M$ be a left centraliser. First, note that φ is additive if R has an identity element. Next, we set some notation that will be used in the sequel. Let M^{\prime} be the set $\{m \in M \mid m Z(R)=0\}$, where $Z(R)$ denotes the centre of R. Note that M^{\prime} is a submodule of M. It follows easily that $\varphi(a+b)-\varphi(a)-\varphi(b) \in M^{\prime}$ for all $a, b \in R$. Hence, φ is additive if $M^{\prime}=0$.

Assume that there exists a nontrivial idempotent $e_{1} \in R$ (that is, $e_{1}^{2}=e_{1}$ and $\left.e_{1} \neq 0,1\right)$. Let us remark here that for any $x \in M \cup R$ we shall write $x\left(1-e_{1}\right)$ instead of $x-x e_{1}$ and $\left(1-e_{1}\right) x$ instead of $x-e_{1} x$. By e_{2} we denote $1-e_{1}$. We set $R_{i j}=e_{i} R e_{j}$ and $M_{i j}=e_{i} M e_{j}, i, j \in\{1,2\}$. Thus, R can be written in its Peirce decomposition as $R=R_{11} \oplus R_{12} \oplus R_{21} \oplus R_{22}$. Analogously, $M=M_{11} \oplus M_{12} \oplus M_{21} \oplus M_{22}$.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/06 \$A2.00+0.00.

According to the Peirce decomposition of M we have

$$
\varphi(x)=\varphi_{11}(x)+\varphi_{12}(x)+\varphi_{21}(x)+\varphi_{22}(x)
$$

for each $x \in R$, where $\varphi_{i j}: R \rightarrow M_{i j}$ denotes the map defined by $\varphi_{i j}(x)=e_{i} \varphi(x) e_{j}$, $i, j \in\{1,2\}$. Let $x=x_{11}+x_{12}+x_{21}+x_{22}$ and $y=y_{11}+y_{12}+y_{21}+y_{22}$ be arbitrary elements of R (by $x_{i j}$ and $y_{i j}$ we denote elements of $R_{i j}$). Then the identity $\varphi(x y)=\varphi(x) y$ yields

$$
\begin{align*}
& \varphi_{11}(x y)=\varphi_{11}(x) y_{11}+\varphi_{12}(x) y_{21}, \tag{1}\\
& \varphi_{12}(x y)=\varphi_{11}(x) y_{12}+\varphi_{12}(x) y_{22}, \tag{2}\\
& \varphi_{21}(x y)=\varphi_{21}(x) y_{11}+\varphi_{22}(x) y_{21}, \tag{3}\\
& \varphi_{22}(x y)=\varphi_{21}(x) y_{12}+\varphi_{22}(x) y_{22} . \tag{4}
\end{align*}
$$

Note that

$$
x y=\left(x_{11} y_{11}+x_{12} y_{21}\right)+\left(x_{11} y_{12}+x_{12} y_{22}\right)+\left(x_{21} y_{11}+x_{22} y_{21}\right)+\left(x_{21} y_{12}+x_{22} y_{22}\right)
$$

2. The main results

Lemma 1. Let R be a ring and let M be a bimodule over R. Further, let $e_{1} \in R$ be a nontrivial idempotent such that for any $m \in M^{\prime}$ the following holds:
(A1) $e_{1} m e_{1} R e_{2}=0$ implies $e_{1} m e_{1}=0$,
(A2) $e_{1} m e_{2} R e_{1}=0$ implies $e_{1} m e_{2}=0$,
(A3) $e_{1} m e_{2} R e_{2}=0$ implies $e_{1} m e_{2}=0$.
Then for any left centraliser $\varphi: R \rightarrow M$ the maps φ_{11} and φ_{12} are additive.
Proof: First, let us prove that φ_{11} is additive on $R_{11} \oplus R_{12} \oplus R_{22}$ and that φ_{12} is additive on $R_{11} \oplus R_{12} \oplus R_{21}$. Obviously,

