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Recently, the energization of superthermal electrons at the Earth’s bow shock was found
to be consistent with a new magnetic pumping model derived in the limit where the
electron transit time is much shorter than any time scale governing the evolution of
the magnetic fields. The new model breaks with the common approach of integrating the
kinetic equations along unperturbed orbits. Rather, the fast transit-time limit allows the
electron dynamics to be characterized by adiabatic invariants (action variables) accurately
capturing the nonlinear effects of electrons becoming trapped in magnetic perturbations.
Without trapping, fast parallel streaming along magnetic field lines causes the electron
pressure to be isotropized and homogeneous along the magnetic field lines. In contrast,
trapping permits spatially varying pressure anisotropy to form along the magnetic field
lines, and through a Fermi process this pressure anisotropy in turn becomes the main
ingredient that renders magnetic pumping efficient for energizing superthermal electrons.
We here present a detailed mathematical derivation of the model.
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1. Introduction

Throughout the universe, energetic electrons represent the main source of
electromagnetic radiation providing an important window into space and astrophysical
phenomena. Given the low collisionality common to astrophysical settings, the
distributions of the constituent particles are typically far from thermodynamic equilibrium,
and can deviate from Maxwellians often with the formation of energetic power-law
tails where f ∝ v−γ . Determining the physical mechanism(s) which heats electrons and
produces the common power-law signature is still an unresolved problem that is at the
heart of the present analysis. Following the results reported in Lichko & Egedal (2020),
we here present a detailed derivation of a model for superthermal electron energization
via magnetic pumping. Magnetic pumping is known as a heating mechanism that transfers
energy from magnetic fluctuations to a plasma and is most effective at the largest scale of
the magnetic perturbations. In the present work we show that electron trapping renders
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magnetic pumping effective for superthermal electrons, and the mechanism can then
bypass the turbulent cascade and directly energize the electrons through this Fermi process
that is consistent with the formation of power-law tails.

Magnetic pumping is a well-known heating mechanism and was first proposed by
Hannes Alfvén as a possible way to explain observations of cosmic rays (Alfven 1950).
The idea was extensively investigated as a possible heating mechanism for fusion plasmas
Schluter (1957). In the analysis by Berger (1958), magnetic pumping in the regime of
low collisionallity was also considered and it was found that magnetic perturbations
evolving at the time scale of a particle transit time will also provide effective heating
of the plasma. As such, even in the collisionless limit, magnetic pumping is a common
process, related to transit-time damping (Barnes 1966). For tokamaks its implementation
is hindered by the difficulty of perturbing the strong torodial field, but pumping may be
feasible in other configurations operating at a higher values of the normalized plasma
pressure, β = 2μ0nT/B2 (Egedal et al. 2018). For the low collisional condition of the solar
wind ions, Lichko et al. (2017) developed a kinetic description to characterize the changes
in the ion distribution function and found that magnetic pumping is consistent with the
formation of a power-law distribution for ion energies below a critical energy related to the
magnetic-field-aligned phase velocity of the magnetic perturbations, Ec = 1

2 mi(ω/k||)2.
The model may also be applied to electrons, but, given the low electron mass, the
associated critical energy, Ec = 1

2 me(ω/k||)2, is generally too small compared with Te for
‘standard’ magnetic pumping to become important.

To elucidate the physical mechanism of transit-time damping, Stix (1992) considers
the particular case of the magnetosonic wave and describes how transit-time damping
is a Landau damping process, where the energization is limited to particles moving at the
magnetic-field-aligned phase velocity of the wave considered. Applying the guiding centre
limit, Stix (1992) noted the mathematical similarity between the mirror force m(∂v‖/∂t) =
−μb · ∇B and the electrical force m∂v‖/∂t = eb · E. For a plasma with a background
magnetic field B0, it follows that μ(B − B0)/e is equivalent to the wave electric potential
in a one-dimensional plasma configuration. Transit-time damping can then be cast in
a framework analogous to that applied for Landau damping of electrostatic waves.
Here, using the approach of linearizing the kinetic equation through a small-amplitude
expansion, f = f0 + f1 + · · · , the standard method of integration along unperturbed
particle orbits yields an approximate solution for the perturbed distribution, m(ω −
kv‖)f1 = iμ(B − B0)∂f0/∂v‖. From this expression it becomes evident why transit-time
damping is effective for ions, where typically ∂f0/∂v‖|ω/k is large yielding a large response
in f1 at the resonance velocity, v‖ = ω/k. This resonance then becomes the driver of
quasi-linear diffusion and Landau damping. Meanwhile, applying the same framework
to thermal and superthermal electrons where v‖ � ω/k, there are no resonances such
that f1 � (−iμ(B − B0)/kv‖)∂f0/∂v‖. The large streaming velocity, v‖, in the denominator
causes f1 to be small and effectively eliminates the possibility of electron energization by
magnetic pumping.

In stark contrast to these previous results, a generalized pumping model was recently
introduced by Lichko & Egedal (2020). This model also applies a small-amplitude
expansion of f , but, as a main difference from previous work, the underlying kinetic
equation is not integrated along unperturbed orbits. Rather, guided by in situ MMS
spacecraft observations recorded at the Earth’s bow shock, the model includes the effects
of electron trapping in compressional magnetic perturbations. As a heuristic argument as
to why trapping is important, for the case of unperturbed orbits, the effective interaction
time of the electrons with the perturbation is of the order of 1/(kv‖). Meanwhile for
trapped electrons the typical interaction time becomes much longer (of the order of 1/ω)
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such that the energizing of term μ∂B/∂t yields significant changes in the electron kinetic
energies during the course of a single magnetic perturbation. Pitch angle mixing can
randomize the energization, which through μ is proportional to the particle initial energy,
and magnetic pumping with trapped electrons then becomes a second-order Fermi heating
process, fully consistent with the formation of power-law electron distributions. Given
the ubiquity of magnetic perturbations in both heliospheric and astrophysical plasmas,
magnetic pumping with trapped electrons has the potential to become transformative to
our understanding of how the most energetic particles in the universe may be generated. It
should be emphasized that the present analysis applies a prescribed and highly idealized
magnetic perturbation. As such, further work is required to generalize the results to more
general configurations including parallel velocity mixing (Egedal, Schroeder & Lichko
2021) and to characterized the feedback/damping of the energization process on the
magnetic perturbations.

