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Recent progress in the direct measurement of turbulent dissipation in the Arctic Ocean
has highlighted the need for an improved parametrization of the turbulent diapycnal
diffusivities of heat and salt that is suitable for application in the turbulent environment
characteristic of this polar region. In support of this goal we describe herein a series of
direct numerical simulations of the turbulence generated in the process of growth and
breaking of Kelvin–Helmholtz billows. These simulations provide the data sets needed to
serve as basis for a study of the stratified turbulent mixing processes that are expected
to exist in the Arctic Ocean environment. The mixing properties of the turbulence are
studied using a previously formulated procedure in which the temperature and salinity
fields are sorted separately in order to enable the separation of irreversible Arctic mixing
from reversible stirring processes and thus the definition of turbulent diffusivities for both
heat and salt that depend solely upon irreversible mixing. These analyses allow us to
demonstrate that the irreversible diapycnal diffusivities for heat and salt are both solely
dependent on the buoyancy Reynolds number in the Arctic Ocean environment. These
are found to be in close agreement with the functional forms inferred for these turbulent
diffusivities in the previous work of Bouffard & Boegman (Dyn. Atmos. Oceans, vol. 61,
2013, pp. 14–34). Based on a detailed comparison of our simulation data with this previous
empirical work, we propose an algorithm that can be used for inferring the diapycnal
diffusivities from turbulent dissipation measurements in the Arctic Ocean.
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1. Introduction

In the weakly turbulent, strongly stratified Arctic region, direct measurements of
turbulent dissipation have been extremely scarce (e.g. Padman & Dillon 1987; Bourgault
et al. 2011; Shroyer 2012; Shaw & Stanton 2014), until very recently. The increasing
importance of the Arctic region from the perspective of global climate and the role
of the oceans in climate change processes in general has led to an increasingly sharp
focus on Arctic Ocean mixing processes. This includes an increasing number of direct
measurements of the viscous dissipation rate ε (see Scheifele et al. (2018) and Scheifele,
Waterman & Carpenter (2021) for example) performed in the Arctic with high-resolution
conductivity–temperature–depth profilers. These new measurements are expected to
significantly enhance our knowledge of vertical mixing and thereby improve the accuracy
of the estimation of melt rates of Arctic sea ice.

However, in the process of inferring the operative diapycnal diffusivities from the
available turbulence measurements, the historically important model of Osborn (1980)
has continued to be applied together with the assumption of a constant flux coefficient
Γ = 0.2 for the mixing efficiency. This somewhat crude yet still fashionable methodology
for the parametrization of diapycnal diffusivities may potentially lead to large systematic
errors in the estimation of the diapycnal diffusivity Kρ , for example, given that the
canonical Osborn formula relies upon several especially questionable assumptions when
it is directly applied to the Arctic Ocean environment. First, the Arctic Ocean is a
strongly stratified ocean with much lower turbulence intensities compared with the
low and mid-latitude oceans. Previous studies (e.g. Shih et al. 2005) suggested that at
low-turbulence intensities as usually associated with Reb ∼ O(1) (where Reb = ε/(νN2)
is the buoyancy Reynolds number, ν is the kinematic viscosity, ε is the viscous dissipation
rate and N = √−g/ρ0〈dρ̄/dz〉 is the Brunt–Väisälä, or buoyancy, frequency, determined
by gravitational acceleration g, the reference density ρ0 and the vertical density gradient
dρ̄/dz), the flux coefficient Γ may reach values that are much lower than the canonical
value of 0.2. Second, most of the numerical data and field measurements that support Γ =
0.2 are based upon the assumption that the density is strongly determined by temperature,
which is characterized by a relatively low Prandtl number (Pr = ν/κθ ∼ O(1), where κθ

is the thermal diffusivity) whereas the Arctic Ocean is a primarily salinity stratified ocean
in which the Schmitt number for salinity (Sc = ν/κs, where κs is the haline diffusivity)
is characterized by a much higher value of approximately 700 (see Gregg et al. 2018).
This may lead to significantly different characteristics of the diapycnal diffusivity such
as that demonstrated in Rahmani, Seymour & Lawrence (2016) or Bouffard & Boegman
(2013). Third, aside from the stably stratified salinity field, the main pycnocline in the
Arctic also includes an unstably stratified thermocline with cold water in the surface
ocean lying above the relatively warm water in the interior ocean. We will describe such
circumstances as an environment in the ‘diffusive–convection regime’ in what follows,
even though strictly speaking the linear ‘diffusive–convection instability’ described in the
double-diffusive convection literature (see Radko 2013) will not develop in the system as
long as the density ratio Rρ = βSz/αΘz (sometimes referred to as inverse density ratio in
the literature, where α is the thermal expansion coefficient and β is the coefficient of haline
contraction) is larger than (Pr + 1)/(Pr + τ) ≈ 1.08 (evaluated based on the typical value
of Pr = 13 and diffusivity ratio τ = κs/κθ = 0.005 in the Arctic Ocean, see Sharqawy,
Lienhard & Zubair 2010). In this circumstance it is important to take both diffusing species
explicitly into account given the fact that the co-existence of the two oppositely stratified
species with different diffusivities in the diffusive–convection regime is known to be able
to generate fine scale structures such as those characteristic of thermohaline staircases
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Diapycnal diffusivities in diffusive–convection regime

(e.g. Timmermans et al. 2008) in the Arctic region. Considering the (perhaps unfounded)
assumptions underlying application of the classical parametrization scheme of Osborn
(1980) to the Arctic environment, our major goal in the current work is to employ direct
numerical simulations (DNSs) to calibrate a proper mixing parametrization scheme that is
applicable to the special circumstances of the Arctic environment that might replace the
Osborn methodology.

Another significant flaw in the Osborn methodology derives from its failure to
differentiate between reversible turbulent stirring processes and irreversible mixing
processes. In fact, Osborn’s parametrization failed to recognize that only irreversible
diabatic process can contribute to turbulent diapycnal diffusivity. Previous research (e.g.
Winters et al. 1995; Winters & D’Asaro 1996; Peltier & Caulfield 2003) had established
that it is the evolution of the background potential energy reservoir that determines the
temporal evolution of irreversible mixing. Based upon detailed energy budget analyses,
Salehipour & Peltier (2015) further proposed a formula for the irreversible diapycnal
diffusivities which resembles the original Osborn formula but only takes the irreversible
buoyancy flux into account. Even though the original Osborn formula correctly captures
the total amount of mixing once the system enters into a stationary state, in the analysis
of the instantaneous evolution of Kelvin–Helmholtz (KH) billows that will be performed
in what follows, the distinction between reversible and irreversible fluxes has been shown
to become very critical. It should be noticed that the distinction between reversible and
irreversible processes described above had only been recognized in the study of stratified
turbulence in either the single-component case or the two-component case in which both
components are stably stratified scalar fields (Smyth, Nash & Moum 2005). The most
recent work of Ma & Peltier (2021) extended the analysis to include the case in which
one of the scalars is unstably stratified. This was first applied to the case of salt-fingering
double-diffusive turbulence, which develops under conditions in which warm salty water
lies above relatively colder and fresher water. As we will demonstrate in what follows,
the theoretical framework established in Ma & Peltier (2021) that is based on sorting
both individual fields separately can be carried over almost without modification to the
diffusive–convection system with only the roles played by temperature and salinity in
the energy budget switched. In what follows, the formulae for the irreversible diapycnal
diffusivities for both heat and salt will be derived that provide the basis for the new
mixing analysis to be discussed herein. It will be important to recognize that an alternative
definition of background potential energy for double diffusion is provided in the recent
work of Middleton & Taylor (2020). In this work, only the density field is sorted and
the separate definitions of irreversible heat fluxes and irreversible salt fluxes, which are
important in our analyses to follow, cannot be defined. For this reason, we will employ the
method discussed in Ma & Peltier (2021) as the basis for our turbulent analyses.

In what follows this analysis will be based on a series of DNS analyses that simulate
mixing induced by the development and the breakdown into turbulence of a primary
KH instability in the diffusive–convection environment. KH instability has always been
considered to be the dominant mechanism responsible for mixing the ocean pycnocline
(Gregg et al. 2018). It has been well studied by water tank experiments (e.g. Thorpe
1973; Patterson et al. 2006) and an extensive amount of theoretical analysis and
DNS-based numerical simulations as a basis for understanding the nature of the lifecycle in
single-component fluids (see the recent review of Caulfield 2021). Through a combination
of secondary instability analyses and DNSs in the past fifty years (e.g. Corcos & Sherman
1976; Davis & Peltier 1976; Klaassen & Peltier 1985; Palmer et al. 1994; Staquet 1995;
Caulfield & Peltier 2000; Staquet 2000; Mashayek & Peltier 2012a,b; Salehipour, Peltier
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& Mashayek 2015), the ‘zoo’ of secondary instabilities that drive the primary KH billow
to turbulence has been well understood and which secondary instabilities from the ‘zoo’
dominate the turbulent transition is largely determined by the Reynolds number of the
flow (Mashayek & Peltier 2012a,b). Furthermore, mixing efficiencies and diapycnal
diffusivities for density have been shown to vary significantly as different secondary
instabilities are involved in driving the system into a fully turbulent state (Mashayek &
Peltier 2013). It has also been demonstrated that mixing efficiencies are also strongly
dependent on the background stratification and the Prandtl number (see Caulfield & Peltier
2000; Salehipour et al. 2015; Rahmani et al. 2016) being employed.

Although the evolution of the classical KH billows and their influence on mixing have
been well studied in the literature, they have never been studied in the diffusive–convection
environment which has to be considered in the context of understanding Arctic
stratification and mixing. In fact, the coexistence of temperature and salinity fields in the
development of KH billows has been studied in the system in which both temperature
and salinity fields were set to be stably stratified (Smyth et al. 2005) as well as in
the system that favours the salt-fingering stratification (Kimura, Smyth & Kunze 2011;
Smyth & Kimura 2011). It has been found in Smyth et al. (2005) that the differential
diffusion (the differences in the diapycnal diffusivities between temperature and salinity)
only becomes significant when Reb is smaller than 100. In the work to be discussed
in the current paper, we will perform DNSs of KH billow engendered turbulence that
develops in the diffusive–convection environment to discuss its mixing properties and
compare them with the existing literature on single-component systems and the doubly
stable systems of Smyth et al. (2005). By performing these analyses, we will demonstrate
that the diapycnal diffusivities for heat and salt operate independently of one another being
coupled only through the buoyancy Reynolds number Reb. It is worth remarking that this
conclusion actually provides critical support for an assumption underlying our recent paper
(Ma & Peltier 2022) in which we have described a new mechanism for the formation of
thermohaline staircases in the diffusive–convection environment of the Arctic Ocean. The
basic assumption of Ma & Peltier (2022) is that the diapycnal diffusivities for heat and salt
are only a function of Reb. That this assumption in that paper is verified by the DNS-based
turbulence analyses to be presented in what follows will be one of the major conclusions
of the current paper.