$$
\begin{align*}
\varphi_{11}\left(x_{11}+x_{12}+x_{21}+x_{22}\right) & =e_{1} \varphi\left(x_{11}+x_{12}+x_{21}+x_{22}\right) e_{1} \\
& =e_{1} \varphi\left(\left(x_{11}+x_{12}+x_{21}+x_{22}\right) e_{1}\right) e_{1} \tag{5}\\
& =\varphi_{11}\left(x_{11}+x_{21}\right)
\end{align*}
$$

for all $x_{i j} \in R_{i j}$. In particular,

$$
\varphi_{11}\left(x_{11}+x_{12}+x_{22}\right)=\varphi_{11}\left(x_{11}\right)=\varphi_{11}\left(e_{1}\right) x_{11}
$$

for all $x_{i j} \in R_{i j}$, which means that φ_{11} is additive on $R_{11} \oplus R_{12} \oplus R_{22}$. On the other hand, one can easily verify that

$$
\left(\varphi_{12}\left(x_{11}+x_{12}+x_{21}+x_{22}\right)-\varphi_{12}\left(x_{12}+x_{22}\right)\right) R=0
$$

for all $x_{i j} \in R_{i j}$. In particular, $\varphi_{12}\left(x_{11}+x_{12}+x_{21}+x_{22}\right)-\varphi_{12}\left(x_{12}+x_{22}\right) \in M^{\prime}$ and

$$
\left(\varphi_{12}\left(x_{11}+x_{12}+x_{21}+x_{22}\right)-\varphi_{12}\left(x_{12}+x_{22}\right)\right) R_{22}=0
$$

for all $x_{i j} \in R_{i j}$. Thus, we may apply assumption (A3), which yields that

$$
\begin{equation*}
\varphi_{12}\left(x_{11}+x_{12}+x_{21}+x_{22}\right)=\varphi_{12}\left(x_{12}+x_{22}\right) \tag{6}
\end{equation*}
$$

for all $x_{i j} \in R_{i j}$. Consequently,

$$
\varphi_{12}\left(x_{11}+x_{12}+x_{21}\right)=\varphi_{12}\left(x_{12}\right)=\varphi_{11}\left(e_{1}\right) x_{12}
$$

for all $x_{i j} \in R_{i j}$. Thus, φ_{12} is additive on $R_{11} \oplus R_{12} \oplus R_{21}$.
Our next aim is to prove that φ_{11} is additive on R_{21} and that φ_{12} is additive on R_{22}. Using (5) and (6) we may rewrite (1) and (2) as

$$
\begin{equation*}
\varphi_{11}\left(\left(x_{11} y_{11}+x_{12} y_{21}\right)+\left(x_{21} y_{11}+x_{22} y_{21}\right)\right)=\varphi_{11}\left(x_{11}+x_{21}\right) y_{11}+\varphi_{12}\left(x_{12}+x_{22}\right) y_{21} \tag{7}
\end{equation*}
$$

and
(8) $\quad \varphi_{12}\left(\left(x_{11} y_{12}+x_{12} y_{22}\right)+\left(x_{21} y_{12}+x_{22} y_{22}\right)\right)=\varphi_{11}\left(x_{11}+x_{21}\right) y_{12}+\varphi_{12}\left(x_{12}+x_{22}\right) y_{22}$ for all $x_{i j}, y_{i j} \in R_{i j}$. Setting $x_{11}=x_{12}=0$ in (7) we obtain

$$
\begin{equation*}
\varphi_{11}\left(x_{21} y_{11}+x_{22} y_{21}\right)=\varphi_{11}\left(x_{21}\right) y_{11}+\varphi_{12}\left(x_{22}\right) y_{21} \tag{9}
\end{equation*}
$$

which in particular implies that

$$
\begin{equation*}
\varphi_{11}\left(x_{21} y_{11}\right)=\varphi_{11}\left(x_{21}\right) y_{11} \quad \text { and } \quad \varphi_{11}\left(x_{22} y_{21}\right)=\varphi_{12}\left(x_{22}\right) y_{21} \tag{10}
\end{equation*}
$$

for all $x_{i j}, y_{i j} \in R_{i j}$. Thus, (9) can also be written as

$$
\begin{equation*}
\varphi_{11}\left(x_{21} y_{11}+x_{22} y_{21}\right)=\varphi_{11}\left(x_{21} y_{11}\right)+\varphi_{11}\left(x_{22} y_{21}\right) \tag{11}
\end{equation*}
$$