Following the blueprint of the framework for quasi-linear diffusion, in this paper
we provide a rigorous mathematical derivation of the magnetic pumping model first
introduced by Lichko & Egedal (2020) applicable to the fast transit-time limit of
superthermal electrons including the effects of electron trapping. The paper is organized
as follows. In § 2 we introduce the action integral J = ∮

v‖ dl which is an adiabatic
invariant and show how J together with μ provide a solution so the kinetic response of
electrons in a standing magnetic perturbation. The important role of pitch angle diffusion
to the effectiveness of magnetic pumping is discussed in § 3 and the form of the applied
drift-kinetic model is described in § 4. Section 5 introduces a Krook scattering operator,
which is applied in § 6, where, as the main result of the analysis, the new model for
magnetic pumping is formally derived. The paper is concluded in § 7.

2. Pressure anisotropy in the limits of fast transit time and no pitch angle scattering

In the present analysis we consider electrons sufficiently energetic that compared with
ev × B the force of the electric field becomes unimportant to their single-pass guiding
centre orbit motion. This restricts the study to superthermal electrons for which E � eΦ,
where Φ � Te/e is the electrostatic potential. Given the low electron mass, the electron
thermal motion is often sufficiently fast that each electron transit occurs on a time scale
that is much faster than the time scale characterizing the evolution of the magnetic
field. Considering this fast transit-time limit, the first and second adiabatic invariants,
μ = mv⊥2/(2B) and J = ∮

v‖ dl, respectively, are conserved quantities. We also assume
a two-dimensional periodic system, without gradients in the y direction, i.e. ∂/∂y = 0. In
the drift-kinetic limit (assuming a low electron mass) the electrons then strictly follow
the contours of constant magnetic flux, Ψ = Ay(x, z). Here Ay(x, z) is the y component
of the magnetic vector potential, and assuming By = 0, the magnetic field is given by
B = ∇Ay × ey, where ey is the unit vector in the y direction.

The framework is readily generalized to other geometries as long as only a single local
maximum is present in B within the periodic domain considered. As shown by Egedal
et al. (2021), multiple local maxima in B are associated with separate locally trapped
populations and in a dynamically changing configuration orbit transitions can lead to
energization through v‖ mixing. This effect of energization by mixing of separate trapped
populations is not addressed here.

To illustrate how anisotropic features in f (x, v) are generated during magnetic
perturbations, we consider the simple compressional perturbation shown in figure 1, where
x represents the position along the flux tube. We introduce B̃m(t) as the maximum field
strength observed along the flux tube, normalized by the background field B0. Thus, for
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FIGURE 1. A trapped (green) and a passing (black) electron orbit within a compressional
magnetic perturbation.

sinusoidal and periodic perturbations of amplitude �B and angular frequency ω, we have

B̃m(t) = 1 + (�B/B0)| sin(ωt)|. (2.1)

The spatial and temporal evolution of the normalized magnetic field is then described by

B̃(x, t) = 1 − (B̃m(t) − 1) cos(k‖x). (2.2)

As indicated in figure 1, we consider the section of the flux tube with −L/2 ≤ x ≤ L/2,
where L = 2π/k‖, and with values of B̃ characterized by the range 2 − B̃m ≤ B̃ ≤ B̃m.

The limit of negligible pitch angle scattering is conveniently explored using the
adiabatic invariants μ and J. For the present geometry the orbits can be categorized as
either trapped or passing as illustrated in figure 1, and we define the action integral as

J = 4
∫ Lb

0
v‖ dx′, (2.3)

where for trapped particles Lb is the location of the particle turning point, while Lb = L/2
for passing electrons. For trapped orbits the factor of 4 in front of the integral corresponds
to the four sections of the full orbits with alternating signs of xv‖. For the case of passing
electrons the factor of 4 results when counting contributions from orbits with both signs
of v‖ (but otherwise identical values of μ and E), making the definition of J in (2.3)
continuous across the trapped–passing boundary.

We first consider the limit of negligible pitch angle scattering, and assume that the initial
distribution function f = f0(v

2) is isotropic along the uniform flux tube B̃ = 1 observed at
t = 0. It is now useful to introduce the normalized action integral and the so-called pitch
angle variable, respectively defined by

j = 1
2Lv

J, Λ = μB0

E . (2.4a,b)

For t = 0, where the flux tube is uniform with B = B0, we find that j = v‖/v and Λ =
v⊥2/v2, such that for this particular time v2 = v2(j2 + Λ). The distribution function during
the evolution of the magnetic perturbation can then simply be expressed as

f (x, v‖, v⊥, t) = f0(v
2(j2 + Λ)). (2.5)

This result follows directly from Jean’s theorem (Jeans 1915) stating that f = g(μ, J)
is a solution to the kinetic equation for an arbitrary function g, where we note that
v2(j2 + Λ) = (J/(2L))2 + 2μB0/me is a simple function of these invariants, and that (2.5)
reproduces the initial condition of f = f0(v

2) for t = 0.
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(a)

(b)

(c)

(d)

FIGURE 2. (a) The function j(Λ) in (2.6) plotted as a function of Λ and evaluated for
three separate values of B̃m. (b) The relative particle energization v2/v2

0 = 1/(j2 + Λ). (c,d)
Examples of local electron distributions predicted by (2.5) both computed for Bm/B0 = 1.5, and
a Maxwellian f0 with thermal speed vt = 1. In (c) the local position is at the point of minimum
field strength, B/B0 = 0.5, whereas B/B0 = 1.25 for the distribution in (d).

