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Abstract

We study an optimal control problem for a quasilinear parabolic equation which has delays
in the highest order spatial derivative terms. The cost functional is Lagrange type and some
terminal state constraints are presented. A Pontryagin-type maximum principle is derived.

1. Introduction

The classical Fourier's law

q(t,x) = -kVy(t,x), (1.1)

relating the heat flux q(t, x) and the temperature y(t,x), and the conservation of
energy equation

cy,(t,x)+Vq(t,x) = 0, (1.2)

lead to the classical heat equation:

y,(t,x) = -Ay(t,x). (1.3)
c

Equation (1.3) has an infinite propagation speed for a finite thermal pulse, which is
not physical. A modified Fourier's law was introduced in [9] by Gurtin and Pipkin for
general heat conduction problems of materials with memory (see [16] also):

t,x) = - f
Jo

q(t,x) = - a(s)Vy(t-s,x)ds, (1.4)

'Laboratory of Mathematics for Nonlinear Sciences and Department of Mathematics, Fudan University,
Shanghai 200433, China.
© Australian Mathematical Society 2001, Serial-fee code 0334-2700/01

532

https://doi.org/10.1017/S1446181100012268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012268


[2] Optimal control for quasilinear retarded parabolic systems 533

where a (s) is called the heat-flux relaxation function. If we assume a little more
general memory pattern for the materials, the above might even be replaced by

q{t,x) = - [ Vy{t-s,x)n(ds), (1.5)
Jo

for some Borel measure fi(-). Combining (1.5) with (1.2), we obtain

Ay(t - s, x)n(ds). (1.6)y,(t, x) = - f
c Jo

This is a parabolic equation with delays in the highest spatial derivative term. See [5,
p. 176] (and [17] also) for an earlier study of a modified Fourier's law.

If further taking into account the source/sink of the heat (which could be regarded as
a control), we will have a general nonhomogeneous linear parabolic equation having
delays in the highest order spatial derivative terms. In the case that the material is
nonlinear, the equation can be nonlinear. For extensive studies of such equations, see
[2,7,20] and the recent book [18] by Tanabe.

In this paper, we study an optimal control problem for an abstract delay equation
in a Hilbert space, motivated by the heat conduction problems discussed above. The
following is a typical example of such systems:

y,{t,x) -yxx(t,x)
o
f(t,yxx(t + d,x),u(t,x))d6= /

«( f - r 1 ,* ) ,« (* ,* ) ) , (t,x)e(0,T)x (0,1), d-7)

y(t, x) = <p(t, x), (t, x) e [-r, 0] x (0, 1),

y(t,O) = y«,l)=O, t € ( 0 , r ) ,

where the / and g,'s are some maps and the r, e (0, r] are some positive constants. In
the above, y(-, •) is regarded as the state and «(-, •) is the control. The cost functional
could be, say,

/(«(•))= f f \ f f°(t,yxx(t + 9,x),u(t,x))de
J0 Jo U-r

+ YJS°ii.t,yxx(t-ri,x),u(t,x)) \dxdt. (1.8)

<•>! J
We may also allow the system and the cost functional to be more general, say, i n / , g,
and f°, g°, so that the terms y(t, x), yx(t, x), yxx(t, x) and y(t + 9, x), yx(t + 6, x),
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y(t — rhx), yx(t — n,x) appear as well. On the other hand, we are allowed to have
some terminal state constraints, of which the following is a typical example:

x < 1. (1.9)

Note that in (1.7), delays appear in the highest order spatial derivative terms and there
are possibly countably many discrete delays. Moreover, the highest spatial derivatives
also appear in the cost functional (1.8) and in the terminal state constraint (1.9). In
[20], the authors established the existence and uniqueness as well as some properties
of the solutions of equations more general than (1.7) (in an abstract setting). Based
on the results of [20], we are going to derive a Pontryagin-type maximum principle
for the corresponding optimal control problem in this paper. The major mathematical
difficulty comes from the fact that since the control domain U is not necessarily
convex, we have to use spike perturbation of the control. On the other hand, since
the presented terminal state constraint is in some "small" space (relative to the space
M2 = H x L2(0, T; H), see Section 2), we need some fine estimates on the perturbed
trajectories under the spike-type variation of the control. This will be achieved by an
approximation technique. We point out that the usual vector measure technique used
in [11,12] cannot be directly applied here.