for all $x_{i j}, y_{i j} \in R_{i j}$. Replacing y_{11} by $x_{12} y_{21}$ and x_{22} by $z_{21} x_{12}$ in (11) we get

$$
\varphi_{11}\left(x_{21} x_{12} y_{21}+z_{21} x_{12} y_{21}\right)=\varphi_{11}\left(x_{21} x_{12} y_{21}\right)+\varphi_{11}\left(z_{21} x_{12} y_{21}\right)
$$

which according to (10) implies

$$
\varphi_{11}\left(x_{21}+z_{21}\right) x_{12} y_{21}=\varphi_{11}\left(x_{21}\right) x_{12} y_{21}+\varphi_{11}\left(z_{21}\right) x_{12} y_{21}
$$

for all $x_{12} \in R_{12}, x_{21}, y_{21}, z_{21} \in R_{21}$. Therefore,

$$
\left(\varphi_{11}\left(x_{21}+z_{21}\right)-\varphi_{11}\left(x_{21}\right)-\varphi_{11}\left(z_{21}\right)\right) R_{12} R_{21}=0
$$

for all $x_{21}, z_{21} \in R_{21}$. Using assumptions (A2) and (A1) we see that φ_{11} is additive on R_{21}, indeed. Now it follows from (10) that

$$
\begin{aligned}
\varphi_{12}\left(x_{22}+y_{22}\right) y_{21} & =\varphi_{11}\left(x_{22} y_{21}+y_{22} y_{21}\right) \\
& =\varphi_{11}\left(x_{22} y_{21}\right)+\varphi_{11}\left(y_{22} y_{21}\right) \\
& =\left(\varphi_{12}\left(x_{22}\right)+\varphi_{12}\left(y_{22}\right)\right) y_{21}
\end{aligned}
$$

and hence $\left(\varphi_{12}\left(x_{22}+y_{22}\right)-\varphi_{12}\left(x_{22}\right)-\varphi_{12}\left(y_{22}\right)\right) R_{21}=0$ for all $x_{22}, y_{22} \in R_{22}$. Again, using assumption (A2) we see that φ_{12} is additive on R_{22}.

We are now ready to prove that φ_{11} and φ_{12} are additive on R. Note that according to the conclusions derived above it only remains to prove that $\varphi_{11}\left(x_{11}+x_{21}\right)=\varphi_{11}\left(x_{11}\right)$ $+\varphi_{11}\left(x_{21}\right)$ and $\varphi_{12}\left(x_{12}+x_{22}\right)=\varphi_{12}\left(x_{12}\right)+\varphi_{12}\left(x_{22}\right)$ for all $x_{i j} \in R_{i j}$. Setting first $y_{12}=0$ and then $y_{22}=0$ in (8), we get, respectively,

$$
\varphi_{12}\left(x_{12} y_{22}+x_{22} y_{22}\right)=\varphi_{12}\left(x_{12}+x_{22}\right) y_{22}
$$

and

$$
\begin{equation*}
\varphi_{12}\left(x_{11} y_{12}+x_{21} y_{12}\right)=\varphi_{11}\left(x_{11}+x_{21}\right) y_{12} \tag{12}
\end{equation*}
$$

for all $x_{i j}, y_{i j} \in R_{i j}$. Thus, putting $x_{11}=e_{1}, x_{12}=x_{21}=0, y_{12}=z_{12} y_{22}$ in (8) it follows that

$$
\varphi_{12}\left(z_{12} y_{22}+x_{22} y_{22}\right)=\varphi_{11}\left(e_{1}\right) z_{12} y_{22}+\varphi_{12}\left(x_{22}\right) y_{22}
$$

and so

$$
\varphi_{12}\left(z_{12}+x_{22}\right) y_{22}=\varphi_{12}\left(z_{12}\right) y_{22}+\varphi_{12}\left(x_{22}\right) y_{22}
$$

for all $z_{12} \in R_{12}$ and $x_{22}, y_{22} \in R_{22}$. Hence,

$$
\left(\varphi_{12}\left(x_{12}+x_{22}\right)-\varphi_{12}\left(x_{12}\right)-\varphi_{12}\left(x_{22}\right)\right) R_{22}=0
$$