For a given point in the configuration space (x, v‖, v⊥, t) the values of Λ and j are readily
evaluated. For this, we notice that

j(Λ, t) = 2
L

∫ Lb

0

v‖
v

dx′ = 2
L

∫ Lb

0

√
1 − ΛB̃(x′, t) dx′. (2.6)

Here, for any time t, the bounce points of trapped electrons are obtained from the condition
ΛB̃(Lb, t) = 1, such that j is independent of v and a function of only (Λ, t). With Λ
determined by the local values of v‖, v⊥ and B(x, t), numerical integration of (2.6) then
provides all the information required for evaluation of f (x, v‖, v⊥, t) in (2.5).

The function j(Λ, t) in (2.6) is also fundamental to the pumping model to be developed
in the following sections, and figure 2(a) shows j(Λ) computed for B̃m = 1, 1.2 and
1.5. A value of Λ = 0 is characteristic of passing orbits with |v‖/v| = 1, and given the
normalization in (2.6) we have j = 1. Because Bmin/B0 = 2 − B̃m(t) is a function of time,
the maximum value of Λ, which we denote Λm = B0/Bmin, also changes in time. For
example, for B̃m = 1, we find j = √

1 − Λ, and we have Λm = 1. Meanwhile, for the
green curve in figure 2(a) for B̃m = 1.5, we observe Λm = 2. For any geometry, the most
deeply trapped electrons are those with Λ = Λm, corresponding to v‖/v = 0, such that
j(Λm, t) = 0 for all values of t.

The increase in particle energy during the evolution of the magnetic perturbation can
also be deduced from the expression in (2.5). By Liouville mapping, the argument of
f0 must be v2

0, such that v2
0 = v2(j2 + Λ). It follows that the relative energization is

E/E0 = v2/v2
0 = 1/(j2 + Λ), and is in figure 2(b) plotted as a function of Λ for the

same three values of B̃m considered in figure 2(a). For B̃m = 1 there is naturally no
heating and v2/v2

0 = 1. For B̃m > 1, depending on the value of Λ both heating and
cooling are observed, and as discussed next, energization is observed for electrons near
the trapped–passing boundary, whereas the cooling is most significant for deeply trapped
electrons.
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Physically, the form of f in (2.5) is the result of electron heating proportional to
μ 〈∂B/∂t〉orbit, where μ is the electron magnetic moment. We can use this insight to
account for the anisotropic features observed in the theoretical distributions displayed
in figure 2(c,d). For the black passing trajectory in figure 1 we note that the
orbit-averaged value 〈∂B/∂t〉orbit is negligible because this trajectory evenly observes
positive and negative values of ∂B/∂t, yielding negligible energy changes during the pump
perturbations. Meanwhile, the green orbit is deeply trapped and as the perturbation grows
this orbit will observe a negative value of 〈∂B/∂t〉orbit, resulting in a net cooling of deeply
trapped electrons. The limiting case between trapped and passing electrons (not shown) is
also interesting. Such marginally trapped electrons will with relatively low values of v‖/v
reach the location where B is the strongest and ∂B/∂t is positive. As a result, the marginally
trapped electrons spend a relatively long time in these regions resulting in positive values
of 〈∂B/∂t〉orbit and are therefore subject to energization as the standing-wave perturbation
grows.

The distributions of the type predicted by (2.5) and displayed in figure 2(c,d) are
consistent with electron distributions observed by MMS during bow-shock crossings
(Lichko & Egedal 2020). The described energization of the marginally trapped electrons
results in enhanced values of their phase-space density, and this is consistent with the
distribution in figure 2(d) computed for the magnetic geometry in (2.2) with B̃m =
Bm/B0 = 1.5. For a position B/B0 = 1.25 near the peak magnetic field, the particles
with v‖/v � 0 just inside the trapped–passing boundary are all marginally trapped with
enhanced values of f . In figure 2(c) the distribution is evaluated at the minimum in B
and here the region of v‖/v � 0 corresponds to deeply trapped (cooled) electrons with
reduced values of f . Still, in the vicinity of the inferred trapped–passing boundaries, the
distributions at reduced B include the marginally trapped orbits which in each case account
for the enhanced values of f observed at pitch angles near the trapped–passing boundaries.

3. Simple picture of magnetic pumping with trapped electrons

The description above for the evolution of f does not include any net energizations
because f in (2.5) will simply return to its original form after a full fluctuation period is
completed. Energization by pumping therefore requires a pitch angle mixing process that
changes the magnetic moment of the electrons in time. Considering figure 2(b), for B̃m =
1.5 an electron with Λ � 0.7 will be energized to a level of E � 1.1E0 as the magnetic field
increases. For the most efficient scenario, such an electron may then pitch-angle scatter to
a value of Λ � Λm = 2, and as the perturbation reverts back to the uniform configuration
with B = B0, this electron will acquire an additional boost to reach E � (1/0.5) × 1.1E0 =
2.2E0. Meanwhile, another electron may initially start out with Λ = Λm, and then scatter
to Λ � 0.7 as the magnetic field decreases, thus ending up with a lower energy of E �
E0/2.2. As is characteristic of a second-order Fermi process, an important observation is
here that the energy gain/loss is proportional to the particle’s initial energy and that the
step size (up or down) in energy is random.