The remainder of the present paper is organized as follows. In § 2 we will discuss the
governing formulae for mixing in the diffusive–convection environment by performing a
detailed energy budget analysis that differentiates the irreversible and reversible processes.
We will then discuss the numerical settings for our DNSs on KH instability and subsequent
turbulent mixing in § 3. The time evolution of KH lifecycles in these simulations will
be discussed and compared for simulations with different non-dimensional parameters
in § 4. In the ensuing § 5 we will specifically discuss the functional dependence of
the diapycnal diffusivities for heat and salt in order to compare them with the existing
data-based parametrization of Bouffard & Boegman (2013). Based on these discussions,
a new algorithm is provided at the end of § 5 for future implementation to improve the
understanding of Arctic Ocean turbulence measurements. Finally, we will offer a summary
and conclusions of the results obtained in this paper in § 6.

2. Scalar diffusivities in a diffusive–convection system

The Osborn (1980) formula continues to be widely employed to estimate the diapycnal
diffusivity for density Kρ based on the measured viscous dissipation rate in the field of
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physical oceanography. His formulation of the mixing problem for a single-component
fluid has recently been tested by Salehipour & Peltier (2015) in order to produce results
for turbulent diffusivity that involve only irreversible mixing processes. In the formulation
of the mixing problem in this section we will properly extend the results of Salehipour &
Peltier (2015) to apply to the diffusive–convection circumstance in which the stratification
is determined simultaneously by a stably stratified salinity field and an unstably stratified
temperature field, as is characteristic of the Arctic Ocean environment. Therefore, we will
first review both the canonical models of Osborn (1980) as well as the modified form of
Osborn’s formulation described by Salehipour & Peltier (2015). This will be followed by
presentation of a careful energy budget analysis and the new formulae that apply to the
case of Arctic Ocean turbulence that is of interest to us here.

2.1. Previous representation of scalar diffusivity in the single-component fluid
The Osborn (1980) formulation of the mixing-efficiency problem was derived on the basis
of the following simplified equation for the conservation of turbulent kinetic energy:

P = H + ε, (2.1a)

in which the shear production of the background flow is P , the turbulent buoyancy flux is
H and the viscous dissipation is ε, all of which are defined as follows:

P = −
〈
u′w′ dū

dz

〉
, (2.2a)

H = g
ρ0

〈ρ′w′〉, (2.2b)

ε = 2ν〈sijsij〉. (2.2c)

In above equations, the overbar on a variable f̄ represents the horizontal average of the
field f , the bracket 〈 · 〉 represents the vertical average, u = (u, v, w) is the velocity field
that is further separated into the horizontally averaged fields ū and the perturbated field
u′ to it; ρ0 is the reference density and ρ′ = ρ − ρ0 is the density perturbation; sij =
(∂ui/∂xj + ∂uj/∂xi)/2 is the strain rate tensor.

By employing the definition of the flux Richardson number Rf = H/P , Osborn (1980)
wrote the diapycnal diffusivity KOsb

ρ in the form of

KOsb
ρ = H

N2 = ν
H
ε

ε

νN2 = νΓ OsbReb, (2.3a)

Γ Osb = H
ε

= Rf

1 − Rf
, (2.3b)

in which Γ Osb is usually referred to as the flux coefficient and the value 0.2 was estimated
to be the upper bound for Γ Osb in the original work of Osborn (1980). In the subsequent
practical application of this formulation of the mixing problem, Γ Osb has always been
assumed to be equal to the constant value 0.2 when applied to the understanding of
oceanographic measurements. This is in spite of the fact that there exists significant
evidence from simulations demonstrating that the value of Γ = 0.2 may not be accurate
(see the recent review of Gregg et al. (2018) concerning its application in the field of
oceanography).
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However, as pointed out by Winters et al. (1995) and Peltier & Caulfield (2003), the
buoyancy flux defined in (2.1) contains the influence of both irreversible and reversible
mixing processes whereas only the irreversible component should contribute to mixing
when this is represented by a diapycnal diffusivity. In order to differentiate true irreversible
mixing from adiabatic stirring, a background potential energy BPE is defined by ‘sorting’
the three-dimensional density field into a vertical profile ρ∗(z, t) with a decreasing upwards
density BPE = g/ρ0〈ρ∗(z, t)z〉. The energy stored in this background potential energy
reservoir is the minimum potential energy which cannot be transformed into kinetic
energy. On the other hand, the differences between this BPE and the total potential energy
PE = g/ρ0〈ρz〉 is defined as the available potential energy (APE), as this part of the
potential energy is ‘available’ to be transferred back to macroscopic motion. In a closed
domain (no body force, no boundary flux), the time derivative of the BPE can be shown
(Winters & D’Asaro 1996) to be

d
dt

BPE = M + Dp, (2.4a)

M + Dp = κg
ρ0V

∫
V

− dz
dρ∗

|∇ρ|2 dV. (2.4b)

In above equations, κ is the density diffusivity in the single-component system. Since
dBPE/dt is always positive, BPE is a monotonically increasing function in time. Here,
M is the irreversible buoyancy flux that characterizes the instantaneous mixing strength
across the pycnocline that is generated due to the macroscopic fluid motion and Dp
characterizes the part of mixing that would occur even in a completely motionless flow. In
fact, Dp is always negligible if any form of turbulence is developed in a system that is not
incredibly small so that the second equation in (2.4) can also be treated as the definition
for M.

Based on these definitions, Salehipour & Peltier (2015) derived a modified expression
for the diapycnal diffusivities in which the flux Richardson number Rf in (2.3) is replaced
by the irreversible mixing efficiency E as

Kirr
ρ = ν

M
ε

ε

νN2∗
= νΓ irrReb∗, (2.5a)

Γ irr = M
ε

= E
1 − E , (2.5b)

in which N2∗ is the squared buoyancy frequency in the sorted profile but is always identical
to the traditional definition of N2 (see Salehipour & Peltier (2015), so that Reb∗ = Reb).
Equations (2.5) have the same form as (2.3), except that the irreversible versions of
physical quantities in (2.5) are employed in place of Osborn’s original expressions.
Through these modifications, the formulae now correctly define the diapycnal diffusivities
in terms of quantities involving irreversible mixing processes.

2.2. Scalar diffusivities in the presence of two diffusing species
We will here proceed to extend (2.5) to a diffusive–convection system, following similar
approaches that were applied in Ma & Peltier (2021) to the understanding of diapycnal
diffusivities in salt-fingering turbulence. The existence of the unstably stratified scalar
field of temperature in the Arctic Ocean region allows potential energy to kinetic energy
conversion and thereby the creation of macroscopic motion, which was unavailable
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in the single-component case in which the background stratification of density was
stably stratified. Thus, an energy budget analysis will be needed in order for a correct
characterization of the diapycnal diffusivities for both scalars to be defined.

The total kinetic energy per unit mass may be represented as K = |u2|/2. Based on the
assumption of the linear equation of state ρ = ρ0(1 − α(Θ − Θ0) + β(S − S0)) (thermal
expansion rate α and haline contraction rate β are both assumed to be constant), we define
the averaged potential energy per unit mass and decompose it into a temperature reservoir
PEΘ and a salinity reservoir PES as follows:

PE = g
ρ0

〈ρz〉,

= −gα〈Θz〉 + gβ〈Sz〉 + g〈z〉,
= PEΘ + PES + PE0. (2.6)

Here, PE0 is a constant term that will be ignored in what follows.
The time derivatives of K, PE, PEΘ , PES can be derived straightforwardly by assuming

that the two fluid components obey the Boussinesq governing equations which leads to the
system

dK
dt

= −HΘ − HS − ε, (2.7a)

dPEΘ

dt
= HΘ + DpΘ, (2.7b)

dPES

dt
= HS + DpS, (2.7c)

dPE
dt

= dPEΘ

dt
+ dPES

dt
,

= HΘ + HS + DpΘ + DpS,

= H + Dp, (2.7d)

where

HΘ = −gα〈Θ ′w′〉, (2.8a)

HS = gβ〈S′w′〉, (2.8b)

DpΘ = gακθ

〈
∂Θ

∂z

〉
, (2.8c)

DpS = −gβκs

〈
∂S
∂z

〉
. (2.8d)

Just as in the single-component case, the buoyancy fluxes HS and HΘ contain the
contributions from both reversible processes and irreversible processes. The reversible
fluxes capture the energy transfer between the kinetic energy reservoir and the available
potential energy reservoirs APES and APEΘ , while the irreversible fluxes transfer energy
between APES and APEΘ and the background potential energies BPES and BPEΘ .
Specifically, the background potential energies BPEΘ and BPES are defined as the part of
the potential energy that is associated with adiabatic re-arrangements of the temperature
and salinity profiles to monotonically decreasing profiles Θ(zθ∗) and S(zs∗) and APEΘ and
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APES describes the differences between total energies and background potential energies,
namely

BPEΘ = −gα〈Θ(zθ∗, t)zθ∗〉, (2.9a)

BPES = gβ〈S(zs∗, t)zs∗〉, (2.9b)

APEΘ = PEΘ − BPEΘ, (2.9c)

APES = PES − BPES. (2.9d)

The irreversible buoyancy fluxes for heat (MΘ ) and salt (MS) again characterize the
time derivative of BPEΘ and BPES in a closed system as

d
dt

BPEΘ = gακθ

〈
dzθ∗
dΘ

|∇Θ|2
〉
,

= MΘ + DpΘ, (2.10a)

d
dt

BPES = −gβκs

〈
dzs∗
dS

|∇S|2
〉
,

= MS + DpS, (2.10b)

d
dt

BPE = d
dt

BPEΘ + d
dt

BPES,

= MΘ + MS + DpΘ + DpS,

≡ M + Dp. (2.10c)

The above sets of equations imply simply that, while BPES is a monotonical increasing
function with time as in the traditional definition of background potential energy for a
single-component fluid, BPEΘ is a monotonically decreasing function which irreversibly
releases energy to APEΘ which can then be transported to the kinetic energy reservoir. The
total background potential energy BPE, however, can either increase or decrease with time,
depending upon the relative strengths of the negative MΘ and positive MS in the system.
The energy exchanges described above can also be visualized in the simplified diagram
shown in figure 1. It should be noticed that the APEΘ has a slightly different meaning
from the traditional implication of available potential energy; while available potential
energy usually refers to the amount of potential energy stored by the reversible process
that is available to be released to the kinetic energy reservoir in the single-component
case (also applies for APES), here, APEΘ (having a negative value through its definition)
represents the amount of energy that has already been transported into the kinetic energy
reservoir. However, this part of energy is lost through a reversible process so that it could
possibly be transported back through convection in the future evolution of the flow field.
Combining APEΘ and APES, the APE reservoir represents the part of the potential energy
that can be exchanged with the kinetic energy reservoir through reversible processes.