There is an extensive literature on the optimal control of infinite dimensional
retarded evolution equations (see [1,6,13-15,19,21] and the references cited therein).
Most of the above-mentioned works, however, deal with systems with delays appearing
in the lower order spatial derivatives, except [6], which studies an LQ problem for
a linear system with one (discrete) delay in the highest order spatial derivative term.
For finite dimensional cases, see [3,4]; and for general results of infinite dimensional
optimal control theory, see [12] (as well as [8,10,11]).

The rest of the paper is organized as follows. In Section 2, we formulate our optimal
control problem. In Section 3, we state the main result of this paper—the maximum
principle. Section 4 is devoted to some auxiliary results which are crucial to the proof
of the main result. A proof of the maximum principle is given in Section 5.

2. Formulation of the problem

Roughly speaking, we consider here the following abstract control system:

t 6 (0, T),

\x(0) = x0, x(t) = (p(t), t e [-r, 0).

The cost functional is given by

J(«(•))= / F°(t,x,,u(t))dt, (2.2)
Jo
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and the terminal state constraint takes the form:

(x(T;u(-))\

V*r(-; «(•))/
e Q. (2.3)

The optimal control problem is to minimize (2.2) subject to (2.1) and (2.3), over the
set of all admissible controls.

We now make the above precise. Let H be a Hilbert space with inner product (•, •>
and the induced norm | • | = | • \H. Let M2 = H x L2(—r, 0; H) be endowed with an
inner product

)> Go)
Then M2 is a Hilbert space. Next, we let A : 3)(A) c H - • H generate an
exponentially stable analytic semigroup eAl on H. Thus, without loss of generality,
we may assume the following:

(HI) There exist constants So, co, Mo, M\, M > 0, such that

P(A) 2 Si, = {A 6 C | | arg X| < n/2 + So] U {0}, (2.5)

where p(A) is the resolvent set of A;

^ , V^eE, , ; (2.6)

, Wt>0; (2.7)

") Vf>0. (2.8)

In what follows, we endow ^ ( A ) with the inner product

{x,x)A = {Ax,Ax), Vx,xe@(A). (2.9)

Then (@(A), (•, -}A) is a Hilbert space. We denote the induced norm by | • \A. Next,
we introduce the space

\x e H I I \AeA'x\2dt < ooj ,

I (AeA'x,AeA'y)dt, Vx,y<=X. (2.11)
./o

X = \xeH\l \AeA'x\2dt <oo\, (2.10)

and define

Then (X, (•, -}x) is a Hilbert space. We denote the induced norm by | • |*.
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Since e*' is exponentially stable, the following operator P e -Sf (H) is well-defined:

P = I e^'^'dt, (2.12)
Jo

which is positive definite and is the unique solution of the Lyapunov equation

PA+A'P = - / . (2.13)

Consequently,

rtx,eA'y)dt = (Px,y), Vx,yeH. (2.14)r
Jo

Thus we have 0(A) c. X £ H and

I I / 2 | | (2.15)

Note that @(A) ^ X ^ H.
On the other hand, for any 5 > 0, we have (under (HI))

r» \ " 2

o \AeA'x\2dj < \x\x<
/ r \ / r M2 \1/2

\x\x,S = [\\2 + Jo \AA'\2dj < \\ (\\2 + Jo \AA'\2dt + ^ \ \ 2 )

( ^ X. (2.16)

Thus | • \x and \ • \x,s are equivalent.