The described diffusion process is characterized by a diffusion coefficient D =
(�v)2/τ , where �v is the characteristic diffusive step in particle speed, while τ is the
characteristic time associated with this step. Given �v ∝ v, we then have D = ωv2G,
where G(B̃m, ν/ω) is a dimensionless function of the magnetic perturbation size and the
scattering rate ν normalized by the magnetic pump angular frequency ω. With Fick’s law,
the diffusion will cause a flux of particles in velocity space given by Γv = −D∇f (v). From
particle conservation it then follows that ∂f /∂t + ∇ · Γv = 0, which in spherical velocity
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space becomes
∂f
∂t

= 1
v2

∂

∂v
v2D

∂f
∂v

− 1
3n

∂n
∂t

v
∂f
∂v

. (3.1)

In addition to diffusion by pumping, we here also include the term proportional to ∂n/∂t
corresponding to changes in f due to compression of the plasma, a well-known effect
that is also present in the Parker equation (Parker 1965; Montag et al. 2017). In the
following sections we use the drift-kinetic framework to rigorously derive (3.1) and obtain
an analytical expression for the function G describing the efficiency of the Fermi process.

Physically, the energy for particle energization is provided by mechanical work on the
flux tube as captured by the term p⊥∇⊥ · v⊥ in the standard two-fluid energy equation.
In particular, for the regions where the magnetic field is decreasing the flux tube is
expanding and the mechanical work during this phase will take energy out of the electrons.
Meanwhile, as the field is expanding distributions of the type in figure 2(c) will form
locally with reduced values of p⊥. Pitch angle diffusion will naturally cause some level
of isotropization, leading to enhanced values of p⊥. Therefore more mechanical work is
required to recompress the flux tube. As a consequence, when averaged over a full cycle a
positive amount of mechanical work is delivered from the fluctuation to the electrons.

Based on the physical reasoning that leads to (3.1) and the similarity to magnetic
pumping in an infinite, uniform flux-tube geometry (Lichko et al. 2017), it is possible to
obtain quick approximations for the function G characterizing the rate of speed diffusion.
However, the aim of the present paper is to provide a mathematically rigorous derivation
starting from the drift-kinetic evolution equation for f , and then arrive at an equation
similar in form to (3.1). This derivation will then in separate papers be generalized
and combined with related heating mechanisms (Egedal et al. 2021) to account for
magnetic pumping in more general magnetic perturbations including compressional waves
of multiple amplitudes and phases.

4. Kinetic equation including pitch angle mixing

Following the analysis in Montag et al. (2017) and supplemented with additional
discussion in Appendix A, for the assumed periodic geometry the drift-kinetic equation
can be written as

df
dt

= ∂f
∂t

∣∣∣∣
Λ,E

+ dΛ

dt
∂f
∂Λ

+ dE
dt

∂f
∂E = ν 〈L〉x f . (4.1)

For ν = 0, (4.1) provides a representation of the collisionless fast transit-time limit,
whereas for finite scattering frequencies ν �= 0 pitch angle mixing is included through
the orbit average operator:

〈L〉x = 1
τb

∮ L
v‖

dl. (4.2)

Here the local scattering can be characterized by, for example, the standard Lorentz
operator L = ∂/∂ξ(1 − ξ 2)∂/∂ξ , with ξ = v‖/v. Furthermore, we have also introduced
the orbit bounce time

τb =
∮

dl
v‖

= 4
∫ Lb

0

1
v‖

dx′, (4.3)

which together with its normalized form,

τ̃b = vτb

2L
= 2v

L

∫ Lb

0

1
v‖

dx′, (4.4)
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will become important in the following calculations.
We now introduce the dimensionless drive function g(Λ, t) through the definition

g ≡ 1
Λ

dΛ

dt
= − 1

E
dE
dt

. (4.5)

Here the expression in terms of E follows from the form of Λ in (2.4a,b), and we may then
write the kinetic equation in (4.1) in the form

∂f
∂t

= g E ∂f
∂E − gΛ

∂f
∂Λ

+ ν〈L〉xf , (4.6)

which is equivalent to
∂f
∂t

= g
v

2
∂f
∂v

− gΛ
∂f
∂Λ

+ ν〈L〉xf . (4.7)

In order for (4.7) to be useful we need to obtain an expression for g related to the time
evolution of the magnetic perturbation. For this we explore that the ratio J2/μ is a constant
of motion which has the special property that it is independent of E (Egedal 2002), and
using j in (2.6) it follows that 0 = d/dt(J2/μ) = d/dt(j2B0/Λ), such that

2
j

dj
dt

− 1
Λ

dΛ

dt
= 0. (4.8)

To evaluate the total differential of j we further notice that j = j(Λ, t), while Λ = Λ(t)
such that

dj
dt

= ∂j
∂t

+ dΛ

dt
∂j
∂Λ

. (4.9)

Combining (4.8) and (4.9) we find

g(Λ, t) = 1
Λ

dΛ

dt
= 2∂j/∂t

j − 2Λ∂j/∂Λ
= 2

τ̃b

∂j
∂t

. (4.10)

Here we used

τ̃b = j − 2Λ
∂j
∂Λ

, (4.11)

which is readily shown using

τb

m
= ∂J

∂E
∣∣∣∣
μ

,
∂

∂E
∣∣∣∣
μ

= ∂

∂E
∣∣∣∣
Λ

+ 2Λ
∂

∂Λ
. (4.12a,b)

Based on the definitions of j and τ̃b in (2.6) and (4.4), and with the drive term g given in
(4.10), the right-hand side of (4.7) is now readily evaluated numerically for any prescribed
perturbation of the magnetic field, B(x, t).