Given the definition of the irreversible buoyancy fluxes MΘ and MS above, we can
derive the irreversible diapycnal diffusivities for heat and salt as follows:

Kirr
Θ = MΘ

gα

〈
dΘ

dzθ∗

〉 , (2.11a)
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APE

HΘ
MΘ < 0

Ms> 0

DpΘ < 0

Dps> 0Hs

APEΘ

APEs

BPEΘ

BPEs
Kinetic

energy

Internal

energy

BPE

ε

Figure 1. Graphical demonstration of energy budgets in the diffusive–convection environment. The direction
of the energy flow of the positive/negative transportation is clarified using arrows.

= ν
MΘ

ε

N2

gα

〈
dΘ

dzθ∗

〉 ε

νN2 , (2.11b)

= ν
MΘ

ε

Rρ∗ − 1
−1

ε

νN2 , (2.11c)

= νΓ irr
Θ Reb, (2.11d)

Kirr
S = − MS

gβ

〈
dS

dzs∗

〉 , (2.11e)

= −ν
MS

ε

N2

gβ

〈
dS

dzs∗

〉 ε

νN2 , (2.11f )

= ν
MS

ε

Rρ∗ − 1
Rρ∗

ε

νN2 , (2.11g)

= νΓ irr
S Reb, (2.11h)

where

Rρ∗ ≡
β

〈
dS

dzs∗

〉

α

〈
dΘ

dzθ∗

〉 , (2.12a)

Γ irr
Θ ≡ −(Rρ∗ − 1)MΘ

ε
, (2.12b)

Γ irr
S ≡ (Rρ∗ − 1)MS

εRρ∗
. (2.12c)

In above equations, Rρ∗ is always identical to the traditional Rρ (due to the same
reason that N2∗ is identical to N2, which we have mentioned above) so that we will not
differentiate them in what follows. Also, Γ irr

Θ and Γ irr
S are defined as the flux coefficients

for temperature and salinity separately (Γ irr
Θ has also been previously introduced as
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‘the dissipation ratio’ in the literature e.g. Laurent & Schmitt 1999). Since the overall
stratification is stable we have Rρ > 1, this leads to the fact that both Γ irr

Θ and Γ irr
S

are positive, guaranteeing that the diapycnal diffusivities for both scalars Kirr
Θ , Kirr

S are
positive.

Meanwhile, the diapycnal diffusivity for density can be derived in the form of the density
flux coefficient as

Kirr
ρ = M

N2 , (2.13a)

= ν
M
ε

ε

νN2 , (2.13b)

= νΓ irr
ρ Reb. (2.13c)

By employing the buoyancy flux M as a summation of Mθ and Ms, it is straightforward
to show that Γ irr

ρ (or Kirr
ρ ) can be determined by Γ irr

Θ (or Kirr
Θ ) and Γ irr

S (or Kirr
S ) from

Γ irr
ρ = Rρ

Rρ − 1
Γ irr

S − 1
Rρ − 1

Γ irr
Θ , (2.14a)

Kirr
ρ = Rρ

Rρ − 1
Kirr

S − 1
Rρ − 1

Kirr
Θ . (2.14b)

Although Kirr
Θ and Kirr

S are both positive, as has been demonstrated above, (2.14) shows
that Kirr

ρ can be negative if the temperature term dominates. As we will see below, this
situation might occur in the early and late evolution stage of KH instability growth in the
strongly stratified case, in which situation the strength of the turbulence is weak enough
and the temperature mixes more efficiently than salinity.

As in the single-component case, the irreversible flux coefficient Γ irr
ρ can be written in

the form of instantaneous mixing efficiency as

Γ irr
ρ = E

1 − E , (2.15a)

E = M
M + ε

= MΘ + MS

MΘ + MS + ε
. (2.15b)

In the single-component case E always remains in the range 0 < E < 1 and clearly
represents the amount of irreversible mixing relative to the viscous dissipation. However,
in the diffusive–convection environment E can take both negative values and values
that are much larger than 1, in the cases of M < 0 following its definition in (2.15).
Therefore, E no longer carries the meaning of ‘efficiency’ in the doubly diffusive system
and we will employ the flux-coefficient form of the diffusivities in (2.11) rather than the
mixing-efficiency form in our analyses in what follows.

Another important physical quantity is the ratio of (irreversible) diapycnal diffusivity
for salinity to that for temperature, namely

d = Kirr
S

Kirr
Θ

. (2.16)

The ratio of diapycnal diffusivities d has been widely used in the literature (e.g. Gargett,
Merryfield & Holloway 2003; Merryfield 2005; Smyth et al. 2005; Jackson & Rehmann
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2009) to characterize the degree of differential diffusivity in the system where both
temperature and salinity fields are stably stratified. These analyses demonstrate that d is
close to unity in the strong turbulence limit, but decreases rapidly as turbulence intensity
decreases or stratification strengthens, see Gregg et al. (2018) for further discussion.

The above formulae provide us with the theoretical basis required for calibration
of the irreversible components of diapycnal diffusivities in studies of doubly diffusive
turbulence. Using DNSs that we will introduce in the next section, we will investigate
quantitively how energy is transferred between the different energy reservoirs and how the
irreversible diapycnal diffusivities evolve in a typical KH life cycle.

3. Parameter choices for DNSs of KH instability with two oppositely diffusing
species

In this section we will discuss the design of the DNSs to be employed to study the evolution
of the KH billow and the turbulence to which this evolution gives rise. We will first discuss
how the KH system is formulated in § 3.1, which will be followed by a discussion of the
detailed numerical methodology to be employed in § 3.2.

3.1. Theoretical preliminaries
In order to study the mixing induced by vertical shear in a system stratified in both
temperature and salinity, we apply the idealized initial vertical profiles for horizontal
velocity, temperature and salinity as follows:

u(x, y, z, t = 0) = U0 tanh
( z

h

)
, (3.1a)

Θ(x, y, z, t = 0) = −
Θ tanh
( z

h

)
, (3.1b)

S(x, y, z, t = 0) = −
S tanh
( z

h

)
, (3.1c)

where (x, y, z) are the streamwise, spanwise and vertical directions (positive z direction
is set to be antiparallel with gravity), respectively, and (u, v, w) represents the velocity
component in each of these directions; h is half the thickness for the shear layer (which
is also half the thickness of the salinity and temperature interfaces in the model system
to be employed), 
Θ , 
S and U0 are half the variations of initial temperature, salinity
and horizontal velocity profiles across the interface, as shown in the sketch of these initial
profiles in figure 2. Both Θ(z) and S(z) will contribute to the density through an idealized
linear equation of state ρ = ρ0(1 − αΘ + βS). To mimic the stratification in the Arctic
region, we have relatively colder and fresher water above warmer and saltier water while
keeping the density profile gravitationally stable. This requires that the stably stratified
salinity contributes more to density than the unstably stratified temperature profile, namely

ρ = β
S − α
Θ > 0, as illustrated in figure 2.

The flows of interest to us will be described by the (non-dimensional) Boussinesq
approximation with the system

∂u
∂t

+ u · ∇u = −∇p − J
(

Rρ

Rρ − 1
S − 1

Rρ − 1
Θ

)
ez + 1

Re
∇2u, (3.2a)

∇ · u = 0, (3.2b)

∂Θ

∂t
+ u · ∇Θ = 1

Re Pr
∇2Θ, (3.2c)
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h h
Lz

U0

z z

Uρ

�ρ

α�Θ
β�S

(a) (b)

Figure 2. Sketch of initial condition for the scalar fields (a) and streamwise velocity field (b) in our KH
simulation. In (a) the dashed, dotted and sold lines represent S(z), Θ(z) and ρ(z), respectively.

∂S
∂t

+ u · ∇S = 1
Re Sc

∇2S, (3.2d)

in which the non-dimensionalization has employed h as the length scale and 
Θ , 
S and
U0 as the temperature, salinity and velocity scales, respectively. The five non-dimensional
control parameters in this set of field equations are the Reynolds number Re, the bulk
Richardson number J, the density ratio Rρ , the Prandtl number Pr as well as the Schmidt
number Sc, which are defined as follows:

Re = U0h
ν

, (3.3a)

J = g
ρh

ρ0U2
0

= g(β
S − α
Θ)h

ρ0U2
0

, (3.3b)

Rρ = β
S
α
Θ

, (3.3c)

Pr = ν

κθ

, (3.3d)

Sc = ν

κs
. (3.3e)

Compared with the single-component fluid upon which most studies of KH instability to
date have focused, we have introduced the Schmitt number Sc and the density ratio Rρ

into the parameter space; Sc represents the ratio of momentum diffusivity to the salinity
diffusivity in the ocean. It is usually much higher than Pr due to much lower diffusivity
of salinity compared with that of heat. The density ratio Rρ characterizes the relative
importance of salinity and temperature to the stratification of density, a parameter which
lies in the range of 1 < Rρ < ∞ in the system which is our intention to study. In the limit
of Rρ → ∞, the unstably stratified temperature field Θ(x, y, z, t) is decoupled from the
momentum equation in (3.2a), so that the system described by (3.1) and (3.2) essentially
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returns to that for a single-component fluid whose stratification is entirely determined by
salinity. On the other hand, if Rρ is close to 1, the unstably stratified component in the
system becomes so strong that the system will also be susceptible to the buoyancy induced
oscillatory diffusive–convection instability. In this scenario, the system is difficult to
investigate numerically since both shear-driven instability and buoyancy-driven instability
are involved and the widely separated length scales are activated simultaneously. More
importantly, this small density ratio region of parameter space has seldom been observed
in the Arctic ocean (Shibley et al. 2017). For this reason we will open our discussion in
this paper to a much wider range of density ratio Rρ ≥ 2 that is more representative of
observed conditions in the Arctic Ocean.

