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Fundamental Aspects of the Real Projective
Plane

Whereas Euclidean geometry describes objects as they are, projective
geometry describes objects as they appear.

Kristen R. Schreck (2016, p. 159)

Three-dimensional Euclidean space, R3, is perhaps the most familiar and nat-
ural geometry to the lay person. In this introductory section, we will show
how we can build a ‘new world out of nothing’ (to use János Bolyai’s assever-
ation) from the interplay between perpendicularity and parallelism, of lines and
planes together. This interplay leads to the real projective plane and duality.

1.1 Parallelism

In three-dimensional space, ‘parallelism’ applies to two different types of
object – to lines and to planes. A line can be parallel to a plane, a plane can be
parallel to another plane, and a line can be parallel to a line (see Figure 1.1). In
particular, a line ` is parallel to a line `′ if they are, firstly, lying in a common
plane (i.e., coplanar) and, secondly, non-intersecting. Two non-intersecting
lines that are not coplanar are skew. Two planes are parallel if they are non-
intersecting. A line ` and a plane π are parallel if they are non-intersecting or `
lies within π.

1.2 Perpendicularity

Similarly, ‘perpendicularity’ is a relation that works for lines and planes alike.
We really only need to understand perpendicularity of lines to understand what
happens when we introduce planes. Two lines are perpendicular if they are
coplanar and perpendicular in the common plane. A line ` is perpendicular to
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4 Fundamental Aspects of the Real Projective Plane

Figure 1.1 Parallel lines and planes.

Figure 1.2 Interrelationship of perpendicularity and parallelism.

a plane π if ` is perpendicular to every line of π that it intersects. Two planes π
and π′ are perpendicular if they meet in a line `, and π is perpendicular to some
line of π′.

We will see soon that the most illuminating property of R3 is the inter-
relationship of perpendicularity and parallelism arising from the following
property:

Parallel–Perpendicular Property: Let m,m′ be lines and let π, π′ be
planes. If m ‖ m′, π ‖ π′, and π ⊥ m, then π′ ⊥ m′ (see Figure 1.2).
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We can now elevate to the next level of abstraction. For each line `, the
parallel class [`] of ` is the set of all lines parallel to ` (including ` itself).
Similarly, write [π] for the planes parallel to π. The first observation we make
is the following:

Property 1.1
Let ` and π be a line and a plane (respectively). Then either

• no element of [`] is parallel to any element of [π], or
• every element of [`] is parallel to every element of [π], and we say that [`] is

parallel to [π].

So it makes sense to write [`] ‖ [π]. This relation of parallelism between
parallel classes of lines and planes is symmetric, and could abstractly be an
incidence relation between two different types of objects. With this in mind,
we make a second observation:

Property 1.2
• For any two different parallel classes of lines [`] and [`′], there is a unique

parallel class of planes that is parallel to both [`] and [`′].
• For any two different parallel classes of planes [π] and [π′], there is a unique

parallel class of lines that is parallel to both [π] and [π′].

We can manufacture a geometry G out of these parallel classes of lines and
planes. The geometry we create will be planar in the sense that we have only
two types of object, which we might as well temporarily call1 pistettä (singu-
lar: piste) and linjat (singular: linja). This new geometry will consist only of
objects and an incidence relation between them — no distance, no midpoints,
no angles, no parallelism.

Pistettä Parallel classes of lines of R3

Linjat Parallel classes of planes of R3

Incidence A parallel class of lines is ‘incident’ with a parallel class
of planes if and only if they are parallel.

So from what we have discussed above, the incidence relation here is sym-
metric: two pistettä lie on a unique linja and two linjat have a unique piste in

1 For some readers, the use of the words ‘points’ and ‘line’ will interfere with their understanding,
so to make it clear that we are defining new points and new lines, we temporarily adopt another
language for these new points and new lines.
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common. Therefore, there cannot be ‘parallel’ linjat in this geometry G; two
linjat are always concurrent. This geometry is an example of a non-Euclidean
geometry – a projective plane.

1.3 Duality

Let L be the set of parallel classes of lines and let Π be the set of parallel
classes of planes. There is a natural correspondence between L and Π: if [`]
is a parallel class of lines, then we take the set `⊥ of all planes that are per-
pendicular to `. By the parallel–perpendicular property, this set of planes is a
parallel class of planes and did not depend on the representative we took from
`. Conversely, if [π] is a parallel class of planes, we map to the set π⊥ of all
lines that are perpendicular to π. Thus we have the following correspondence:

[`] −→ [`]⊥ := [`⊥]

[π] −→ [π]⊥ := [π⊥]

Note that if we apply⊥ twice, then our objects are left invariant. For example,
if we take all of the planes perpendicular to a line `, and then take all of the lines
perpendicular to those planes, it will result in the parallel class of `. Moreover,
this correspondence respects parallelism between elements of L and Π:(

[`]⊥
)⊥

= [`],
(
[π]⊥

)⊥
= [π],

[`] ‖ [π] ⇐⇒ [`]⊥ ‖ [π]⊥.