5. Particle conservation and a Krook scattering model

In our model, no electrons are permitted to ‘leak’ out of the considered flux tube,
and particle conservation becomes a concept important to the derivations of the present
framework. Without loss of generality, we assume that the magnetic field lines lie in the
(x, z) plane, conveniently characterized by the flux function Ψ . It then also follows that the
flux tube has constant width �y0 in the y direction. The total number of particles N within
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our flux tube of length L must be conserved, and using results of Montag et al. (2017) it
follows that

N =
∫

f d3v d3x = 2π�y0

m2

∫
dE

∫
dμ

∫
dΨ τbf . (5.1)

The width of the tube in the z direction varies as 1/B, but for the point x = L/4 the
magnetic field is constant in time B = B0, and we have �Ψ = B0�z0, where �z0 is
the width of the flux tube at this location (and also the width of the initially uniform
configuration). Furthermore, because τ̃b = vτb/(2L) and dE dμ = m2v3 dv dΛ/B0 we get

N = 4π�y0�z0L
∫

v2 dv

∫
dΛτ̃bf . (5.2)

Guided by (5.2) we introduce the averaging operator

〈(. . . )〉Λ =
∫

dΛ τ̃b(. . . ), (5.3)

where the range of integration over the full domain of Λ changes in time, 0 ≤ Λ ≤ Λm
with Λm = 1/Bmin(t). We define

F(v) = 〈f 〉Λ , (5.4)

such that

N = �y0�z0L
∫

4πF(v)v2 dv. (5.5)

From (5.5) it is clear that F(v)v2 dv is proportional to the number of particles of the
entire flux tube within a differential velocity interval dv. It also follows that the volume V
of the flux tube is given by

V = �y0�z0L 〈1〉Λ = �y0�z0L
∫

dΛ τ̃b, (5.6)

and 〈1〉Λ therefore represents the relative change of the volume during the evolution of the
magnetic perturbation.

If we assume a static magnetic configuration while integrating (4.1) for a long time
compared to 1/ν, any initial distribution f (E,Λ) will pitch-angle mix into a form fmixed(E)

independent of Λ. Particle conservation at each energy then requires that 〈f (E,Λ)〉Λ =
〈fmixed(E)〉Λ = fmixed(E) 〈1〉Λ. This observation motivates the construction of a Krook
scattering operator:

LKf = −CK

(
f − 〈f 〉Λ

〈1〉Λ

)
, (5.7)

which compared with the orbit-averaged Lorentz operator, 〈L〉x, is much better suited
for analytical calculations. The factor CK was introduced by Lichko & Egedal (2020) to
calibrate LK to have scattering efficiency similar to 〈L〉x, as a function of the velocity
space scale length of the anisotropic features in f (E,Λ). For example, for situations where
the anisotropy of the local distribution is dominated by the Pl(v‖/v) Legendre polynomial
of order l, the appropriate calibration factor becomes CK = l(l + 1).
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6. Kinetic model of magnetic pumping

In the present section we derive an evolution equation for a slowly evolving background
distribution energized by the pumping process. Consistent with the Krook operator in (5.7)
the isotropic part of the distribution is given by

f0 = 〈f 〉Λ

〈1〉Λ

= 1
〈1〉Λ

F(v). (6.1)

During each pump cycle the volume of the flux tube may change as characterized by
〈1〉Λ, and f0 therefore does not necessarily represent a slowly evolving distribution. For
this reason it turns out that the pumping process is better characterized in terms of the
Λ-averaged distribution, F(v) = 〈f 〉Λ = f0 〈1〉Λ, introduced above in (5.4).

6.1. Limit of strong scattering, ν � ω

Our aim is first to derive an equation for ∂F/∂t, which describes the evolution of F(v, t)
due to magnetic pumping in the limit of strong scattering, ν � ω, and small magnetic
perturbation amplitudes. By direct differentiation of (5.4) we obtain

∂F
∂t

=
〈
∂f
∂t

〉
Λ

+
∫

dΛ
∂τ̃b

∂t
f + τ̃bf |Λm

Λ̇m, (6.2)

where Λ̇m = ∂Λm/∂t. To evaluate the various terms in (6.2) we introduce an expansion for
f for which the first term is the isotropic component:

f = f0(t, v) + f1(t, v,Λ) + · · · . (6.3)

We here assume a small-amplitude ordering �B/B � 1, such that |g| � |f1| � |f0|, and
the kinetic equation in (4.7) with the Krook approximation in (5.7) then yields an
approximate equation for f1:

∂f1

∂t
= h

v

2
∂f0

∂v
+ νLKf1, (6.4)

where

h ≡ g − (〈g〉Λ / 〈1〉Λ). (6.5)

Furthermore, by introducing the ordering ν/ω � 1, we can ignore ∂f1/∂t on the left-hand
side of (6.4), such that

f1 = h
νCK

v

2
∂f0

∂v
. (6.6)

Considering again (6.2) we may now evaluate the two last terms on the right-hand side.
First we observe that∫

dΛf
∂τ̃b

∂t
= f0

∫
dΛ

∂τ̃b

∂t
+ 1

νCK

∫
h
∂τ̃b

∂t
dΛ

v

2
∂

∂v
f0, (6.7)

while

τ̃bf |Λm
Λ̇m = τ̃bΛ̇m

∣∣
Λm

f0 + τ̃bhΛ̇m

∣∣
Λm

1
νCK

v

2
∂f0

∂v
, (6.8)
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such that (6.2) becomes

∂F
∂t

=
〈
∂f
∂t

〉
Λ

+ f0

∫
dΛ

∂τ̃b

∂t
+ T

1
νCK

v

2
∂f0

∂v
, (6.9)

where

T =
∫

h
∂τ̃b

∂t
dΛ + τ̃bh|Λm

Λ̇m. (6.10)

To evaluate 〈∂f /∂t〉Λ we insert f = f0 + f1 back into (4.7):

∂f
∂t

= g
v

2
∂f0 + f1

∂v
− gΛ

∂f1

∂Λ
− νCKf1. (6.11)

