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Abstract

We have proposed a three-species hybrid food chain model with multiple time delays.
The interaction between the prey and the middle predator follows Holling type (HT) II
functional response, while the interaction between the top predator and its only food, the
middle predator, is taken as a general functional response with the mutual interference
schemes, such as Crowley–Martin (CM), Beddington–DeAngelis (BD) and Hassell–
Varley (HV) functional responses. We analyse the model system which employs HT
II and CM functional responses, and discuss the local and global stability analyses of
the coexisting equilibrium solution. The effect of gestation delay on both the middle
and top predator has been studied. The dynamics of model systems are affected by both
factors: gestation delay and the form of functional responses considered. The theoretical
results are supported by appropriate numerical simulations, and bifurcation diagrams are
obtained for biologically feasible parameter values. It is interesting from the application
point of view to show how an individual delay changes the dynamics of the model
system depending on the form of functional response.

2010 Mathematics subject classification: primary 70K50; secondary 37C75, 65Q10,
74H65.

Keywords and phrases: CM functional response, BD functional response, HV functional
response, gestation delay, multiple time delays, Hopf-bifurcation, chaos.

1. Introduction
In mathematical models of interacting population, one of the important elements is
the functional response, which mostly determines the dynamics of a system [21].
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There are many significant functional responses to model various ecological situations,
and one of them is the mutual interference. It is the behavioural interaction among
feeding organisms that reduce the time each individual spends obtaining food or the
amount of food each individual consumes. Nonspatial factors which can influence
the functional response are direct interferences between predator, fission or fusion
of groups, cooperative hunting in groups and adaptive foraging [3]. A number of
mechanisms involving the spatial distribution of predators, prey or opportunities
for predation can lead to a predator-dependent functional response. Skalski and
Gilliam [25] show statistical evidences from 19 prey–predator systems that the
models with predator-dependent functional responses (Hassell–Varley (HV) [14],
Beddington–DeAngelis (BD) [2, 5] and Crowley–Martin (CM) [4]), can provide
better description of predator feeding over a range of prey–predator abundances.
Contemporary theoretical works have documented that mathematical forms of the
feeding rates can influence the distribution of predators among the space [19], the
stability of enriched prey–predator systems [5, 15], the length of food chains [24],
correlations between nutrient enrichment, and the biomass of higher trophic levels [5].
Also the predator-dependent functional response predicts asymptotic feeding rates at
high prey abundance that are independent of predator abundance (for example, the
model with BD and HV functional response), but others predict an asymptotic nature
that depends on the density of predators (for example, the model with CM functional
response) [25]. In the literature, we find several works for various purposes and uses of
HV [22, 30], BD [1, 16] and CM [28, 29] functional responses which show significant
dynamical characteristics due to the predator interference and these results differ from
the conventional Volterra scheme.

After predation, some amounts of energy (biomass) of the prey individuals
assimilate into the predator’s energy (biomass). The assimilation process is completed
through various bio-physiological processes, such as predation, digestion, absorption
and so on. After entering into the predator’s body, the raw food is finally transformed
into the predator’s energy in the form of biomass. Such a transformation process
requires time. Therefore, it would be more realistic to consider a time delay
in the predator’s gestation process (that is, in the growth term of the predator’s
population) [18, 23]. One of the most important and significant factors among
the food web structure in population ecology is time delay, which is observed in
almost every biological process. In general, time delays make the systems more
complex but realistic. In addition, varying time delays make the system exhibit
rich dynamics. Kuang [18] has explained that animals must take some time to
digest their food. A brief review on prey–predator models with discrete delay (as
gestation) for both Kolmogorov and non-Kolmogorov types of model systems are
presented by Ruan [23], where one can find different mathematical criteria for different
biological assumptions due to delay. Discrete time delays with different biological
meanings in hybrid food chain models are well-studied [1, 16], and many interesting
dynamical features including chaos are observed. It is well-documented that biological
and/or environmental processes, such as the Allee effect [20], omnivory [27],
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latency in biological processes [8, 26], large turnover of resource [32], coupling of
incommensurate oscillations [11], seasonal forcing [7, 10], noise [6, 9] and so on, may
produce chaos. Time delay plays a challenging role in food chain models, either to
induce chaos [1] or settle down the system from chaos to regular dynamics [1].

The interference of predators in their predation and assimilation process, and
the time required for assimilation are very important factors for any food chain
model. These factors play a crucial role in the understanding of a food web.
Dynamical diversities come through different choices of the predator’s interference
on their foraging strategies, and also the time delay is a significant contributing
factor for introducing oscillations. The present research explores the interplay of
various functional responses that exist in the literature and are useful to understand
the phenomena of competition among various species. Most mathematical models
proposed to study the dynamics of interacting species remain generic, since it is
not possible to suggest the type of functional response that suits the type of species
in nature. This is a question of vital importance from the theoretical as well as
experimental points of view, which may be achieved with the help of the biologists
involved in experimental studies. We hope that the present work, being exhaustive
and having the theoretical strength of considering various types of response functions,
paves the way for true and more meaningful collaborative research with experimental
biologists in order to identify satisfactory answers to the above mentioned question of
importance. Further, the exploratory results of the present study would help initiate
future work in this direction, besides being a valuable addition to the literature from
this point of view.