which according to assumption (A3) implies $\varphi_{12}\left(x_{12}+x_{22}\right)=\varphi_{12}\left(x_{12}\right)+\varphi_{12}\left(x_{22}\right)$ for all $x_{12} \in R_{12}$ and $x_{22} \in R_{22}$. Consequently, using (12) it follows that

$$
\begin{aligned}
\varphi_{11}\left(x_{11}+x_{21}\right) y_{12} & =\varphi_{12}\left(x_{11} y_{12}+x_{21} y_{12}\right) \\
& =\varphi_{12}\left(x_{11} y_{12}\right)+\varphi_{12}\left(x_{21} y_{12}\right) \\
& =\varphi_{11}\left(x_{11}\right) y_{12}+\varphi_{11}\left(x_{21}\right) y_{12}
\end{aligned}
$$

for all $x_{11} \in R_{11}, x_{21} \in R_{21}$ and $y_{12} \in R_{12}$. Thus,

$$
\left(\varphi_{11}\left(x_{11}+x_{21}\right)-\varphi_{11}\left(x_{11}\right)-\varphi_{11}\left(x_{21}\right)\right) R_{12}=0
$$

and so assumption (A1) yields $\varphi_{11}\left(x_{11}+x_{21}\right)=\varphi_{11}\left(x_{11}\right)+\varphi_{11}\left(x_{21}\right)$ for all $x_{11} \in R_{11}$ and $x_{21} \in R_{21}$. We have therefore proved that φ_{11} and φ_{12} are additive.

In an analogous manner, using (3) and (4), one can obtain the following lemma.

Lemma 2. Let R be a ring and let M be a bimodule over R. Further, let $e_{1} \in R$ be a nontrivial idempotent such that for any $m \in M^{\prime}$ the following holds:
(A4) $e_{2} m e_{1} R e_{2}=0$ implies $e_{2} m e_{1}=0$,
(A5) $e_{2} m e_{2} R e_{1}=0$ implies $e_{2} m e_{2}=0$,
(A6) $e_{2} m e_{2} R e_{2}=0$ implies $e_{2} m e_{2}=0$.
Then for any left centraliser $\varphi: R \rightarrow M$ the maps φ_{21} and φ_{22} are additive.
Since $\varphi=\varphi_{11}+\varphi_{12}+\varphi_{21}+\varphi_{22}$, Lemma 1 and Lemma 2 imply our main result:
Theorem 3. Let R be a ring and let M be a bimodule over R. Further, let $e_{1} \in R$ be a nontrivial idempotent such that for any $m \in M^{\prime}$ (A1)-(A6) hold. Then any left centraliser $\varphi: R \rightarrow M$ is additive.

Remark 4. Let A be an algebra over a field F and let M be a bimodule over A equipped with the structure of a vector space over \mathbb{F} such that $(\lambda m) a=m(\lambda a)$ for all $\lambda \in \mathbb{F}, m \in M$, $a \in A$. If $m A=0$ (where $m \in M$) implies $m=0$, then any left centraliser $\varphi: A \rightarrow M$ is homogeneous. In particular, if there exists a nontrivial idempotent $e_{1} \in A$ such that for any $m \in M^{\prime}$ (A1)-(A6) hold, then any left centraliser $\varphi: A \rightarrow M$ is linear.

3. Applications

Using our main results we shall be able to prove automatic additivity of left centralisers on a certain class of semiprime rings (Corollaries 5 and 6). These results will be further applied to more concrete examples.

First, let us recall some preliminaries. A left ideal of a ring R is called minimal if it is nonzero and does not properly contain any nonzero left ideal of R. Let L be a minimal left ideal of R. If $a \in R$ and $L a \neq 0$, then L and $L a$ are isomorphic as left R-modules, which shows that $L a$ is also a minimal left ideal of R. Consequently, the sum of all minimal left ideals of R, which is called the left socle of R, is an ideal of R. Analogously we introduce the right socle of R which in general does not coincide with the left socle. Recall that a left ideal L of R is said to be dense if given any $0 \neq r_{1} \in R$, $r_{2} \in R$ there exists $r \in R$ such that $r r_{1} \neq 0$ and $r r_{2} \in L$. One defines a dense right ideal in an analogous fashion. Let us also mention that an ideal I of R is called essential if for every nonzero ideal J of R we have $I \cap J \neq 0$.