3.2. Detailed design characteristics of the ensemble of DNSs
Governing equations (3.2) are integrated in a hexahedron of size (Lx, Ly, Lz) using the
open-source computational fluid dynamics solver Nek5000 (Paul, James & Kerkemeier
2008). Nek5000 was originally developed at Argonne National Laboratory based on the
spectral element method in such a way as to support a user-defined complex geometry
(see Fischer (1997) and Fischer, Kruse & Loth (2002) for example). It is well suited to
simulating highly turbulent flows (see Salehipour et al. (2015) and Ma & Peltier (2021) for
example) since it allows users to economically design the computational mesh in such a
way as to contain higher resolution in more strongly turbulent regions and lower resolution
elsewhere.

The detailed information for each of our numerical simulations that are to be discussed
in this paper is summarized in table 1. We integrate the doubly diffusive systems with
different initial bulk Richardson numbers J and different density ratios Rρ to investigate
their influences on the evolution of the KH lifecycle. We furthermore perform control
simulations of the single-component KH billow (simulation numbers 4 and 7) to illustrate
in detail how the introduction of another diffusing species will influence the evolution of
KH billows. For most of the simulations performed in this paper, we set the streamwise
extent of our domain Lx to contain one wavelength of the fastest growing mode of
linear instability, except in simulation number 5, in which we select the domain length
to contain twice the fastest growing wavelength in order to investigate the secondary
pairing instability that we will describe in the next section. The spanwise extent of the
domain Ly is set to be 5h and a slightly smaller domain of 3h has been selected for the
high-resolution simulation numbers 5 and 6, both of which have been shown to be large
enough to ensure that the fastest growing modes of secondary cross-stream instabilities are
adequately resolved (Mashayek & Peltier 2011). The value of Lz is set to 20h in all these
simulations.

It is notoriously difficult to perform DNSs that involve the evolution of the salinity field:
the low haline diffusivity requires an extremely high resolution so that the Batchelor scale
for salinity LB = (νκ2

s /ε)1/4 can be resolved in our DNS grids. To this end we employ
compromise values of Sc = 70 and Pr = 7, a condition which has relatively mild mesh
requirements while keeping an order of magnitude difference between the salinity and
temperature diffusivities. Meanwhile, the small Batchelor scale that needs to be resolved
in DNS also exerts a constraint on the Reynolds number: a value of Re = 600 provides
the LB value that is required for our current simulations. As will be demonstrated in
what follows, this intermediate value of the Reynolds number will lead to values of the
buoyancy Reynolds number in the turbulent phase of billow evolution of O(10), which
is in the range of moderate turbulent intensity observed to characterize Arctic Ocean
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Numbering J Rρ Pr Sc Lx Ly Lz Resolution

1 0.12 2 7 70 14.15 5 20 1120 × 399 × 595
2 0.12 5 7 70 14.15 5 20 1120 × 399 × 595
3 0.12 8 7 70 14.15 5 20 1120 × 399 × 595
4 0.12 ∞ NA 70 14.15 5 20 1120 × 399 × 595
5 0.12 2 7 70 28.30 3 20 2240 × 399 × 595
6 0.05 2 7 70 14.31 3 20 1225 × 266 × 966
7 0.05 ∞ NA 70 14.31 5 20 1225 × 427 × 847

Table 1. Governing parameters for the DNSs discussed in this paper.

turbulence, as discussed in Dosser et al. (2021). To design the most efficient mesh for each
of these simulations we have employed a series of low-resolution simulations to calibrate
LB, according to which the mesh resolution for the high-resolution simulations has been
selected so that the depth-dependent mesh size is always smaller than 3LB within the
entire lifecycle of the KH turbulence (the pre-determination of mesh grids are described
in Appendix A).

In these simulations, the initial condition (3.1) is seeded with a small-amplitude
two-dimensional structure equal to that of the fastest growing mode (the non-dimensional
horizontal velocity amplitude is set to 0.005) in the linear stability analysis of the
Taylor–Goldstein equation. A further component of the initial conditions consisting of
white noise of magnitude 0.0005(
Θ, 
S) is included to seed the growth of the secondary
instabilities. We choose periodic boundary conditions for salinity and temperature as well
as velocity fields in the streamwise and spanwise directions. Meanwhile, on the top and
bottom surfaces of the domain, we assume free-slip and impermeable boundary conditions
for velocity and insulated boundary conditions for the temperature and salinity fields.

4. Time evolution of the KH billows in the diffusive–convection environment

In this section, we will discuss the characteristics of the time evolution of our simulation
results for KH wave lifecycles.

4.1. Different phases of evolution of KH instability with two oppositely stratified species
In order to aid our analysis of the KH instability and its subsequent nonlinear evolution,
we decompose the velocity field into the horizontally averaged mean field ū, the
spanwise-averaged component u2d associated with the primary KH wave as well as
an inherently three-dimensional component u3d that is associated with the secondary
instability arising from the primary KH billow, namely

u = ū + u2d + u3d, (4.1)

the individual components of these vector fields are defined as

(ū, 0, 0) = (u, v, w), (4.2a)

(u2d, 0, w2d) = 〈(u − ū, v, w)〉y, (4.2b)

(u3d, v3d, w3d) = (u − ū − u2d, v, w − w2d). (4.2c)

In the above equations, the symbol 〈 · 〉y represents averaging of the field over the
spanwise direction. The total kinetic energy K of the flow can then be decomposed as
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K = K̄ + K2d + K3d and the values of K2d and K3d represent the growth of the
primary KH billow and the growth of three-dimensional turbulence, respectively. Here,
we illustrate the evolution of K,K2d and K3d, normalized by the initial kinetic energy
K0 in figures 3(a) and 3(b) for simulation number 2 (J = 0.12, Rρ = 5). Following
Peltier & Caulfield (2003), this compartmentalization allows us to define four different
characteristic times t2dmax, td, t3dmax, tend to divide the system into four different phases of
evolution. The first phase represents the growth of the initially two-dimensional primary
KH billow, it begins at t = 0 and ends at t = t2dmax, which is defined as the time when the
two-dimensional KH billow saturates (the time that K2d reaches its maximum). During the
second phase, the saturated KH billow continues to evolve in a two-dimensional fashion.
This phase ends at td, which characterizes the onset of the three-dimensional secondary
instability. Quantitively, td is defined by the time during which the viscous dissipation
rate ε(t) doubles from its initial value. Shortly after td, the three-dimensional secondary
instability starts to grow, as shown in the curve of K3d in figure 3(b), until K3d reaches
its maximum value at t3d. The fourth stage represents the decay of three-dimensional
turbulence until the flow becomes laminar at tend, which we take to be defined as the
time at which K3d falls below 10 % of its peak value.

Visualizations of the salinity field and temperature field at these characteristic times
for simulation number 2 are illustrated in figure 4. The primary KH billow can be
clearly observed for both the salinity field and the temperature field at both t2dmax
(shown in figure 4a,b) and td (shown in figure 4c,d) when the flow is dominated by
the two-dimensional dynamics. The development of secondary instabilities then drives
the system into a fully turbulent state, as depicted in figure 4(e, f ). It is important to
note that, although temperature and salinity fields display essentially identical structures
at t2dmax and td, they appear significantly different in the fully turbulent stage: the
turbulent patches are much smaller in the salinity field than in the temperature field.
The much smaller diffusivity for the salinity field allows for the existence of finer
structure in the turbulence when compared with the temperature field. Finally, at tend,
the three-dimensional turbulence decays and the flow collapses into a laminar state which
is characteristic of both the salinity and temperature fields in figure 4(g,h).

The development and collapse of the KH billow eventually mixes the physical properties
of the flow by transforming a significant fraction of the initial kinetic energy of the
initial shear flow into background potential energies. In order to evaluate the variation
of background energies, we have sorted both the temperature field and the salinity field
utilizing the parallel sorting algorithm proposed in Salehipour et al. (2015) to obtain the
background potential energies for our DNS data in the evolution process. In figure 3(c),
we plot the evolution of the background potential energies BPEΘ , BPES, BPE that can be
compared with the conventional potential energies PEΘ , PES, PE (all have had their initial
values subtracted and are normalized by K0) for simulation number 2. As we discussed in
§ 2, the kinetic energies in our current doubly diffusive system continue to extract energy
from BPEΘ and transfer energy to BPES, leading to monotonic decrease of BPEΘ and
monotonic increase of BPES. The total background potential energy is then determined
by the summation of BPEΘ and BPES. Since the density stratification is dominated by
the stably stratified salinity field, BPE experiences an overall increase with time for this
specific run (an example involving a decrease in BPE will be discussed in the strongly
stratified case in what follows).