Now let U be a metric space and T > r > 0. Denote
% = (M(-) : [0, T] -> £/ | «(.) is measurable}. (2.17)

Any element «(•) 6 ̂  is called a control. We let £2 = [0, T] x [-r, 0] x 9(A) x
^(A) x U, and any element in Q be denoted by (t, 9,x,y, u). We introduce functions
/ : £2 -> H and / 0 : f2 —>- DS. which satisfy the following conditions.

(H2) / € C(Sl; H),f° € C(Q; R); / and / ° are Frechet differentiable in * and y
and

Moreover, there exist constants Lo, Li, L2 > 0, such that for all (t, 0, x, y, u) e J2,

\\fx(t, 6,X,y, M)||jSf(®(A);H) < L L

||/j,(/,e,jc,y, « ) <L2,

\\fx°(t,9,x,y,u)\\S(Ay, \\f°(t,e,x,y,u)\\mAy<L0,

| / (t, 6, 0, 0, u)\H, \f°(t, 9, 0, 0, II)| < Lo,
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where @(A)' is the dual of (@(A), \ • \A) (as a Banach space).
Now we let fj, and v be nonnegative Radon measures on 3S[—r, 0], the Borel a-field

of [-r, 0]. Then for any z() e C([-r, 0]; 2>(A)), (t, u) e [0, T] x U, we define

F(t, z,u)= f f (t, 9, z(0), z(9),
J[-r,0]

F°(t, z,u)= f f°(t, 6, z(0), z(9),
Jl-r,0]

(2.20)

These are the functions which appeared in (2.1) and (2.2).
The following result is a refinement of Lemma 3.2 found in [20]. As in [20], we

may assume all the functions involved are Borel measurable (if necessary, we may
make Borel measurable modifications).

LEMMA 2.1. Let(U2)hold. Then, for any x (•) e L2(-r, T;2>(A)) andu(-) e <%,

themap t \-+ F(t, x,, u(t)) is in L2(0, T; H), where x, stands for x(t+0), d € [-r, 0].

Moreover, for any t0 6 [0, T] and S € [0, r] with to + S < T, we have that

\F(t,x,,u(t))\2
Hdt\

< [Llti([-r, 0]) + L2fia-r, 0])I/2/x(t-5, 0])1/2} |JC(-)U>(*,*«;»M))

+ Loy/Six([-r, 0]) + L2fi([-r, O])\x(-)\LHh.r,v.9iA)). (2.21)

PROOF. The first conclusion follows from [20]. We now prove the estimate (2.21).
By (2.19) and Lemma 2.2 of [20], we have

lo+S

\F(t,Xl,u(t))\2
Hdt)

-r, 0]) (2.22)

where

2 ] ' / 2

dt\

\Ax(t)\2dtn(d9)

[Jlo L J[-r,O]

<L2n(l-r,0])"2\( f
[J[-r,O] Jto

I I
1 / \Ax(t)\2fi(d9)dt)
tu-r J[-(r/\(tt)+S-t)),t—IQ] /

1/2

\Ax(t)\2vL(d9)dt
-(to+6-t),O)

)
1/2
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(2.23)

Then (2.21) follows.

It is easy to see that a similar result holds for the map F°. From [20], we have the
following existence and uniqueness result for (2.1).

PROPOSITION 2.2. Let (HI) and (H2) hold. Let the following also hold:

(H3) The nonnegative Radon measure /x satisfies

Hm"(M0+ l)/x([-/-,0])1/2[LlM([-r)0])1/2 + L2/i([-5,0])1/2] < 1. (2.24)

Then, for any x0 6 X, <p(-) € L2(—r, 0;@(A)) and «(•) e W, there exists a unique
strong solution x() e L2(0, 7 ; # ( A ) ) f| W u ( [ 0 , 71; H) «-> C([0, 71]; X) o / (2.1).

Hereafter, the pair (x0, <p(-)) e X x L2(-r, 0;^(/4)) will be fixed. Sometimes
we write x(-; «(•)) to emphasize the dependence of the solution *(•) on the control
M() € '2;'. Next, we let Q be a convex and closed subset in X x L2(—r, 0; 5?(A)).
Then, by Proposition 2.2, we see that the terminal state constraint (2.3) is meaningful.
We let %ad be the set of all «(•) € % such that the corresponding trajectory x (•; «(•))
satisfies the constraint (2.3).