Henceforth we shall assume that R is a semiprime ring. We say that a nonzero idempotent $e \in R$ is minimal if $e R e$ is a divison ring. It turns out that a left ideal L of R is minimal if and only if $L=R e$ for some minimal idempotent $e \in R$ (see [1, Proposition 4.3.3]). Since the same holds for minimal right ideals we see that for any idempotent $e \in R, R e$ is a minimal left ideal of R if and only if $e R$ is a minimal right ideal of R. This further implies that the left socle of R coincides with the right socle of R. We call this ideal the socle of R and denote it by $\operatorname{soc}(R)$. If R has no minimal one-sided ideals, we define $\operatorname{soc}(R)=0$. Let I be an ideal of R. Recall that the left, the right and the
two-sided annihilator of I coincide. Hence, we call this ideal the annihilator of I. It is straightforward to verify that I is essential if and only if its annihilator is zero or if and only if I is a dense left (right) ideal.

We refer the reader to the book [1] for an account on the theory of various rings of quotients. Let us just recall here that any semiprime ring R can be considered as a subring of both its symmetric Martindale ring of quotients $Q_{s}=Q_{s}(R)$, and its maximal left ring of quotients $Q_{m l}=Q_{m l}(R)$. Both of these rings have an identity element, they are semiprime (or prime if R is prime), and $R \subseteq Q_{s} \subseteq Q_{m l}$. By C we denote the centre of $Q_{m l}$, which is called the extended centroid of R. It turns out that C is a field if and only if R is prime. Moreover, C coincides with the centre of Q_{s}. Thus, Q_{s} and $Q_{m l}$ can also be considered as algebras over C. It turns out that for any $q \in Q_{m l}, q R q=0$ implies $q=0$. Namely, assume that $q R q=0$ and $q \neq 0$. Then there exists $x \in R$ such that $0 \neq x q \in R$ (see [1, Proposition 2.1.7]). Therefore, $0 \neq(x q) R(x q) \subseteq x q R q$ and hence $q R q \neq 0$, a contradiction.

Corollary 5. Let R be a semiprime ring containing a nontrivial idempotent e. Suppose that for any $a \in Q_{m l}^{\prime}$ the following holds:
(i) eaeR $(1-e)=0$ implies eae $=0$,
(ii) $(1-e) a(1-e) R e=0$ implies $(1-e) a(1-e)=0$.

Then any left centraliser $\varphi: R \rightarrow Q_{m l}$ is additive.
Proof: We set $e_{1}=e$ and $e_{2}=1-e$. Let $a \in Q_{m l}^{\prime}$ be such that $e_{i} a e_{j} R e_{k}=0$ for some $i, j, k \in\{1,2\}$. If $i=k$, then $\left(e_{i} a e_{j}\right) R\left(e_{i} a e_{j}\right)=\left(e_{i} a e_{j} R e_{i}\right) a e_{j}=0$ which implies $e_{i} a e_{j}=0$. Next, suppose $j=k$. According to [1, Proposition 2.1 .7 (ii)] there exists a dense left ideal L of R such that $L e_{i} a \subseteq R$. Hence $\left(L e_{i} a e_{j}\right) R\left(L e_{i} a e_{j}\right) \subseteq L e_{i} a e_{j} R e_{j}=0$, and so $L e_{i} a e_{j}=0$. This implies $e_{i} a e_{j}=0$ (see [1, Proposition 2.1.7 (iii)]). Finally, if $i \neq k$ and $j \neq k$ we have $(i, j, k) \in\{(1,1,2),(2,2,1)\}$. Hence, assumptions (i) and (ii) imply $e_{i} a e_{j}=0$. Therefore, (A1)-(A6) hold and so Theorem 3 can be applied to obtain additivity of φ.

Corollary 6. Let R be a semiprime ring with an essential socle. Then any left centraliser $\varphi: R \rightarrow Q_{m l}$ is additive.