Then, using 〈f1〉Λ = 0 and 〈kf0〉Λ = f0 〈k〉Λ we find〈
∂f
∂t

〉
Λ

= 〈g〉Λ

v

2
∂

∂v
f0 + 1

νCK
〈gh〉Λ

v

2
∂

∂v

v

2
∂

∂v
f0 − 1

νCK

〈
gΛ

∂h
∂Λ

〉
Λ

v

2
∂

∂v
f0

= 〈g〉Λ

v

2
∂

∂v
f0 + 1

νCK
〈gh〉Λ

1
4v2

∂

∂v
v4 ∂

∂v
f0 − 1

νCK
T

v

2
∂

∂v
f0. (6.12)

Here the last form of (6.12) assumes that

3
2

〈gh〉Λ = −
〈
gΛ

∂h
∂Λ

〉
Λ

+ T, (6.13)

which is proved below. In addition we also verify a similar expression needed in the next
few steps:

3
2

〈g〉Λ =
∫

dΛ
∂τ̃b

∂t
+ τ̃b|Λm

Λ̇m = ∂

∂t
〈1〉Λ . (6.14)

To prove (6.13) and (6.14) we recall that τ̃bg = 2∂j/∂t, j = τ̃b + 2Λ∂j/∂Λ and j|Λm = 0.
As an intermediate result, for any G = G(t,Λ) it then follows that∫

dΛ
∂

∂Λ
GΛ

∂j
∂t

=
����������0
∂

∂t

∫
dΛ

∂

∂Λ
GΛj −

���������0∫
dΛ

∂

∂Λ
Λj

∂G
∂t

− Λ̇m
∂

∂Λ
GΛj

∣∣∣∣
Λm

= −Λ̇m

⎡
⎢⎣

���������0(
∂

∂Λ
GΛ

)
j
∣∣∣∣
Λm

+ GΛ
∂

∂Λ
j
∣∣∣∣
Λm

⎤
⎥⎦

= −Λ̇m G
j − τ̃b

2

∣∣∣∣
Λm

= 1
2

GΛ̇m τ̃b|Λm
. (6.15)

We now consider 〈gh〉Λ = 2
∫

dΛh∂j/∂t, and use (6.15) with G = h to simplify the
expressions:

〈gh〉Λ = 2
∫

dΛh
∂τ̃b

∂t
+ 4

∫
dΛΛh

∂

∂Λ

∂j
∂t

= 2
∫

dΛh
∂τ̃b

∂t
+ 4

∫
dΛ

∂

∂Λ
hΛ

∂j
∂t

− 4
∫

dΛh
∂j
∂t

− 4
∫

dΛ
∂j
∂t

Λ
∂

∂Λ
h

= 2
∫

dΛh
∂τ̃b

∂t
+ 2hΛ̇m τ̃b|Λm

− 2 〈gh〉Λ − 2
〈
gΛ

∂h
∂Λ

〉
Λ

. (6.16)
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From here (6.13) is readily obtained.
Similarly, this time with G = 1 in (6.15), we get

〈g〉Λ = 2
∫

dΛ
∂τ̃b

∂t
+ 4

∫
dΛΛ

∂

∂Λ

∂j
∂t

= 2
∫

dΛ
∂τ̃b

∂t
+ 4

∫
dΛ

∂

∂Λ
Λ

∂j
∂t

− 4
∫

dΛ
∂j
∂t

= 2
∫

dΛ
∂τ̃b

∂t
+ 2Λ̇m τ̃b|Λm

− 2 〈g〉Λ , (6.17)

and from here (6.14) follows directly.
Inserting (6.12) into (6.9) and using (6.14) together with f0 = F/ 〈1〉Λ yields the desired

evolution equation for F(v, t):

∂F
∂t

= 1
νCK

〈gh〉Λ

〈1〉Λ

1
4v2

∂

∂v
v4 ∂

∂v
F + 〈g〉Λ

2 〈1〉Λ

1
v2

∂

∂v
v3F. (6.18)

Again, the result in (6.18) is obtained in the limit ν � ω and describes the evolution
of a near-isotropic electron plasma. Because F|v=∞ = 0, through integration by parts
it is readily seen that

∫
∂F/∂t v2 dv = 0 and (6.18) is therefore consistent with particle

conservation. The anisotropic features in f are given by f1 proportional to h/(νCk) with
h given in (6.5). The term proportional to 〈gh〉Λ /(νCk) then accounts for the bi-linear
interaction between h/(νCk) and the drive g, yielding velocity diffusion akin to Fermi
acceleration.

To understand the term in (6.18) proportional to 〈g〉Λ /(2 〈1〉Λ) we recall (6.14),
and note again that 〈1〉Λ is proportional to the volume of the flux tube, such
that 3/2 〈g〉Λ / 〈1〉Λ = ∂ log 〈1〉Λ /∂t is the rate of relative compression of the flux
tube. In terms of the average plasma density n ≡ N/(�y0�z0L 〈1〉Λ), it follows that
〈g〉Λ /(2 〈1〉Λ) = −(1/3)∂ log(n)/∂t, and it is then clear that this last term of (6.18)
accounts for compressional heating of an isotropic plasma, as is familiar from the similar
term in the Parker equation (Parker 1965) and also included in (3.1) above.

6.2. General case, including arbitrary scattering levels
Above, we solved (6.4) in the limit ν/ω � 1 to get an approximate solution for f1. Still
for �B/B0 � 1, to address the more general case with no restrictions on ν/ω, we apply
Fourier expansions of g, h and f1:

g(η, t) = g1(η)eiωt + g2(η)e2iωt + · · · ,

h(η, t) = h1(η)eiωt + h2(η)e2iωt + · · · ,

f1(η, t) = f 1
1 (η)eiωt + f 2

1 (η)e2iωt + · · · .