Clearly, under (H1)-(H3), for any «(•) € ^ , the cost functional (2.2) is well-
defined. The nonemptiness of the set Wad is the problem of controllability which
will not be discussed here. In this paper, we consider the optimal control problem
associated with the system (2.1), the terminal constraint (2.3) and the cost functional
(2.2), assuming that *2Sad is nonempty. Our optimal control problem can be stated as
follows.

PROBLEM (C). Find a control «(•) € %d, such that

/ («(• ) )= rnin /(«(•)). (2.25)
()e«i

Any ii(-) € Wad satisfying (2.25) is referred to as an optimal control, the corresponding
trajectory x(-; £(•)) and the pair (x(-; «(•)), «(•)) are called an optimal trajectory and
pair, respectively. We will derive some necessary conditions for optimal pairs in the
next section.

3. Main result

In this section, we state our main result and make some simple remarks. Let
«(•) € e2/ad be an optimal control and Jc(-) = x(-; «(•)) be the corresponding optimal

https://doi.org/10.1017/S1446181100012268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012268


[8] Optimal control for quasilinear retarded parabolic systems 539

trajectory. We now introduce the variational system along the pair (Jc(-). «(•))• For
any «(•) e <^, let

+ F(t,x,,u(t))-F(t,x,,u(t)), f € ( 0 , T), (3.1)

f (0 = 0, r e [-r, 0], in H,

where, for any (*(•), «(•)) 6 L2(-r, T; 2>{A)) x ^ and | ( ) e L2(-r, T; 9 (A)),

(DF)(t,x,,u(t))%, = / fI(t,9,x(t),x(t + 9),u(t))%(t)(i(d6)
•A-r.O]

)• (3.2)+ / f,(t,e,x{t),x(t + 0),
J[-r.O]

We also define

.-r.0]

J[-r,0]

V(d9)

. (3.3)

Clearly (3.1) has the same form as (2.1). Thus, under (H1MH3), for any «(•) € %',
there exists a unique solution £(•) = %{•; «(•)) of (3.1), which is in L2(0, 7; ̂ (A)) n
W12(0, 7;H) ^ . C([0, 7];A-). Set

J C X x L2(0, 7; (3.4)

We call @ the reachable set of the variational system (3.1). Next, we introduce the
adjoint system of the variational system. To this end, let us first define the maps
(DF)' and (DF0)'. For any (*(•), «(•)) € L2(-r, T;3>(A)) xW, t € [0, T] and

-r.O]

+ I fyO - 9, 9, x(t - 9),x(t), u(t - 9))'rjri_t -
•/[-r.OJ

(DF°y«, x,, 11(0) = I f°0, 9,x(t),x(t + 6), u(t))v(d9)
J[-r,0]

(3.5)

f?(t-e,9,x(t-9),x(t),u(t-9))v(dd). (3.6)
-r,0)
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In the above, f stands for yj/{t - 9), 9 e [-r, 0]. We note that

(t + e), H(0) : 9{A) -* H (3.7)

and

<Ll. (3.8)

Thus we may let fx{t, 0)' : H' = H -*• 9)(A)' be the adjoint operator of fx(t, 9).
Clearly, for any rjf(-) € L2(0, T + y;H), the first term on the right-hand side of (3.5)
is well-defined. Similarly, the second term is also well-defined. In (3.5) and (3.6), we
have taken the convention that the functions and measures are extended to be zero out
of their domains. For example,

fy(s,9,x,y,u)=0, f°(s,9,x,y,u) = 0, ifs > T.