Proof: Let $e \in R$ be an arbitrary minimal idempotent. Without loss of generality we may assume that e is not an identity element. We claim that

$$
e(\varphi(x+y)-\varphi(x)-\varphi(y))=0
$$

for all $x, y \in R$. Suppose that $e \in Z(R)$. Then $e(\varphi(x+y)-\varphi(x)-\varphi(y))=0$, since $\varphi(x+y)-\varphi(x)-\varphi(y) \in Q_{m l}^{\prime}$. Thus, we may assume that $e=e_{1} \notin Z(R)$. Let $a \in Q_{m l}^{\prime}$. As in the proof of Corollary 5 we see that $e_{1} a e_{2} R e_{1}=0$ implies $e_{1} a e_{2}=0$, and that $e_{1} a e_{2} R e_{2}=0$ implies $e_{1} a e_{2}=0$. Let us prove that $e_{1} a e_{1} R e_{2}=0$ implies $e_{1} a e_{1}=0$. Suppose that $e_{1} a e_{1} R e_{2}=0$ and $e_{1} a e_{1} \neq 0$. Then $\left(e_{2} R e_{1} a e_{1}\right) R\left(e_{2} R e_{1} a e_{1}\right)=0$ and so
$e_{2} R e_{1} a e_{1}=0$. We can take a dense left ideal L of R such that $0 \neq L e_{1} a e_{1} \subseteq R$. Therefore, $0 \neq L e_{1} a e_{1} \subseteq R e_{1}$. Since $R e_{1}$ is a minimal left ideal of R it follows that $L e_{1} a e_{1}=R e_{1}$. Consequently, $e_{2} R e_{1}=e_{2} L e_{1} a e_{1}=0$. Hence $x e_{1}=e_{1} x e_{1}$ for all $x \in R$. Moreover, $\left(e_{1} R e_{2}\right) R\left(e_{1} R e_{2}\right)=0$ and so $e_{1} R e_{2}=0$. This implies $e_{1} x=e_{1} x e_{1}$ for all $x \in R$. Thus, $e_{1} x=x e_{1}$ for all $x \in R$, which contradicts the assumption that $e_{1} \notin Z(R)$. We have just seen that all assumptions of Lemma 1 are satisfied. Thus, applying Lemma 1 it follows that φ_{11} and φ_{12} are additive. Hence

$$
\begin{aligned}
e(\varphi(x+y)-\varphi(x)-\varphi(y)) & =\varphi_{11}(x+y)-\varphi_{11}(x)-\varphi_{11}(y) \\
& +\varphi_{12}(x+y)-\varphi_{12}(x)-\varphi_{12}(y) \\
& =0
\end{aligned}
$$

for all $x, y \in R$. Thus, according to the definition of the socle we have

$$
\operatorname{soc}(R)(\varphi(x+y)-\varphi(x)-\varphi(y))=0
$$

for all $x, y \in R$. Since $\operatorname{soc}(R)$ is an essential ideal it follows that φ is additive.
Let A be a semisimple complemented algebra and let us denote by S_{0} the annihilator of $\operatorname{soc}(A)$. If S_{0} is nonzero, then [$8, \mathrm{p} .143$, Corollary] implies the existence of a nonzero idempotent (more precisely, a primitive left projection) $e \in S_{0}$. Since the smallest closed ideal of A containing e is also a minimal closed ideal of A, we can refer to [8, Lemma 1$]$ to conclude that $e A e$ is a division ring. Hence e is minimal and so $e \in \operatorname{soc}(A)$ as well. This implies $e=e^{2} \in \operatorname{soc}(A) S_{0}=0$, which is a contradiction. Thus, $\operatorname{soc}(A)$ is an essential ideal and so Corollary 6 and Remark 4 imply the result of Saworotnow and Giellis [8] saying that each left centraliser $\varphi: A \rightarrow A$ is linear.

Further, we consider the case when R is a prime ring. In this case for any $q, q^{\prime} \in Q_{m u}$, $q R q^{\prime}=0$ implies $q=0$ or $q^{\prime}=0$. Namely, assume that $q R q^{\prime}=0$ and $q, q^{\prime} \neq 0$. Then there exist $x, y \in R$ such that $0 \neq x q, y q^{\prime} \in R$ (see [1, Proposition 2.1.7]). Therefore, $0 \neq(x q) R\left(y q^{\prime}\right) \subseteq x q R q^{\prime}$, a contradiction. Thus, the following result follows immediately from Corollary 5.