Finally, let’s see what the perpendicularity correspondence ⊥ does to G. We
saw above that it preserves incidence. So if P is a piste of G and m is a linja,
then P⊥ is incident with m⊥ if and only if P is incident with m. We also saw
that ⊥ maps a piste to a linja, and then a linja to a piste, in such a way that if
performed twice, it left the objects invariant. Such a map is called a polarity.
This polarity also has the property that no piste P is incident with its image
P⊥; but we will return to this later once we have investigated projective planes
more thoroughly.

1.4 Two Models of the Real Projective Plane

We have already seen that parallel classes of lines and planes of R3 form a
projective plane – an incidence geometry of points and lines such that any pair
of points determine a unique line, and two distinct lines always meet in a point.
Each parallel class of lines has a representative passing through the origin O
of R3. So we can replace each parallel class by a one-dimensional subspace
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Table 1.1 The real projective plane.

Points 1-dimensional subspaces of R3

Lines 2-dimensional subspaces of R3

Incidence inclusion

of R3. Likewise, the parallel classes of planes can be simulated by taking two-
dimensional subspaces of R3. Formally, the real projective plane PG(2,R) is
the incidence structure defined in Table 1.1.

Theorem 1.3
(i) Any two points of PG(2,R) are incident with a unique line.

(ii) Any two lines PG(2,R) are incident with a unique point.

Proof The proof follows from elementary linear algebra. In particular, for (i),
note that any two 1-dimensional subspaces of R3 span a unique 2-dimensional
subspace. For (ii), we observe that any two 2-dimensional subspaces of R3

meet in a unique 1-dimensional subspace. �

We denote a point of PG(2,R) by homogeneous coordinates (x, y, z), x, y, z ∈
R, not all zero. This means that we are simply dropping the angled brackets
from the subspace 〈(x, y, z)〉 of R3; since

〈(x, y, z)〉 = 〈(cx, cy, cz)〉, for all c ∈ R\{0},

we have (x, y, z) = (cx, cy, cz). This is what we mean by saying that the coord-
inates are homogeneous, and it will be clear from the context that we are
describing a point of PG(2,R) and not a vector of R3. Note that (0, 0, 0) is
not the homogeneous coordinates of any point of PG(2,R).

We denote a line with equation ax + by + cz = 0 by homogeneous line
coordinates [a, b, c], a, b, c ∈ R, not all zero. (Again, note that k(ax+by+cz) = 0
for k ∈ R with k , 0 yields the same line, so these coordinates are indeed
homogeneous.) A point (x, y, z) is incident with the line [a, b, c] if and only if
ax + by + cz = 0. Note that [0, 0, 0] is not the homogeneous line coordinates of
any line of PG(2,R).

Another way to define the real projective plane is to take the real Euclidean
plane and enlarge it a little bit. Each line is equipped with an additional point –
its point at infinity – which is simply the parallel class of that line. This ensures
that two parallel lines now become two intersecting lines in the larger geom-
etry. One extra line is introduced, and it is simply the set of all points at infinity
– the line at infinity. Formally, the extended Euclidean plane is the incidence
structure defined in Table 1.2.
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Table 1.2 The extended Euclidean plane.

Points points of R2

parallel classes of lines (points at infinity)

Lines lines of R2

the line at infinity

Incidence inherited from R2; a point at infinity is incident with every line
of the corresponding parallel class and with the line at infinity

Figure 1.3 The Euclidean plane embedded in R3.

We have insinuated from the beginning that these models of incidence geom-
etries are the same, and we have already said that they are models of the real
projective plane. To make this mathematically correct, we define two incidence
geometries (of points and lines) to be isomorphic if there is a bijection between
their sets of points that respects their lines. In other words, there is a bijection
φ mapping points of one incidence geometry onto the points of the other, such
that if ` is a line of the first geometry, then the image of the points incident
with ` (under φ) is precisely the set of points of a line of the second incidence
geometry.

Theorem 1.4
The extended Euclidean plane and the real projective plane are isomorphic.

Proof Embed the Euclidean plane in R3 as the plane z = 1 (see Figure 1.3).
Consider the projection via the origin O from a non-parallel plane π not on the
origin to z = 1. The line ` that is the intersection of π and z = 0 will have no
image and the line m that is the intersection of the plane parallel to πwith z = 1
will have no preimage. The points of ` are in one-to-one correspondence with
parallel classes of lines of z = 1: namely a point P corresponds to the parallel
class of lines of z = 1 parallel to OP. Moreover, given a point Q of m, each
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Table 1.3 From the real projective plane to the extended Euclidean plane.