Clearly, we have

UDF)'(;x.,u(-))1r eL2(0, T;9(A)'), V^(-) 6 L2(0, T + r; H),

\ (DF°)'(-, *., «(•)) € L2(0, T; 9{A)%

By some routine calculations, we further have

(3.10)

On the other hand, since A e &{2i(A); H), we may define A' e &(H; ®(A)') to be
the adjoint operator of A. Finally, we let f° € [-1,0] and <p() € L2(-r, 0; @{A)')
(defining <p(t) to be zero for t £ [—r, 0]). Now the adjoint system (along the optimal
pair (x ( ) , «(•))) reads as follows:

I ((DF)(t, x,, u(tm,, if(t))H dt=\ ((DF)'(t, x,, u(t))p, W))9M.9W dt>
Jo Jo ,i

I (DF°)(t,x,, u(tm,dt= f ({DF°)'(t,x,, H(0),
'•Jo Jo

(DF)'(t, x,, u(t))f

+ rfr\DFoy(t,xt,u{t)) + <p(t-T) = O, t € (0, T), in 9{A)', (3.11)

xfr(T)€X', if(t)=O, t>T.

Let us now define the Hamiltonian: V(f, z(-), «) e [0, T] x C([-r, 0]; ̂ (A)) x U
and (V°, \/r)€Rx H,

H(t, z(-), u, if0, ̂ ) = f°F\t, z(-), H) + {if, F(t, z(-), M)>. (3.12)

As with F and F°, we see that for any z e L2(—r, 0; ^(A)) , the above is also
well-defined. We are now ready to state our main result.
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THEOREM 3.1 (Maximum Principle). Let (H1MH3) holdandlet (*(•), «(•)) be an
optimal pair. Let the following also hold:

(H4) The set {recall (3.4) for the definition of&)

&-Q = {p-q\pe@,qeQ} (3.13)

is finite codimensional ([11,12]) in X x L2(-r, 0; @(A)).

Then there exists a nontrivialpair W°, $(•)) e [ -1 , 0] x (L2(0, T; H) D Wu([0, T];
@(A)')), such that the adjoint system (3.11) with the data (xlr(T),<p(-)) € X' x
L2(—r, 0; ̂ (A)) satisfies the transversality condition

,o
(Vr(D, go - *(r))x-.x + / <¥>(0), 9i W - * ( r + 0)>®(A) ' .^ ) ^ > 0, (3.14)

J—r

V(9o,9.(-))e g,
a«rf f/ie maximum condition holds:

H(t, x,, u(t), f°, Vr(O) = max «(*, Jc,, u, V°, ̂ (0 ) , a-e. r € [0, T]. (3.15)

REMARK 3.2. From [11,12], we know that (H4) holds provided one of ^ and
Q is finite codimensional. The condition that Q be finite codimensional should be
relatively easy to check.

4. Auxiliary lemmas

In this section, we present some lemmas which will play crucial roles in the proof
of our main result.

LEMMA 4.1. Let h(-) € L2(0, T;H). Then for any p 6 (0, 1) there exists a
measurable set Ep c [0, T] with

p = p r , (4.1)
such that the function

np{t) = j j eA('~t)i (^XE,(T) - l\ h(j)dz, r € [0, T], (4.2)

satisfies

\np(-)\mo,T;®(A))nc([o,T],x) = o ( l ) , as p -*• 0. (4.3)

REMARK 4.2. Let us take h(t) = h0 e @(A), with \ho\ — 1. Then

A!jp(f) + (XE,(0/P - l)h0. (4.4)
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Since

{T\(- (}-\\h \ - - -

we see that the following equation does not hold:

\rlp(')\L2(P,T;®<.A))nW>2(l0,T].H) = O(l), aS p -

Thus we could not expect to obtain

M-)lc([o,r];X) = o(l), as p -> 0,

0.

[11]

(4.5)

(4.6)

(4.7)

via proving (4.6) and applying the embedding L2(0, T; 3>{A)) D W12([0, 7"]; H) <^>
C([0, T]\ X). However (4.7) is necessary for treating the state constraint Q C X x
L2(—r, 0; S>(A)). Hence we have to prove (4.7) directly.