Despite the fact that the stratification is mainly determined by salinity, the temperature
field mixes more effectively than salinity considering the fact that the molecular diffusivity
for temperature is 10 times higher than that for salinity in our DNSs. This can be
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Figure 3. Evolution of K, K2d , K3d and various components of PE, BPE normalized by the initial kinetic
energy K0 as a function of time in simulation number 2. The four vertical dashed lines represent the values for
the four characteristic times t2dmax, td, t3dmax, tend .

quickly verified by referring to figure 3(c): from t = 0 to t = tend, BPES increases by
total amount of 0.0095K0 whereas BPEΘ decreases by the total amount of 0.0038K0.
The ratio of their relative variations γ tot can then be straightforwardly evaluated to have
the value of 2.5, which is much smaller than the density ratio Rρ = 5, demonstrating
that mixing in the temperature field leads to a more significant change in its background
potential energy compared with salinity. We can also directly compare the variations of
irreversible diapycnal diffusivities for salinity and temperature. In figure 5(a), we plot
the evolution of irreversible flux for temperature MΘ , salinity MS and density M,
respectively, (all non-dimensionalized by U3

0/h) for simulation number 2. The associated
evolution of bulk-averaged diapycnal diffusivities is plotted in figure 5(b). It is clear that
Kirr

Θ is significantly higher than Kirr
S in all different stages of evolution, especially at

approximately t = td just before the onset of the secondary instabilities. The diffusivity
ratio d for the evolution is shown in figure 5(c). Consistently, d is smaller than 1
except for the time near t3dmax at which the three-dimensional turbulence reaches the
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

Figure 4. Iso-surfaces for both the salinity fields (a,c,e,g) and the temperature fields (b,d, f,h) at four different
characteristic times t2dmax (a,b), td (c,d), t3dmax (e, f ), tend (g,h).

maximum amplitude. The combined diapycnal diffusivities for density Kirr
ρ can then be

determined by Kirr
Θ and Kirr

S based on (2.14). Generally speaking, Kirr
ρ is close to Kirr

S since
salinity is the dominant component in determining the stratification. However, stronger
Kirr

Θ represents the stronger negative part of the density flux induced by temperature so
that Kirr

ρ will be influenced to be smaller.
The fact that the temperature mixes more effectively than salinity can also be verified in

their flux coefficients in figure 5(d). The irreversible flux coefficient for temperature Γ irr
Θ

reaches its peak of approximately 0.4 before the onset of three-dimensional secondary
instability, and drops to the value of approximately 0.1 in the fully turbulent stage. While
the value of Γ irr

Θ in the lifecycle remains comparable to the canonical value of 0.2,
the irreversible flux coefficient for salinity Γ irr

S is always considerably lower than 0.2.
This again emphasizes the idea that different flux coefficients should be assumed for
temperature and salinity separately due to their different values of molecular diffusivity.
The combined flux coefficient for density can also be determined through the relation
(2.14b). Similar to the evolution of Kirr

ρ , Γ irr
ρ is also close to Γ irr

S . The finite differences
between Γ irr

S and Γ irr
ρ are mostly minor in the fully turbulent regime, and keep increasing

as turbulence dies at the end of the simulation lifecycle. In figure 5(e) we also show the
time evolution of the dissipation ratio for temperature εΘ ≡ |∇Θ|2/(RePr) and salinity
εS ≡ |∇S|2/(ReSc), which are non-dimensionalized by dimensional units of 
Θ2U2

0/h
and 
S2U2

0/h separately. These physical quantities also reflect the strength of mixing in
the turbulence lifecycle and their evolutions are consistent with the evolution of diapycnal
diffusivities for both scalars, as in figure 5(b).
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Figure 5. Evolution of irreversible fluxes MΘ , MS, M (a) irreversible diapycnal diffusivities Kirr
Θ , Kirr

S , Kirr
ρ

(non-dimensionalized by molecular viscosity ν) (b), diffusivity ratio d (c), flux coefficients Γ irr
Θ , Γ irr

S , Γ irr
ρ (d)

and dissipation ratios for scalars εΘ , εS (non-dimensionalized by dimensional units of 
Θ2U2
0/h and 
S2U2

0/h
separately) (e) as a function of time in simulation number 2.

4.2. Influences of bulk Richardson number J and density ratio Rρ

Having discussed the typical characteristics of the evolution of KH billows and the mixing
properties of turbulence in this doubly diffusive system, we will focus next upon the
influence of the governing parameters J and Rρ on the detailed characteristics of turbulent
mixing that were discussed above in general terms for simulation number 2.

To demonstrate the specific influences of these two governing parameters, we show
in figure 6(a–d) the evolution of the total kinetic energy K, the background potential
energy BPE, the buoyancy Reynolds number Reb and the irreversible flux coefficients for
density Γ irr

ρ separately for two different bulk Richardson numbers J = 0.05 and J = 0.12
at different values of Rρ . By comparing the evolution of kinetic energy and background
potential energy in figures 6(a) and 6(b), it will be clear that a larger proportion of energy
is transferred from the kinetic energy reservoir to the background potential energies in the
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Figure 6. Evolution of total kinetic energy K (a), background potential energy BPE (b), buoyancy Reynolds
number Reb (c) and irreversible flux coefficients for density Γ irr

ρ (d) as a function of time in simulations with
different governing parameters of bulk Richardson number J and density ratio Rρ .

weaker stratification case J = 0.05, compared with the stronger stratification J = 0.12.
This is consistent with the role played by the bulk Richardson number discussed in
Caulfield & Peltier (2000). The weaker stratification also naturally leads to a higher
Reb (shown figure 6c) at the peak of turbulence intensity compared with the stronger
stratification case, although Reb in both cases remains at a relatively low value due to
the small value of Re implemented in these simulations. It is also worth noting that the
irreversible flux coefficient for density is also significantly higher in the turbulent phase
for J = 0.05 compared with J = 0.12, as shown in figure 6(d). This decrease of flux
coefficient with J is also consistent with previous DNSs, and is often referred to as the
right flank of the non-monotonic functional dependence of flux coefficient on the gradient
Richardson number (e.g. Caulfield 2021).

With this understanding of the effect of J, we turn next to an exploration of the effect
of Rρ on the evolution of KH billow turbulence in the doubly diffusive system, where
Rρ represents the importance of the salinity field relative to the temperature field to
stratification. By comparing the evolution of BPE in figure 6(b), we are able to characterize
the different behaviours of BPE for simulations with different Rρ . At relatively small
density ratio Rρ = 2, we note that the background potential energy is decreasing prior to
t = 100 (before the onset of the three-dimensional secondary instability). Furthermore, in
the special case of Rρ = 2 at J = 0.12, the total background potential energy experiences
a decreasing trend again after t = 170 and falls below its initial value at approximately
t = 200. This period of decreasing BPE may also be verified in figure 6(d) where it is
associated with negative flux coefficient.
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For the general comparison between different simulations shown in figure 6(b), we can
conclude that a smaller Rρ always leads to a lower net increase of BPE relative to its
initial value. This can be qualitatively understood as follows: the constant increase of
BPES is competing with the constant decrease of BPEΘ in the evolution of BPE, and
the smaller Rρ suggests that BPEΘ is playing a more important role in influencing BPE,
which makes it easier for BPE to decrease or to remain at a relatively low value. In fact,
a quantitative explanation for the arguments above can be reached through an analysis of
the total irreversible buoyancy flux

M = N2Kirr
ρ , (4.3a)

= N2
( −1

Rρ − 1
Kirr

Θ + Rρ

Rρ − 1
Kirr

S

)
. (4.3b)

In the above equations, (4.3b) is derived by substituting the relationship between Kirr
ρ , Kirr

S
and Kirr

Θ that we have shown previously in (2.14b) into (4.3a). As we have demonstrated
in the last subsection, Kirr

Θ is always higher than Kirr
S , especially when the turbulence is

weak. In (4.3b), N2 is fixed since we have employed the same bulk Richardson number J
in the simulations, the variation of Rρ influences the relative importance of Kirr

Θ and Kirr
S to

influence the instantaneous buoyancy flux M. In the case of large Rρ , Kirr
ρ is close to the

value of Kirr
S . When Rρ is sufficiently small, on the other hand, M can be negative when

it is dominated by the negative term in (2.14b), leading to a decreasing BPE, as shown in
the two curves with Rρ = 2 in figure 6(b) which we mentioned above. Generally speaking,
the differences between Kirr

S and Kirr
Θ are most significant when the buoyancy Reynolds

number is small, which explains why these time intervals of decreasing BPE occur either
at the early or late stage of the KH evolution. In § 5 we will provide a detailed analysis
of a parametrization scheme that is suitable for Kirr

S and Kirr
Θ in our system based on the

buoyancy Reynolds number Reb, so that the detailed value of buoyancy flux in (4.3) can
be better quantified.

While we have compared the time evolution of the KH billow under different parameters
above, it is also beneficial for us to compare the overall effect of mixing that is accumulated
in the entire evolution cycle. To do this, we firstly define the accumulated irreversible
fluxes Macc

Θ , Macc
S , Macc, accumulated viscous dissipation ratio εacc and accumulated

flux ratios Γ acc
Θ , Γ acc

S , Γ acc
ρ as the time-integral of the associated physical quantities,

following:

Macc
Θ =

∫ tend

0
MΘ dt, (4.4a)

Macc
S =

∫ tend

0
MS dt, (4.4b)

Macc = Macc
Θ + Macc

S , (4.4c)

εacc =
∫ tend

0
ε dt, (4.4d)

Γ acc
Θ = Macc

Θ

εacc
Rρ − 1

−1
, (4.4e)

Γ acc
S = Macc

S
εacc

Rρ − 1
Rρ

, (4.4f )
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J Rρ tend Macc
Θ /K0 Macc

S /K0 Macc/K0 εacc/K0 Γ acc
Θ Γ acc

S Γ acc
ρ

0.12 2 353 −0.020 0.020 −0.0007 0.13 0.16 0.076 −0.005
0.12 5 308 −0.0038 0.0095 0.0057 0.10 0.15 0.073 0.055
0.12 8 290 −0.0021 0.0084 0.0063 0.10 0.15 0.073 0.063
0.12 ∞ 262 NA 0.0084 0.0084 0.10 NA 0.083 0.083
0.05 2 432 −0.059 0.097 0.038 0.26 0.22 0.18 0.15
0.05 ∞ 419 NA 0.041 0.041 0.25 NA 0.17 0.17

Table 2. Accumulated irreversible heat fluxes Macc
Θ , irreversible salt flux Macc

S , total irreversible flux Macc,
accumulated viscous dissipation εacc, irreversible temperature flux coefficient Γ acc

Θ , irreversible salt flux
coefficient Γ acc

S and total irreversible flux coefficient Γ acc evaluated for our numerical simulations with
different Rρ and J. Here, Macc

Θ , Macc
S , Macc and εacc have been non-dimensionalized by the initial kinetic

energy K0.

Γ acc
ρ = Macc

εacc . (4.4g)

These accumulated quantities have been evaluated for our simulations to be shown
in table 2. Consistent with our discussions above, simulations with J = 0.05 lead to
stronger turbulence and stronger mixing compared with J = 0.12, which is reflected in
the higher values of |Macc

Θ |, Macc
S , Macc and higher εacc. The influence of variation of

Rρ we discussed above can also be confirmed in table 2: table 2 shows that simulations
with higher Rρ will have higher values of Macc, which has been well explained in our
discussions above using (4.3b). Besides this, it can also be observed that a larger Rρ

will lead to smaller values of both |Macc
Θ | and Macc

S . This can in fact also be explained
simply by noting that the two coefficients 1/(Rρ − 1) and Rρ/(Rρ − 1) in (4.3b) are both
decreasing functions of Rρ . As Rρ goes from small values to large values, the system
becomes more and more dominated by the salinity stratification and Macc

S gradually
converge to their values in the single-component cases with the corresponding J.