Cordllary 7. Let R be a prime ring containing a nonzero idempotent. Then any left centraliser $\varphi: R \rightarrow Q_{m l}$ is additive.

Remark 8. Let R be a prime ring with a nonzero centre. Then any left centraliser $\varphi: R \rightarrow Q_{m l}$ is additive. Namely, since the extended centroid C of R is a field and since $0 \neq Z(R) \subseteq C$ it follows that $Q_{m l}^{\prime}=0$. Thus, according to the argument in the first section of the paper we see that φ is additive, indeed.

Corollary 9. Let $\mathcal{B}(X)$ be the algebra of all bounded linear operators on a real or a complex Banach space X. Let $A \subseteq B(X)$ be a standard operator algebra (that is a subalgebra of $\mathcal{B}(X)$ containing the ideal of all finite rank operators). If $\varphi: A \rightarrow \mathcal{B}(X)$ is a left centraliser, then φ is linear.

Proof: By $\mathcal{F}(X)$ we denote the ideal of all finite rank operators of $\mathcal{B}(X)$. According to [3, p. 78, Example 5] and [1, Theorem 4.3.8] it follows that A is primitive, $\mathcal{F}(X)$ $=\operatorname{soc}(A)$, and $\mathcal{B}(X)=Q_{s}(A)$. Thus, Corollary 7 yields the additivity of φ. Further using Remark 4 we see that φ is linear.

Note that Corollary 9 generalises Johnson's result [4, p. 313, Corollary] on automatic linearity of left centralisers of $\mathcal{K}(X)$.

We end this paper with an example of a left centraliser which is not additive.
Example 10. Let $\mathcal{A}=\mathbb{F}\langle X, Y\rangle$ be the free algebra in noncommuting indeterminates X and Y over a field \mathbb{F}. Let \mathcal{A}_{1} be a subalgebra of \mathcal{A} generated by X and Y, that is, $\mathcal{A}_{1}=X \mathcal{A}+Y \mathcal{A}$. Note that \mathcal{A}_{1} is a domain having a zero centre. Thus, \mathcal{A}_{1} has no nonzero idempotents. We define $\varphi: \mathcal{A}_{1} \rightarrow \mathcal{A}_{1}$ by

$$
\varphi(p)=\left\{\begin{array}{ll}
p & \text { if } p \in X \mathcal{A} \\
0 & \text { if } p \notin X \mathcal{A}
\end{array} .\right.
$$

It is straightforward to see that φ is a well defined left centraliser. However, φ is not additive. Namely, $\varphi(X+Y) \neq \varphi(X)+\varphi(Y)$.
Remark 11. The analogous results hold for right centralisers as well.

References

[1] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, Rings with generalized identities (Marcel Dekker, Inc., New York, 1996).
[2] M.N. Daif, 'When is a multiplicative derivation additive?', Internat. J. Math. Sci. 14 (1991), 615-618.
[3] N. Jacobson, Structure of rings, American Mathematical Society Colloquium Publications 37 (American Mathematical Society, Providence, R.I., 1964).
[4] B.E. Johnson, 'An introduction to the theory of centralizers', Proc. London Math. Soc. 14 (1964), 299-320.
[5] R.E. Johnson, 'Rings with unique addition', Proc. Amer. Math. Soc. 9 (1958), 57-61.
[6] W.S. Martindale 3rd, 'When are multiplicative mappings additive?', Proc. Amer. Math. Soc. 21 (1969), 695-698.
[7] C.E. Rickart, 'One-to-one mappings of rings and lattices', Bull. Amer. Math. Soc. 54 (1948), 758-764.
[8] P.P. Saworotnow and G.R. Giellis, 'Continuity and linearity of centralizers on a complemented algebra', Proc. Amer. Math. Soc. 31 (1972), 142-146.

```
Department of Mathematics
```

Department of Mathematics
University of Zagreb
Bijenička 30
P.O.Box 335

10002 Zagreb
Croatia
e-mail: ilisevic@math.hr

[^0]: Received 13th February, 2006
 The authors are thankful to Professor Peter Semrl whose question motivated this research.