PROOF OF LEMMA 4.1. For any given p € (0, 1), we let h(-) € C([0, T]\@{A))
such that

\h{-)-h-)\LH0T.H)<p2- (4.8)

Since Ah(-) 6 C([0, r ] ; / O and h(-) 6 L2(0, 7; # ) , as in [11,12], we can find a
measurable set Ep c [0, T] with property (4.1), such that

- f eA(-z)
= 0(1) (4.9)

C([0,r];tf)
and

Thus

- f h(T)XE,(T)dT- I
P Jo Jo

= 0(1). (4.10)
C([0,T];H)

Jo
-r)[h(r)-h(r)]dr

- f
JoP Jo

< (Mo + 1

On the other hand, we see that >jp() is the strong solution of

= 0(1). (4.11)

(4.12)
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Hence, by (4.10) and the proved (4.11),

M 0 l < f \Ar,p(x)\dr+ - f h{T)XE,(T)dr- [ h(r)dr
Jo P Jo • Jo

543

< VT\rlp(-)\mo.T^(A)) + o(l) = o(l), uniformly in t 6 [0, T]. (4.13)

Take S e (0, T] to be fixed. We now look at the following:

1/2

ds

I f A /"V('+'-r)
[^o Jo

[h(r)-h(r)]dz
1/2

ds,

• ; '

2 I ' / 2

\f eA\ f eM'~I) 2 I ' / 2

I/"
2 I 1 / 2

rf4

< (Mo

f rt+s rs I
[ Jr Jo P

1 /" - f .
— / e*(™r)A/i(r)y£ (r)dr — / e"(~r)AA(
P Jo " Jo

( p + 0 l i ' + '/i(r) ~ ^(T)i2xt°ri (r )dr}
1 . \
p /

2 | ' / 2

(4.14)

uniformly in / € [0, T]. Hence, by the observation we made in Section 2 about the
norm of X, we have

\nP(-)\c(io,nx) = °O). as p -> 0.

Combining (4.11) with the above, we obtain (4.3).

(4.15)

Next, let us present a result concerned with the continuous dependence of the
solution of evolution equations on the data.

https://doi.org/10.1017/S1446181100012268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012268


544 Liping Pan and Jiongmin Yong

LEMMA 4.3. Let the operator-valued function G ( ) : L2(-r, T; @(A))

T; H) satisfy the following: Vr0 € [0, T) and 8>0 with to + S < T,

ato+S \ '/2

\G(t)$,\2
Hdt) <

[13]

L2(0,

(4.16)

with K > Oandcb() e C(K+; R+), (Mo + l)<w(0) < 1, independent of £()•
h(-) € L2(0, T; H), (x, <p(-)) eXx L2(-r, 0; 9{A)) andleti;{-) e L2(0, 7;
W12(0, T; H) be the strong solution of

' e (0, r],
te[-r,O).

(4.17)

77ie« //tere exuff a constant C > 0, SHC/I tfwf

- I I I - h(x)dr

\x\x

PROOF. Take S = T/N > 0 such that

For / e [J5, (I + 1)5], we have

f (0 = «*<'-

(4-18)

(4.19)

}A(T) dr. (4.20)

Then

a»(i + l)5 \

* /

/ />(.i+l)S ft

+ ( A e«-<
\JiS Jit

, , )

1/2

)h(z)dr
1/2

dt

a s dt\
1/2

(M0 (4.21)
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where

/,- =
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/ /.(i+1)* ri

i = ( / A I «"">
\JiS JiS

ru+w r'

/ A / eA<"
'M Jo
I r(i+l)S niS

/ A ^'-X)h(j)dx
\JiS Jo

x)h(z)dz

1/2

1/2

dt

< [ eM~x)

Jo

eM~x)h(z)dz

L2(0.T;9(A))
([' AeAl I" eMiS-x)h(x)dx dt\

(-x)h(z)dz = I. (4.22)
C([0,r];X)

Hence

On the other hand,

:
1 — COQ

. (4.23)

/
JiS

\Hx)\dz

< C[\W8)\x /
JiS

(4.24)