(6.19)

For this to be meaningful we have introduced the new variable η, for which the range is
constant in time 0 ≤ η ≤ 1. Furthermore, because∫

hτ̃b dΛ = 0, (6.20)

this constraint must be fulfilled by each of the terms in the sum∫
hnτ̃b

∂Λ

∂η
dη = 0. (6.21)
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For the general case where τ̃b depends on (Λ, t), the constraint implies that τ̃b∂Λ/∂η =
K(t), where K(t) is an arbitrary function independent of Λ. Imposing further that 0 ≤ η ≤
1 and η = 1 for Λ = 0, there is then only one definition of η available:

∂η

∂Λ
= − τ̃b

〈1〉Λ

, η = 1 − 1
〈1〉Λ

∫ Λ

0
τ̃b dΛ′. (6.22a,b)

To emphasize some properties of η, the averaging operator in (5.3) may be expressed as
〈(. . . )〉Λ = 〈1〉Λ

∫
(. . . ) dη, and for the uniform flux tube we observe that η = v‖/v.

Returning to (6.4) we recall that this equation for f1 was derived with (v,Λ) as the
independent velocity space variables. In principle, with f1 = f1(v, η, t) a new term will
then occur as we note that

∂f1

∂t

∣∣∣∣
Λ,E

= ∂f1

∂t

∣∣∣∣
η,E

+ ∂η

∂t

∣∣∣∣
Λ

∂f1

∂η
. (6.23)

However, because ∂η/∂t|Λ = 0 for �B = 0, the term ∂η/∂t|Λ ∂f1/∂η is of second order in
�B/B0 and can be ignored. This permits us to write ∂f1/∂t = iωf1, and similar to (6.4) for
the separate frequencies the equation for f n

1 then reads

inωf n
1 = hn v

2
∂f0

∂v
− CKνf n

1 , (6.24)

such that f1 = ∑
n f n

1 , with

f n
1 = Kn

v

2
∂f0

∂v
, Kn = hn(−inω + CKν)

n2ω2 + C2
Kν2 . (6.25a,b)

Using (6.25a,b) in place of (6.6), we may now follow the same steps that led from (6.6)
to (6.18). Analogous to before when pumping was driven by

〈〈gf1〉Λ

〉
t, we find that parts of

f n
1 are in phase with gn causing the time average

〈〈
gnf n

1

〉
Λ

〉
t

to become finite. An equation
for the slowly varying F(v, t) is then obtained as

∂F
∂t

= 1
v2

∂

∂v

(
v2D

∂

∂v
F
)

, D = ωv2G,

G
(

νCK

ω

)
≡ 1

4

∑
n

νCK/ω

n2 + (νCk/ω)2

〈〈gnhn〉Λ

〉
t ,

〈〈gnhn〉Λ

〉
t ≡

〈〈
Re(gneinωt)Re(hneinωt)

〉
Λ

ω2 〈1〉Λ

〉
t

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.26)

The efficiency of magnetic pumping with trapped electrons is characterized by (6.26) and
is now readily evaluated numerically for any periodic magnetic perturbation, oscillating as
a standing wave as a function of time. We may also generalize (6.26) to account for slow
flux-tube compression simply by including the term proportional to 〈g〉Λ in (6.18).

6.3. Evaluation of the pumping efficiency
The model in (6.26) is verified by evaluating its predictions as a function of νCK/ω

for a number of discrete perturbation magnitudes, parameterized by �B/B0 in (2.1).
These predictions are then compared with results obtained by numerically integrating
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14 J. Egedal and E. Lichko

FIGURE 3. Solid lines show predictions for G calculated with �B/B0 ∈ {0.3, 0.5, 0.7, 0.9}, and
including the first one, two and five finite terms of the sum in (6.26). For comparison, the red
crosses are obtained by numerical integration of (4.7), using equation (7) of Lichko & Egedal
(2020) to estimate G.

(4.7) directly, and using equation (7) of Lichko & Egedal (2020) to estimate G from the
numerical evolution of f (v, t). This integration can be carried out with 〈L〉x based on the
Lorentz form or the Krook form in (5.7), but for direct comparison with the model in
(6.26) we here only consider results obtained using the Krook representation.

The results of the numerical integration of (4.7) are represented by the red crosses in
figure 3. In comparison, the lines are obtained from (6.26) based on the following steps.
For a given value of �B/B0 the spatial and temporal variation of B is given through (2.1)
and (2.2). This then permits direct evaluation of j and B̃ as a function of (Λ, t) using (2.6)
and (4.4). Evaluation of g and h in (4.10) and (6.5) then follows, from which their Fourier
expansions in (6.19) are determined. All quantities needed for evaluating the required Λ

and t averages of (6.26) thereby become available. Given that the time dependency of the
configuration is set through the | sin(ωt)| term in (2.1), only even terms of n contribute
in (6.26). The lines in figure 3 represent the result of the first one, two and five finite
terms in the expansion of frequencies. The red lines obtained with n ∈ {2, 4} are mostly
hidden behind the black lines obtained with n ∈ {2, 4, 6, 8, 10} demonstrating the rapid
conversion of the expansion.

For all values of �B/B0 and νCK/ω the predictions of (6.26) are observed to be in
good agreement with the numerical integration results. Lichko & Egedal (2020) further
shows that the model based on the Krook scattering operator also is in agreement with
numerical results obtained with the Lorentz form of 〈L〉x (defined as the orbit average of
the local L = ∂/∂ξ(1 − ξ 2)∂/∂ξ ). This agreement, however, requires that the value of CK
be adjusted to become large at small values of �B/B0, where the pitch angle scale size
of the features in f1 are the smallest and most efficiently scattered by 〈L〉x. Curve fitting
yields the following easy-to-evaluate form accurate for the range of 0 ≤ �B/B � 0.9:

G
(

νCK

ω

)
� 0.02 νCK/ω

4 + (νCk/ω)2

[(
�B
B

)2.6

+ 3
(

�B
B

)5.6
]

. (6.27)
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This form based on numerical results with the Krook scattering operator is somewhat
different from the similar expression in Lichko & Egedal (2020) for results based on
the Lorentz form of the scattering operator. These differences are mainly due to a
normalization mistake, as the expression and curves in Lichko & Egedal (2020) were
multiplied up by an erroneous factor of π (still, the model was correctly applied in the
analysis of the MMS observations).