Although we have explained how the accumulated buoyancy fluxes vary significantly
with Rρ , the accumulated flux coefficients for individual components Γ acc

Θ and Γ acc
S are

not strong functions of Rρ , as shown in table 2. This suggests that Rρ only influences
the overall flux coefficient Γ acc

ρ by changing the participation between two scalars
without influencing their individual flux coefficients much. This will be one of the
most important conclusions drawn from our analysis, which will be discussed in detail
in § 5.

4.3. Secondary instabilities in the doubly diffusive system
In our discussions above, we have assumed that three-dimensional secondary instabilities
that control the transition to three-dimensional turbulence may be fully represented in a
numerical domain that includes only a single wavelength of the fastest growing mode of
linear instability in the streamwise direction. As shown in Mashayek & Peltier (2013),
the path to turbulence can potentially influence the mixing in the system. To this end,
we will investigate the detailed secondary instability that our simulations are susceptible
to. In the single-component case, the characteristics of these secondary instabilities have
been summarized in the work of Mashayek & Peltier (2012a,b). In this subsection we will
firstly provide a brief review of these secondary instabilities, followed by an analysis of the
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secondary instability mechanism(s) that govern the turbulence transition in our DNS-based
analyses.

The first candidate from the secondary instability ‘zoo’ is the amalgamation instability
or pairing instability (Winant & Browand 1974; Pierrehumbert & Widnall 1982; Klaassen
& Peltier 1989), which is characterized by the vortex pairing of nearby KH billows.
However, vortex merging events have rarely been observed in either oceanographic or
atmospheric environments since they are always suppressed by other candidate modes of
secondary instability at high Reynolds number. An example of such competing secondary
instabilities is the shear-aligned convective instability (Davis & Peltier 1979; Klaassen
& Peltier 1985) which arises due to the overturning of the statically unstable regions
inside the vortex cores created by the roll-up of iso-density surfaces during billow
growth. Another well-studied secondary instability is the secondary shear instability of
the vorticity braid that connects adjacent billows in a horizontally periodic array of such
structures (Corcos & Sherman 1976; Staquet 1995, 2000). The newest member of the ‘zoo’
of secondary instabilities is the instability (usually named stagnation point instability)
which only exist at sufficiently high Reynolds number. Driven by the strain-related
deformation of the background flow, the instability grows at the stagnation point on the
braid and produces a region of recirculation near the stagnation point which then evolves
into turbulence (see Mashayek & Peltier 2013; Salehipour et al. 2015).

In the evolution of KH billows, the route to turbulence is strongly dependent on the
Reynolds number of the background flow. For the particular value of Re = 600 selected
for our DNSs, transition to the fully turbulent state is usually obtained through the onset
of secondary shear-aligned convective instability in the singly stratified system (see DNSs
of Caulfield & Peltier (2000), for example). However, it is not yet clear whether this is still
true in our doubly diffusive system, considering that the introduction of a second stratified
component might influence the buoyancy force that causes convective instability. To this
end, we performed the same non-separable secondary stability analysis following the
methodology initially developed by Klaassen & Peltier (1985). By analysing the stability
properties of the primary KH billow using this methodology (both the description of this
methodology and the results obtained by its application are provided in Appendix B), we
demonstrated that the dominant mode of secondary instability is indeed the secondary
shear-aligned convective instability.

In order to visualize the growth of the secondary instability predicted by the
non-separable analysis we plot in figure 7 the streamwise vorticity iso-surfaces for
simulation number 5, which contains two fastest growing wavelengths of primary KH
instability so that the pairing instability would be captured if it were to emerge.
However, the pairing of vortices did not occur in this longer domain and the secondary
shear-aligned convective instability remains the dominant mode among the zoo of
secondary instabilities. The growth of the secondary shear-aligned convective instability
can be clearly identified in the convective rolls that are aligned with the background shear
in figure 7(a). These convection rolls have previously been seen in the DNS analysis of
Caulfield & Peltier (2000) and Mashayek & Peltier (2013) for example and now also in our
analyses of KH billow mediated transition in the doubly diffusive system. As time evolves,
the interaction between neighbouring rolls drives the system into the three-dimensional
turbulent state and eventually relaminarization, as shown in figure 7(b–d).

5. Parametrization of scalar diffusivities in the diffusive–convection system

With the properly defined irreversible diapycnal diffusivities (for heat, salinity and density)
introduced in § 2 and the DNS data postprocessed in § 4, we are in a good position to
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t = 90 t = 106

t = 160 t = 300

(a) (b)

(c) (d )

Figure 7. Streamwise vorticity iso-surfaces of ωx = 0.2 (red) and ωx = −0.2 (blue) for simulation number 5.

explore the parametrization of these diapycnal diffusivities in the diffusive–convection
system.

5.1. Dependence of diapycnal diffusivities on governing non-dimensional parameters
It has been widely accepted that the buoyancy Reynolds number Reb is the most important
non-dimensional parameter that influences the diapycnal diffusivities (e.g. Caulfield
2021). We will therefore evaluate the irreversible diapycnal diffusivities Kirr

Θ and Kirr
S in the

fully turbulent regime (t3dmax < t < tend) of each of our DNSs and plot them as a function
of Reb at each time, as shown in the scatter plot in figure 8(a,c). The corresponding
irreversible flux coefficients Γ irr

Θ and Γ irr
S are shown in figure 8(b,d) and the diffusivity

ratio is shown in figure 8(e). It will be apparent that, for our simulations with Rρ = ∞,
the temperature field is not active in the simulation and thus the Kirr

Θ data (and also d) are
not applicable in these simulations. Simulations with different bulk Richardson numbers
achieved a distribution of buoyancy Reynolds number in the range from 20 to 100, which
perfectly captures the environment of the central Canada Basin region of the Arctic Ocean
which is characterized by low energy turbulence with Reb < 100 (see the most recent
estimations of Dosser et al. (2021), for example).

Scatter plots in figure 8 shows that both Kirr
Θ and Kirr

S are almost monotonically
increasing functions of Reb, despite the fact that different values of J and Rρ are employed
in these simulations. In fact, our simulations with J = 0.05 is characterized by higher Reb
compared with the J = 0.12 cases, due to the weaker stratification employed. Figure 8
demonstrates that the bulk Richardson number J is only contributing to the diapycnal
diffusivities through its influence on Reb, thus there is no need to consider an explicit
dependence on J. At the same time, different values of Rρ do not significantly change
the dependence on Reb either, suggesting that Kirr

Θ and Kirr
S do not strongly depend on Rρ .
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Figure 8. Irreversible diapycnal diffusivities Kirr
S (a) Kirr

Θ (c), irreversible mixing efficiencies Γ irr
S (b) Γ irr

Θ (d)
and diffusivity ratio (e) evaluated for the fully turbulent regime of DNSs plotted as a function of Reb. Each
scatter point represents the average value over a non-overlapping time interval of five non-dimensional units.
The solid line shows the parametrization of the above values in the work of Bouffard & Boegman (2013). The
three vertical dashed lines represent the three critical values of Reb that separate four different regimes of the
Bouffard & Boegman (2013) parametrization scheme.

This is a somewhat unusual result considering that past simulations of diffusive–convection
interfaces have always revealed a strong functional dependence of diapycnal diffusivities
on Rρ (see Caro (2009), Carpenter, Sommer & Wüest (2012), Flanagan, Lefler & Radko
(2013) and Brown & Radko (2021) for example). The key differences should be understood
as follows: our current system is a dynamically driven (specifically shear-driven) system
and it is the turbulence generated from the background shear that causes mixing for both
temperature and salinity. For these previous simulations on the diffusive interface, on the
other hand, the macroscopic motions are mainly induced by the release of potential energy
from the unstably stratified component (temperature component) of the double-diffusive
system and such systems should be recognized as buoyancy-driven systems (the system
of Brown & Radko (2021) is simultaneously driven by buoyancy and shear). Since Rρ

controls the relatively strength of the stratification of stably stratification component over
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unstably stratified component, it is apparent that variations of Rρ should strongly influence
the vertical mixing in buoyancy-driven systems. Therefore, no conflicts exist by showing
that Kirr

Θ and Kirr
S are weakly dependent on Rρ in our dynamically driven system.

It should furthermore be mentioned that the exiting parametrization scheme of diapycnal
diffusivities implemented in global ocean models has always assumed a functional
dependence of Rρ (see the kappa profile parametrization (KPP) parametrization of Large,
McWilliams & Doney (1994) and Kelley (1990), for example). Such parametrization
schemes have been established based on the assumption that a series of thermohaline
staircases will be formed in the diffusive–convection environment and the fluxes across
the diffusive interface staircases (which have been regarded in the buoyancy-driven system
as mentioned above) are strongly dependent on Rρ (see Marmorino & Caldwell (1976) and
Linden & Shirtcliffe (1978) for example). As discussed in Peltier, Ma & Chandan (2020),
the conventional parametrization scheme for diapycnal diffusivity under conditions of
diffusive–convection water column stratification may lead to a significant over-estimation
of diapycnal diffusivities when inserted into an enhancement to diapycnal diffusivity based
upon the assumption that a staircase has formed even if the turbulence level is so high that
the staircase would not be able to form. In this scenario, a parametrization based on the
dynamically driven system (that will be discussed in the following subsection) should be
employed instead.