Also, for t 6 [iS, (i + 1)8], we have

1/2

<([' \AeMs+'-iS)l;(iS)\2 ds\ + If A f eA(s+

+ 1 / Ae** / ^'-x)h(z) ds\

aS \ '/2 / ri+S fi

ds\

1/2

https://doi.org/10.1017/S1446181100012268 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100012268


546

s f ^ « -
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2 \ '/^

AeAs y eM'-r)h(T)dr

ds

ds

< M\t;(i8)\x + / ^ ( s - r ) G ( r ) £ t X [ l M
JiS

ds

I eA(-T)

Jo
h(r)dr

C([O,r];X)

11--

Jo

\JiS

2 \ 1/2

This leads to

[15]

(4.25)

(4.26)

Combining (4.23) and (4.26), we obtain (4.18) by induction.

5. Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1. Letw(-) e ^/ad be the given optimal
control a n d i ( ) be the corresponding optimal trajectory. We denote

dQ(.X, Z) = J - Z\lH-r.0;S(A))\ - (5.1)

V(x,z)eX xL\-r,

d(u(-), «(•)) = meas{r € [0, T] \ u(t) £ "(0), V«(.), «(•) 6 «C. (5.2)

We know that ( ^ , d(-, •)) is a complete metric space ([11,12]). For any w(-) 6 "1/,
we denote

JC°(K(.)) =/(«(•))• (5.3)
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Next, for any e > 0 and any «(•) e <2f (instead of ^ad^, we define

+J + dQ(x(T;«(•)),*r(

547

1/2

• (5.4)

Clearly Je() : O^, J) -»• K is continuous. Also, we have

f /,(«(•)) > 0, Vu(-) € «T,

j 7,(5(0) = e < inf 7,(«(0) + e.
I ( )#

(5.5)

Thus, by Ekeland's variational principle ([12]), we have M£() € W, such that

« ' ( - ) , « ( - ) ) < ^ ,

(ue(0) < 7£(S(0),

VTd(M
e(0, 2(0) < 7,(«(0) - 7£(«£(0), V«(0 € «r.

We let

*'(0 =*(•;« '(0) , x°'£=x°(ue(-)).

We now take «(•) e Ĉ fixed. Define

| AF£(0 = F(-, U£)., «(0) - F(; (xe)., «• (0) € L2(0, 7; H),

I (^£)., ««(0) € L2(0, T; R).

(5.6)

(5.7)

(5.8)

By Lemma 4.1, together with a technique used in [11,12] (which has been used in the
proof of Lemma 4.1.). we may find a measurable set Ep c [0, T] with \EP\ = pT,
•such that as p -> 0,

L2(0.T;S(A))r\C([0,T];X)

h \P

We now define

and set

Let f '(0 6 L2(0, T; ^(A)) D

(5.9)

C([0,ri;R)

(5.10)

») , x°p
c=x°(ue

p(.)). (5.11)

71; H) be the unique strong solution of

e(t), a.e. t e (0, T], in H,

t € [-r, 0].
(5.12)
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Next, define

«»•(•) = (l//>)(*p(0 - *'(•)) - ?(•)• (5.13)
We claim that

|Wp(-)l£2(o,r;9(A))nc<[o.n;*) = o(l) , as p - • 0. (5.14)

In fact, w^(0 satisfies

wp(t) = Awe
p(t) + (DF)(t, (*«)„ «I(0)(w;)1

+ - A F ' ( 0 * E , ( 0 - AF'(0 + A«(0, a.e. r € (0, T], in H, (5.15)

_u;'(0 = 0, r 6 [ - r , 0 ] ,

where (denoting (DF)J(f, *,) = (DF)(t,x,, u*(t)))

c
p(t)= f

-[(jcp, - (x'),]. (5.16)

Direct computation shows that

lim \xe
p(-) - Xe(-)\L2(0,T;S>(A))nCa0.T];X) = 0. (5.17)

Thus, by (H2), we have

Sp(t)s f \\(DFyp(t,(x
e), + a[(xp),-(x'),])