Given the model was derived through an expansion f = f0 + f1 + · · · with f1 � f0,
the good agreement between the numerical integration results and those of (6.26) is
perhaps surprising. Strictly, agreement should only be expected for νCK/ω � 1 and/or
�B/B0 � 1, which ensures that f1 � f0. For example, for νCK/ω � 1 and �B/B0 = 0.5
distributions similar to those in figure 2 will occur where the anisotropic part described by
f1 is comparable in magnitude to f0. For this limit where νCK/ω � 1 a model can likely be
obtained where again f = f0 + f1 + · · · , but with f0 = f0(J, μ) similar to (2.5). We expect
that such a framework will provide results similar to (6.26), but the analysis is beyond the
scope of the present paper.

7. Summary and conclusions

Lichko & Egedal (2020) developed a new magnetic pumping model which successfully
accounts for detailed in situ MMS observations of electron energization at the Earth’s bow
shock. In the present paper we provide a detailed mathematical derivation of the model
obtained by exploring the fast transit-time limit of a drift-kinetic plasma description,
including the effects of electrons becoming trapped in the magnetic perturbations. While
the model is derived with an assumption of small magnetic perturbations, it also accurately
accounts for the heating rates at large magnetic perturbation amplitudes. This is evident
with a comparison of the result of the model with those obtained by direct numerical
integration of the drift-kinetic equation. Despite the highly idealized form of the magnetic
geometry considered, the model provides an accurate description of the anisotropic
form and energization of electron distributions observed at the Earth’s bow shock.
The mathematical framework may also serve as a starting point for additional studies,
generalizing the model to more complicated and realistic scenarios where the magnetic
perturbations are comprised of multiple waves with variable amplitudes and propagation
directions.

We emphasize the role of magnetic trapping for magnetic pumping to become
effective for superthermal electrons. Without trapping the rapid thermal streaming of
electrons along magnetic field lines renders pumping ineffective for electron energization.
Meanwhile, even small-amplitude magnetic perturbations can trap a significant fraction of
the electrons, and given that the magnetic mirror force is proportional to E⊥, this trapping
applies to all energies for which the electrons are magnetized. Particularly important for
space and astrophysical applications, the present model represents a second-order Fermi
process consistent with the generation of electron distributions with energetic power-law
tails.

Acknowledgements

Editor William Dorland thanks the referees for their advice in evaluating this article.

Funding

This work was supported in part by NASA HERMES DRIVE Science Center grant
no. 80NSSC20K0604. Contributions from E.L. were also supported by the Department of
Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship
(NDSEG) Program and the NASA Earth and Space Science Fellowship.

https://doi.org/10.1017/S0022377821001173 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377821001173


16 J. Egedal and E. Lichko

Declaration of interests

The authors report no conflict of interest.

Appendix A

The form of the kinetic equation applied in our analysis as well as Jean’s theorem
(Jeans 1915) can be recovered using the multiple-time-scale perturbation analysis method
introduced by Davidson (1972), which, by way of examples, also is applied by Cordey
(1976) and Kolesnichenko et al. (1995). For the present problem, the fundamental
assumption is that the frequency of the bounce motion of the electrons far exceeds the
collision frequency, as well as the frequency for variations in the magnetic field. We define
the small expansion parameter, εp, as the ratio of these two quantities, εp = τb/τ∗, where
τb is the characteristic time of particle motion in the magnetic field, or the bounce time,
and τ∗ is the characteristic time for particle collisions. For the kinetic equation

df
dt

= C( f ) ≡ G
τ∗

(A1)

we introduce independent time variables of the form

τ (0) = t/τb, τ (n) = (εp)
nτ (0), where n = 1, 2, . . . (A2)

The time derivative then takes the form

d
dt

= 1
τb

d
dτ (0)

+ εp

τb

d
dτ (1)

+ · · · (A3)

and the distribution function is expanded in terms of the new independent variables:

f = f0(τ
(0), τ (1), . . .) + εpf1(τ

(0), τ (1), . . .) + · · · . (A4)

With these expansions, to the lowest order in εp we obtain the equation

df0

dτ (0)
= 0. (A5)

This equation can be solved by integrating along its characteristics, which are the equations
for the particle orbits. The characteristics are given by x = x(α1, α2, . . . , αN, t), where
α1, α2, . . . , αN are the integrals of motion. Consistent with Jean’s theorem, the solution
then becomes

f0 = g(α1, α2, . . . , α6), (A6)

where g is an arbitrary function.
To the next order in εp, we have the equation

df1

dτ (0)
= − df0

dτ (1)
+ G. (A7)

To avoid time secularities, i.e. unphysical solutions to the kinetic equation, we have the
solvability condition ∫ τb

0

(
df0

dτ (1)
− G

)
dτ (0) = 0. (A8)
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This equation can be expressed as

∂f0

∂t
= 1

τ∗

∫ τb

0
G

dt
τb

. (A9)

Equation (A9) is the analogue of the orbit average of the scattering operator in (4.1).
We notice that (4.1) has additional terms on the left-hand side of the equation. This
is due to the fact that while E and Λ are constants of motion during a single orbit
transit, they are not over the time scale of the pumping cycle. Meanwhile, because
∂/∂t|μ,J = ∂/∂t|Λ,E + dΛ/dt ∂/∂Λ + dE/dt ∂/∂E , recasting (4.1) with μ and J = ∮

v‖ dl
as the principal variables reproduces (A9) exactly.
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