5.2. Comparison with the existing turbulent parametrization of Bouffard & Boegman
(2013)

In fact, the weak dependence of Kirr
Θ and Kirr

S on Rρ essentially suggests that the
temperature field and salinity field are weakly coupled in the development of turbulence,
they react to the background shear, stratified turbulence and buoyancy forcing as if they
are the only diffusing species in the system. It is therefore of great interest to compare
our results for the dependence of these diffusivities upon buoyancy Reynolds number with
those previously published for single-component systems. To be useful for our purposes,
such a parametrization would have to include explicit dependence on the Prandtl number
(Schmitt number) to provide different parametrizations for temperature and salinity. To
our knowledge, the only turbulent parametrization scheme that stresses the differences in
the Prandtl number (Schmitt number) is that based upon the recent work of Bouffard &
Boegman (2013) (hereafter BB). By examining extensive sets of published data from both
laboratory experiments (e.g. Jackson & Rehmann 2003; Rehmann & Koseff 2004) and
DNSs (e.g. Shih et al. 2005; Smyth et al. 2005) on single-component fluids with either the
Prandtl number for temperature or the Schmidt number for salinity, BB extend previous
parametrizations of Shih et al. (2005) to incorporate a proper dependence upon Pr into
their parametrization scheme. Their scheme therefore dependent on both Reb and Pr (Sc)
as

KBB
ρ (Reb, Pr) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κ, if Reb < 102/3Pr−(1/2),
0.1

Pr1/4 νRe3/2
b , if 102/3Pr−(1/2) < Reb < (3 ln

√
Pr)2,

0.2νReb, if (3 ln
√

Pr)2 < Reb < 100,

2νRe1/2
b , if Reb > 100.

(5.1)

In the above parametrizations, the diapycnal diffusivities have a different power law
dependence on Reb in different ranges of Reb. The smallest Reb regime is the
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molecular regime in which molecular diffusivities are assumed. The second regime, the
buoyancy-controlled regime, (which is originally included in BB) describes the regime in
which mixing is strongly influenced by the Prandtl number. In this regime, the diapycnal
diffusivities increase rapidly with Reb at the rate of Re3/2

b . The third regime is the
transitional regime which is consistent with the classic Osborn model with the flux
coefficient fixed to 0.2. For Reb higher than 100 the system enters the energetic regime
in which diffusivities scale with Re1/2

b , in accordance with previous work of Shih et al.
(2005).

BB’s parametrization described above is evaluated at Pr(Sc) = 70 and Pr = 7
separately for different Reb and plotted as the solid line in figure 8(a,c). A strikingly good
fit can be identified in these figures: for Kirr

S , a close match between the parametrization
and our DNS data can be found, except for the tail of low Reb. In fact, our DNS
data strongly support the existence of a large buoyancy-controlled regime for salinity
(5 < Reb < 70) in which KS scales at Re3/2

b . When Reb drops below approximately 3,
however, Kirr

S drops to the level of the molecular value in a fashion that is much faster
than Re3/2

b , suggesting a possible overestimation of (5.1) in the low Reb range. For the
temperature field, the parametrization seems to produce a slight overestimation of the
diapycnal diffusivities. However, the different power laws for the buoyancy-controlled
regime and transition regime can be clearly identified in our DNS data, demonstrating
the reasonableness of the partition of regimes of BB. Meanwhile, BB’s prediction for flux
coefficients as a function form of Reb are plotted in figure 8(b,d) to be compared with our
numerical data. It can also be seen from these two plots that the functional dependence
of Γ irr

S and Γ irr
Θ over Reb follows well from BB, although the values of Γ irr

S and Γ irr
Θ

are somewhat smaller than the predicted values of BB. Furthermore, we compare the
parametrized diffusivity ratio (shown in figure 5 of BB) with our DNS data in figure 8(c)
and again find a good match. Also consistent with previous work of Smyth et al. (2005), the
diffusivity ratio only reaches unity when Reb reaches the level of O(100), otherwise strong
differences in the diffusivity ratio between temperature and salinity exist. We interpret
these close fits to a parameterization scheme for single-component systems comprised
of a species with Prandtl number 7 and another single diffusing species with Schmidt
number much higher (70 instead of the actual Schmidt number for salt of 700) to fully
validate our conclusion that in the diffusive convection regime of the Arctic Ocean the
turbulent diffusivities for temperature and salinity operate independently. This is a critical
conclusion as it was upon this assumption that our recently published new theory for the
formation of the previously unexplained thermohaline staircases in the Arctic Ocean has
been based (Ma & Peltier 2022).

In ending this section, further comment is warranted on two subtleties connected to the
preceding analyses. First, it is important to note that the BB parameterization is based
upon a combination of experimental/DNS data (e.g. Jackson & Rehmann 2003; Shih et al.
2005) that are evaluated based on the conventional definitions of KΘ and KS. As KΘ and
KS are determined in quasi-steady states of these systems, it is reasonable to assume that
they are consistent with the irreversible definitions Kirr

Θ and Kirr
S . The KH system that has

been studied here, on the other hand, is a transiently evolving system that does not reach a
quasi-steady state; KΘ and KS are highly variable quantities that frequently obtain negative
values because they are strongly influenced by the reversible stirring process of the KH
billow which does not contribute to turbulent diffusivity. Therefore, we have employed the
instantaneous values of the turbulence data to compute the irreversible vertical diffusivities
Kirr

Θ and Kirr
S instead of KΘ and KS as in our parametrization study. A second issue
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that warrants comment concerns the question of the impact on mixing in the event that
iso-surfaces of salinity and temperature are not parallel and perpendicular to the local
gravitational acceleration. This is the circumstance that attends the existence of so-called
thermohaline intrusions that have been suggested previously as an explanation (Bebieva
& Timmermans 2017) for the thermohaline staircases observed in the polar oceans in
regions where cold and fresh water overlies relatively warm and salty water. Although our
hypothesis in Ma & Peltier (2022) obviated the need to invoke such exotic circumstances,
there continues to be interest in what the mixing properties might be in this situation (e.g.
see the model of Middleton & Taylor (2020) as well as chapter 7 of Radko (2013) for a
review). In this circumstance, the turbulent diffusivities KΘ and KS can differ with the
irreversible diffusivities Kirr

Θ and Kirr
S even if the system is in a quasi-steady state.

5.3. An algorithm for the determination of diapycnal diffusivities in the stratified
turbulence

In the practical measurement of turbulence and mixing in the Arctic Ocean, there are
generally two most critical physical quantities that are especially important to understand:
the diapycnal diffusivities for density Kρ and the vertical heat flux FH . In the recent
work on direct or indirect measurements in the Arctic Ocean (for example, Chanona,
Waterman & Gratton 2018; Scheifele et al. 2018, 2021; Chanona & Waterman 2020;
Dosser et al. 2021), a critical level of Recr

b = 10 or Recr
b = 20 is usually chosen to

differentiate the turbulent regime from the molecular regime. In the molecular regime the
difference between the molecular diffusion for temperature and salinity is identified so that
Kρ = Rρ/(Rρ − 1)κs − 1/(Rρ − 1)κθ . In the turbulent regime, however, the canonical
Osborn formula Kρ = KΘ = 0.2νReb we discussed in § 2 has been used to estimate both
Kρ and KΘ ; KΘ is then further used to estimate the heat flux.

Based on our DNS results, at least two major sources of systematic errors in this standard
procedure may be identified in the determination of Kρ based on the current algorithm
described above. First, the water column density is mostly influenced by the salinity, whose
diapycnal diffusivity Kirr

S has a Re3/2
b dependence in the vast range of buoyancy-controlled

regime (0.17 < Reb < 96) as predicted by taking Sc = 700 in (5.1). Despite a smaller
value of Sc = 70 applied in our DNS, our data confirmed that such a 3/2 power law does
exist in a wide range of the parameter space (5 < Reb < 60). For such a wide range of
Reb (in fact a significant proportion of the turbulent measurements in the Arctic lie in
this range of Reb, see Dosser et al. (2021) for example), the Osborn formula suggesting
a linear dependence on Reb by mistake thus can lead to a strong over-estimation of Kirr

S

(considering that Re3/2
b dependence and Reb dependence overlap at approximately Reb =

100). Second, even though Kirr
ρ is usually similar to Kirr

S , as shown in the previous section,
our rigorous derivation in (2.14) shows that Kirr

ρ depends upon both Kirr
S and Kirr

Θ through
the relationship (2.14b). Therefore, the true value of Kirr

ρ should be even smaller than
the estimation from Kirr

S , especially when Rρ is low. Such differences of Kirr
ρ and Kirr

S
are clearly apparent in our figure 5. For the above reasons, the simplified algorithm that is
currently used in the oceanographic measurement literature can lead to a large overestimate
of Kρ due to the existence of two error sources both of which exaggerate Kρ .

Despite the systematic errors in Kρ estimation mentioned above, the traditional method
gives relatively better estimates in terms of the temperature diapycnal diffusivity KΘ .
In fact, at Pr = 7 for the temperature field, BB’s parametrization agrees with the
canonical Osborn formula for a wide range of values of the buoyancy Reynolds number
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(9 < Reb < 100). However, an overestimation of KΘ is still present at smaller Reb (Reb <

9) and therefore the estimation of the heat flux derived from KΘ based on Osborn’s
formula may still lead to exaggeration in the low turbulence environment.

Given our analysis above, we propose the following simple three-step algorithm to be
employed for evaluate the diapycnal diffusivities for density as well as heat fluxes in
measurements in the Arctic:

(i) Calculate KS and KΘ based on the parametrization of BB in (5.1). Replace KS with
the molecular diffusivity κs once Reb drops below a critical value of Recr

b = 5.
(ii) Use the vertical derivatives of scalars Sz and Θz to evaluate Rρ = βSz/αΘz to

calculate Kρ in individual water columns based on (2.14b), which is restated here
as

Kρ = Rρ

Rρ − 1
KS − 1

Rρ − 1
KΘ. (5.2)

(iii) Infer the heat flux FH based Fick’s law using the local temperature gradient Θz and
the estimation of KΘ from step (i).

In the above algorithm, a critical buoyancy Reynolds number Recr
b is kept in the first

step by recognizing that the BB parametrization may yield overestimation of the KS in the
low Reb regime. We expect this algorithm to be employed in future estimation of diapycnal
diffusivities based on the measurements of the viscous dissipation ratio.

6. Summary and conclusions

In this paper we have investigated the growth and collapse of KH billows in a
diffusive–convection environment using DNSs. By employing a similar but appropriately
extended methodology of analysis as that previously applied for analysis of the
turbulence engendered by KH wave breaking in the single-component fluid case, we have
demonstrated that the evolution of the KH billow has almost the same characteristics
steps as in the single-component case. The two-dimensional primary KH billow first
grows to its maximum amplitude after which time the three-dimensional secondary
shear-aligned convective instability starts to develop, which drives the system into a fully
turbulent state; later, the turbulence dissipates and the system returns to a laminar state.
Although the background potential energy reservoir now consists of two components, in
which the temperature related background potential energy BPEΘ keeps releasing energy
into turbulence and the salinity background potential energy BPES keeps extracting this
energy from the turbulence, these two processes are occurring independently so that the
diapycnal diffusivities (which represent the instantaneous mixing rate) are independent
of the density ratio Rρ . In fact, we have demonstrated that both Kirr

S and Kirr
Θ are solely

dependent on the buoyancy Reynolds number Reb and such a functional dependence
fits well with the previous parametrization of Bouffard & Boegman (2013). This has
allowed us to calibrate a method for the inference of turbulent heat flux based upon results
for singly diffusing species. Utilizing our three-step algorithm based on DNSs and the
parametrization of Bouffard & Boegman (2013), the systematic errors in the estimation of
diapycnal diffusivity for density Kρ are expected to be significantly reduced.