Jo

- (DF)(t, Of),, ue(t))\\^LH_r0.mA)).H)da - , 0. asp ^ 0. (5.18)

Consequently,

;W) < f &P(.t)2\(Wp), + (n,&(-ro;»eA»d t -
JO

Now, by Lemma 4.3, we obtain (5.14). As a consequence, we have

x0,e _ x0,e pT pT
^ = / (DF)Oe(t)^s),dt+ AFOe(t)dt, (5.20)

Jo Jo

where (see (3.3))

° r ) , = (DF°)(t,x% u£
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Hence, by taking «(•) = M* (•) in (5.6), we get

-ViT < lUu£
p(-)) - J.(u* (•))]/p. (5.21)

Letting p —> 0, we obtain

-J~eT < f°-£^e + (r, t;e(T))x>,x + {<P£, (r)r>L»(-r.o.»M)-u'(-,.o:»(A)). (5-22)

where

dQ(x'(T),
/.(«•(•)) ' (5.23)

Here we should note that the space X' x L2(—r, 0; $(A)') is strictly convex (since it is
the dual of the Hilbert space X x L2(—r, 0; @(A))). Thus, the above second equality
makes sense. On the other hand, by the convexity of Q, we see that

< 0, (5.24)

Q-

Thus, combining (5.22)-(5.24) and the finite codimensionality of SP, — Q in X x
L2(—r, 0;^(A)), in a manner similar to that used in [11,12], for some sequence
e —> 0, we have

(V°-£, r , *>'(•)) A (^°, ^ , ?(•)) ^ 0. (5.25)

Taking limits in (5.22), one has

0 < ^ ° | ° + (*, HT))X',X + (V, $T)m-r.0.9(AYi.m-r.0i9Vi», (5-26)

where f° e R and f (•) e L2(0, T; ̂ (A)) f) W12(0, 7; //) satisfy

f |(r) = AUO + (DF)(t, x,, u(tM, + AF(0, a.e. r € [0, T], in H,
(£(0 = 0, te[-r,0],

and

£° = / [(DF°)a, i,, 5(0)f, + AF°(0] ^ , (5.28)

where

jAF(O = F(r,i,,M(O)-F(f,i(,«(O), te[0,T],j
[AF°(0 = F°(f, i,, 11(0) - F°(r, jc,,
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We now define a linear functional & : L2(0, T; H) -> K as follows: for any AF(-) e
L2(0, T; H), we let £(•) 6 L2(0, 7; 3(A)) D W12(0, 7; //) be the solution of (5.27).
Then let

)) = - / ir°(DF°)(t, xt, 5(0)?, <** - (if, HT))x:x
Jo

(5.30)

It is immediate that & is bounded. Thus, by the Riesz representation theorem, we can
find a rjr(-) € L2(0, T; H), such that

)) = (^(0, AF(.)>L'(o.r.«), VAF(-) 6 L2(0, T; H). (5.31)

This means that

f W(t),Ht))Hdt= f [(^(O.A?(O + (DF)(r,Jcf, 5(0)5,)«
Jo Jo

-^°(DF°)(f, jcf, 5(0)?,] rf/ - W, HT))x:x

-J (v(0),HT + d))9w,9wd6, (5.32)

V|(.) e L2(-r, r ;0(A))n W12(0, 7;//).
We now set

° i° -t, *»(•) = -*(•)• (5-33)

Clearly VKO e W'2([0, T]; @(A)'). Then, by direct computation, we see that
satisfies the adjoint system (3.11). Furthermore,

> / {xlr°[F°(t, x,, n(0) - F°(/, i, , 5(0)]
Jo
r

0 > / {xlr°[F°(t, x,, n(0) - F°(/, i, , 5(0)] + <VKO, F(f, jc,,
(5.34)

The above holds for all M ( ) e fy. Thus the maximum condition (3.9) follows.
Finally, the transversality condition (3.14) follows from (5.24). Hence the proof of
Theorem 3.1 is complete.
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