Real projective plane Extended Euclidean plane

〈(a, b, c)〉, c , 0
(

a
c ,

b
c , 1

)
〈(a, b, 0)〉 parallel class {bx − ay = c : c ∈ R} of the plane z = 1.

line ` on Q is the image of a line of π and these lines arising from Q form a
parallel class in π. Moreover, the image of a line of π (other than `) is a line of
the plane z = 1.

Now, removing π from the picture, we have a one-to-one correspondence
between the 1-dimensional subspaces of R3 of the points and parallel classes
of the plane z = 1, and the 2-dimensional subspaces of R3 and the lines and
the line at infinity of the plane z = 1 that preserves incidence. Therefore, the
extended Euclidean plane and the real projective plane are isomorphic. It is
worthwhile detailing this isomorphism in Table 1.3.

Composing this with the isomorphism (a, b, 1) 7→ (a, b) of the plane z = 1
with R2, we obtain:

• 〈(x, y, z)〉, z , 0, in the real projective plane corresponds to (X,Y) in R2 if
and only if X = x

z ,Y =
y
z ;

• 〈(1,−m, 0)〉 in the real projective plane corresponds to the parallel class of
lines of slope m in R2;

• 〈(0, 1, 0)〉 in the real projective plane corresponds to the parallel class of
vertical lines in R2. �

Moving between Cartesian (X,Y) coordinates and homogeneous (x, y, z)
coordinates via the equations X = x/z, Y = y/z is due to Hesse (1842).
This was adopted by Cayley (1870) and generalised to n dimensions.

We say that a set of points is collinear if they are all incident with the same
line. Likewise, a set of lines is concurrent if they are all incident with the
same point. Using determinants, there is a simple test for when three points are
collinear or three lines are concurrent.

Theorem 1.5
Three points (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) are collinear if and only if∣∣∣∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣∣∣∣ = 0.
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Proof (x1, y1, z1), (x2, y2, z2), (x3, y3, z3) are collinear if and only if the matrix
in the above determinant has rank two. �

Theorem 1.6
Three lines [a1, b1, c1], [a2, b2, c2], [a3, b3, c3] are concurrent if and only if∣∣∣∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣∣ = 0.

Proof [a1, b1, c1], [a2, b2, c2], [a3, b3, c3] are concurrent if and only if the
matrix in the above determinant has nullity one. �

The dual of a statement about the plane is the statement that results after
interchanging point and line, collinear and concurrent, intersection and join
and making the necessary linguistic adjustments.

The Principle of Duality (Poncelet, 1822; Gergonne, 1825/6)
The dual of every theorem about PG(2,R) is also a theorem.

See also Poncelet (1995a, 1995b). For a proof of the principle of duality,
note that the map taking a point (a, b, c) to a line [a, b, c] preserves incidence.
For an example of the principle of duality at play, note that Theorems 1.5 and
1.6 are dual.

1.5 Recap: The Real Projective Plane as Involving Points
and Lines

When we think of the Euclidean space R3, we think of the incidence structure
of points, lines, and planes. Now let us be more abstract and instead think of
the incidence structure J whose ‘points’ are the parallel classes of lines in
Euclidean space, and whose ‘lines’ are the parallel classes of planes in Euclid-
ean space. The incidence relation would be derived from the natural incidence
relation of class representatives.

new points parallel classes of lines in Euclidean space
new lines parallel classes of planes in Euclidean space

Now delete a parallel class Π of planes and all lines parallel to it to obtain
a new incidence structure A. Choose a plane π of Π, and a point P not on π.
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Figure 1.4 The real projective plane modelled on the sphere.

Consider the map ρ that takes a parallel class of lines to the intersection of its
unique member on P with π, and a parallel class of planes to the intersection
of its unique member on P with π. Since the parallel classes have parallel
representatives if and only if the unique members on P are contained in one
another, it follows that these parallel classes of lines and planes have parallel
representatives precisely when the images under ρ are contained in one another.
Therefore, A is isomorphic to the affine plane π. (The deleted objects thus
naturally give the points at infinity of π as lines on P parallel to π and a line at
infinity as the plane on P parallel to π.)

So we see here that the real projective plane can be realised as an extension
of the incidence structure A, and this incidence structure is just the parallel
classes of lines and planes in Euclidean space, minus one class of planes.

Exercises

1.1 Consider the unit sphere S 2 in R3. Let P be the set of pairs of antipodal
points of S 2, and let L be the set of great circles of S 2. Define incidence
between elements of P and L by natural inclusion: a pair of antipodal
points is incident with a great circle if both points lie on the great cir-
cle (compare with Figure 1.4). Show that this incidence geometry is
isomorphic to PG(2,R).

1.2 Let (x1, y1, z1) and (x2, y2, z2) be two points of PG(2,R), written in homo-
geneous coordinates. Show that the unique line lying on these two points
can be computed using the vector cross product.

1.3 A quadrangle is a set of four points, no three collinear, and a quadri-
lateral is the dual object of a quadrangle. What is a quadrilateral when
expressed in terms of lines?
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