This work appears to represent a significant original contribution to the understanding
of vertical mixing in the Arctic Ocean environment. One of the major obstacles in
understanding vertical mixing in the Arctic Ocean has been associated with the absence of
an understanding of the thermohaline staircase structures that frequently form and persist
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in certain regions. The current state of understanding of Arctic Ocean staircases appears to
be an awkward amalgam of distinctly different explanations for mixing in regions in which
staircases are present (e.g. Timmermans et al. 2008) and those regions in which staircases
are absent. In the latter regions it is always assumed that the absence of a staircase is due
a high level of internal wave activity and turbulence induced by internal wave breaking
(e.g. Dosser et al. 2021). As we have discussed above, the simplified Osborn (1980)
formula has been widely applied in this case to infer mixing based on the dissipation rate
measurements and our new algorithm helps to significantly reduce the systematic errors
in the estimation process. In regions where staircases have formed, on the other hand, a
different class of formulae have been used to infer the diapycnal diffusivities which have
strong dependence on the density ratio Rρ (e.g. Kelley 1990; Large et al. 1994). In this
scenario, the mixing is believed to be determined by the molecular diffusivities for heat
and salt at the sharp interfaces (e.g. Linden & Shirtcliffe 1978; Carpenter et al. 2012)
that separate successive well-mixed regions in the staircase instead of being induced by
dynamically driven turbulence.

These two different scenarios (to be applied in regions with/without staircases) have
recently been connected in the work of Ma & Peltier (2022), which demonstrated that the
formation of these staircase structures can be explained using a turbulence parametrization
scheme. Specifically, Ma & Peltier (2022) showed that the layered structure arises
spontaneously in a system with constant gradients in the diffusive–convection environment
by assuming that the diapycnal diffusivities for salt and heat in the Arctic region obey
the turbulent parametrization described by Bouffard & Boegman (2013). In the current
work, we have further shown that the effectiveness of this fundamental assumption
in Ma & Peltier (2022) can be validated using detailed DNS analysis. Therefore, an
accurate calibration of an accurate turbulent parametrization scheme lies at the heart of
understanding vertical mixing, in regions in which staircases are present and in regions
where they are absent.

In future refinement of the turbulence parametrization we have developed using DNSs
of breaking KH billows, a larger Reynolds number Re and higher Schmitt number Sc
will be applied in order to extend the simulations provided in this work. These critical
non-dimensional parameters are confined in our current DNSs due to the limitation on the
available computational resources. Use of a higher Re will lead to a broader range of Reb
in the KS(KΘ) − Reb diagram so that the parametrization of the energetic regime in the
Bouffard & Boegman (2013) parametrization can be closely calibrated; and a higher Sc
will make the system more physically relevant so that the results can be directly compared
with data from field measurements. It is also beneficial to study the stratified turbulence in
the body-forced system (e.g. Shih et al. 2005; Howland, Taylor & Caulfield 2020) to test
whether the same turbulent parametrization is applicable in that case.
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Numbering Lx Nx Ny Nz Nc Hc q

1 14.15 1120 399 595 315 2 1.143
2 14.15 1120 399 595 315 2 1.143
3 14.15 1120 399 595 315 2 1.143
4 14.15 1120 399 595 315 2 1.143
5 28.30 2240 399 595 315 2 1.143
6 14.31 1225 226 966 686 4 1.120
7 14.31 1225 427 847 511 3 1.098

Table 3. Detailed mesh parameters for our DNSs.

Appendix A. Determination of grid resolution using low-resolution simulations

The computational fluid dynamics solver Nek5000 supports a user-defined complex mesh
in DNSs. We utilize this flexible property of the solver to design our mesh in such a
way as to save computational power, as has also been applied in the previous works
of Salehipour et al. (2015) and Ma & Peltier (2021). Specifically, we have performed a
low-resolution simulation with a uniform grid at 574 × 287 × 798 points previous to each
of our major simulations. The maximum dissipation rate at each depth level has been
recorded in the full evolution cycle of the KH billow in these low-resolution simulations,
according to which the minimum Batchelor scale (for salinity) at each depth level is
computed. The grid intervals are then designed to contain Nc uniform grids in the central
region of −Hc ≤ z ≤ Hc. In regions above and below this central region, the vertical
grid interval is uniformly stretched by a fix percentage q between successive elements.
Each element is then discretized using eighth (chosen for our simulations) order Lagrange
polynomial interpolants (which means each element effectively contains seven grids) as
our implementation in Nek5000. The values of Hc and q are selected in a way that the
vertical grid intervals are everywhere below three times the Batchelor scale for salinity,
see figure 15 of Ma & Peltier (2021) for a visualization. Meanwhile, the horizontal grid
intervals are always selected to be the same as the uniform grid interval in the central
region to guarantee accuracy in the central region. The detailed mesh information for each
of our simulations is summarized in table 3.

Appendix B. Settings and results of the secondary instability analysis

As mentioned in § 4.3 of the main text, we have performed a non-separable stability
analysis to determine the nature of the three-dimensional instability that the system is
subject to. In this appendix we will briefly discuss the settings and the results of the
stability analysis.

Since the primary KH instability is two-dimensional, the fluid will keep evolving
in a two-dimensional fashion until the onset of three-dimensional instabilities. Here,
we assume that the growth of such three-dimensional instabilities is much faster than
the evolution of the two-dimensional KH billow. At a given time, we can treat the
two-dimensional flow as a quasi-steady state that is ‘frozen’ in time to analyse whether a
given three-dimensional disturbance will be strengthened or suppressed by the background
two-dimensional flow. Specifically, we assume the background field f (x, y, z) (velocity
field, pressure field, temperature or the salinity field) at a given time t0 is composed
of a two-dimensional background state f̃ (x, z, t0) and a three-dimensional perturbation
component f3d(x, y, z, t0 + t). Here, t is the time scale for the growth of three-dimensional
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instability and based on our assumption that we have t << t0. We further decompose the
three-dimensional perturbation in the normal modes with a spanwise wavenumber d and a
complex growth rate σ3d, namelyss

f (x, y, z, t) = f̃ (x, z, t0) + f3d(x, y, z, t) (B1a)

f3d(x, y, z, t0 + t) = f †
3d(x, z, t0) exp(idy + σ3dt). (B1b)

By substituting such expansions for velocity, pressure, temperature and salinity fields into
(3.2) and linearizing about the background state, we will arrive at a set of equations for
the perturbation fields. The complex form of this equation set can be found in Klaassen &
Peltier (1985) and the additional equation for salinity in our system is the same as for the
temperature equation in Klaassen & Peltier (1985). We further expand the two-dimensional
scalar fields into a set of truncated orthogonal basis using a Galerkin method as

u†
3d =

L∑
λ=−L

N∑
ν=0

uλνFλν, (B2a)

w†
3d =

L∑
λ=−L

N∑
ν=0

wλνGλν, (B2b)

Θ
†
3d =

L∑
λ=−L

N∑
ν=0

ΘλνGλν, (B2c)

S†
3d =

L∑
λ=−L

N∑
ν=0

SλνGλν, (B2d)

p†
3d =

L∑
λ=−L

N∑
ν=0

pλνFλν, (B2e)

where

Fλν = exp(iλαx) cos
(

νπz
Lz

)
, (B3a)

Gλν = exp(iλαx) sin
(

νπz
Lz

)
(B3b)

are the orthogonal basis that satisfies the zero-vertical-derivative condition on both top
and bottom boundaries (z = 0, z = Lz) and periodic boundary condition on streamwise
boundaries (x = 0, x = Lx). By substituting these expansions into the field equations
and diagonalizing these equations by integrating over the two-dimensional domain after
multiplying F∗

λν or G∗
λν on the left-hand side, the original field equations will be

transformed in the eigenvalue problem that takes the form of

σ3dVi = AijVj. (B4)

Here, i and j are indices for the actual two-dimensional indices (λ, ν) that are constrained
over the modified triangular scheme of Klaassen & Peltier (1985), namely of 2λ+ ν ≤ N
where N is an odd integer. In this work we set N = 33 and use the standard MATLAB
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Figure 9. Growth rate (real part of σ3d) of the fastest growing mode of the secondary instability as a function
of spanwise wavenumber d.

(a) (b)

(c) (d )

Figure 10. Cross-section at y = 0 for salinity (a) and temperature field (b) at t2d , compared with the fastest
growing eigenfunction for the salinity field (c) and temperature field (d).

routine to solve this two-dimensional matrix for the eigenvalue problem to obtain the
eigenvalue σ3d as the complex growth rate and the eigenvector Vj as the fastest growing
mode.

In figure 9, we plot the growth rate (real part of σ3d) as a function of spanwise
wavenumber d for the simulation number 6 with J = 0.05 and Rρ = 2 at t = t2d.
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We specifically chose simulation number 6 because it has the smallest bulk Richardson
number as well as the smallest density ratio among all our simulations. Therefore the
double-diffusive effect of simulation number 6, if it is important, will be the strongest
among all simulations. However, in figure 9 we see that the fastest growing wavelength
has its peak at approximately d = 4.3 which remains consistent with the characteristics
of the classical shear-aligned secondary convective instability described in Klaassen &
Peltier (1985) and Peltier & Caulfield (2003). Furthermore, the eigenfunction of the fastest
growing mode at t2d for salinity and temperature separately is plotted in figure 10(c,d),
to be compared with the cross-section salinity and temperature field at the same time
in figure 10(a,b). From these comparisons it can be clearly seen that the most unstable
mode for both temperature and salinity focuses on the statistically unstable region of the
primary KH billow. Therefore we have shown that the secondary instability that the system
will develop is still the classical secondary convective instability described in Klaassen &
Peltier (1985).
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