The rest of the paper is organized as follows. In the next section, we present a
mathematical formulation of the model system, and the preliminary results such as
positive invariance, boundedness of solutions, analysis of equilibria are discussed. In
Section 3, we perform the local stability and Hopf-bifurcation analysis around the
interior equilibrium point in all possible cases. Conditions for the existence of global
stability of the interior equilibrium point is also derived in this section. In Section 4,
the formulae to determine the properties of the Hopf-bifurcating periodic solutions are
derived by applying the normal form theory and central manifold theorem. Numerical
simulations are performed to substantiate our analytical results and to study the
dynamic behaviour of all three functional responses, showing the mutual interference
scheme in Section 5. Finally, we summarize our results and conclude our findings in
Section 6. All appendices are included in the Supplementary material. Supplementary
material is available at doi:10.1017/S144618111700044X.

2. The mathematical model

We consider the following system of equations as a mathematical model to
describe a hybrid tritrophic food chain interaction, where X(T ), Y(T ), Z(T ) denote the
population densities of the lowest trophic level species (prey), the middle trophic level
species (intermediate predator) and the highest trophic level species (top predator),
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respectively, at time T :

dX
dT

= a1X
(
1 −

X
K

)
−
ω0XY
X + D

,

dY
dT

= −a2Y +
ω1XY
X + D1

− ω2 f (Y,Z),

dZ
dT

= −a3Z + ω3 f (Y,Z).

(2.1)

In this model, we assume that the prey population grows logistically. The interaction
between the prey and an intermediate predator follows HT II functional response,
while that between the top predator and its prey is taken as a general functional
response f (Y, Z), which corresponds to any of the functional responses with mutual
interference schemes between the species Y and Z. First, we consider f (Y, Z) as a CM
type functional response and study the dynamics of the model system. Further, we also
discuss the dynamics of the system by considering f (Y, Z) as BD type and HV type
functional responses, respectively. Therefore, we discuss the model which employs
HT II and CM type functional responses. We assume that there is a gestation delay
in the predator, that is, after consumption of prey, the predator requires some time
to assimilate the density of prey. Therefore, we assume that the change rate of the
predator depends on the numbers of prey and predators present at some previous time.
Since both the predators (intermediate-Y and top-Z) are different by bio-physiological
processes, we are considering two different discrete gestation delays T1, T2 > 0
for both intermediate and top predators, respectively. So, the model system (2.1)
becomes:

dX
dT

= a1X
(
1 −

X
K

)
−
ω0XY
X + D

,

dY
dT

= −a2Y +
ω1X(T − T1)Y(T − T1)

X(T − T1) + D1
−

ω2YZ
1 + dY + bZ + bdYZ

,

dZ
dT

= −a3Z +
ω3Y(T − T2)Z(T − T2)

1 + dY(T − T2) + bZ(T − T2) + bdY(T − T2)Z(T − T2)
.

(2.2)

The prey X grows with intrinsic per capita growth rate a1 and carrying capacity K in
the absence of predation. The parameters D and D1 measure the extent to which the
environment provides protection to prey X and intermediate predator Y , respectively,
and ω0 is the maximum value that the per capita reduction rate of X can attain.
The expression ω1/ω0 represents the conversion rate of the consumed prey. The
constants ω2, ω3, b and d are the saturating CM type functional response parameters,
in which b and d measure the magnitude of interference among top and intermediate
predators, respectively. Further, a2 and a3 are the death rates of the intermediate
and top predators, respectively. All model parameters assume only positive values.
Obviously, model system (2.2) is a three-species simple food chain model involving a
hybrid type of prey-dependent and predator-dependent functional responses.
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Now, introducing the variables x = X/K, y = ω0Y/a1K, z = ω0ω2Z/a1
2dK and

t = a1T,T1 = a1τ1,T2 = a1τ2, we obtain the following dimensionless system
dx
dt

= x(1 − x) −
xy

x + ω4
,

dy
dt

= −ω5y +
ω6x(t − τ1)y(t − τ1)

x(t − τ1) + ω7
−

yz
y + (ω8 + ω9y)z + ω10

,

dz
dt

= −ω11z +
ω12y(t − τ2)z(t − τ2)

y(t − τ2) + (ω8 + ω9y(t − τ2))z(t − τ2) + ω10
,

(2.3)

where the dimensionless parameters are given by ω4 = D/K, ω5 = a2/a1, ω6 = ω1/a1,
ω7 = D1/K, ω8 = a1b/ω2, ω9 = a2

1bdK/ωω2, ω10 = ω/a2
1dK, ω11 = a3/a1, ω12 =

ω3/a1d; all these parameters are positive. The initial conditions of (2.3) are

x(θ) = φ1(θ) ≥ 0, y(θ) = φ2(θ) ≥ 0, z(θ) = φ3(θ) ≥ 0,
with θ ∈ [−τ, 0], φi(0) > 0 (i = 1, 2, 3). (2.4)

Here τ = max[τ1, τ2] and φ : [−τ, 0]→<3, such that φ = (φ1, φ2, φ3), is continuous
with norm

‖φ‖ = sup
−τ≤θ≤0

{|φ1(θ)|, |φ2(θ)|, |φ3(θ)|}.

By the fundamental theory of functional differential equations [12], there is a unique
solution (x(t), y(t), z(t)) to system (2.3) with initial conditions (2.4).

Biologically, positivity ensures that population never become negative and always
survives [17]. Using the lemma of Yang et al. [31, Lemma 4], it is obvious that all
solutions of (2.3) with initial conditions (2.4) are positive. Also, the boundedness
may be interpreted as a natural restriction to growth as a consequence of limited
resources [17]. For any positive solution φ(t) = (x(t), y(t), z(t)) of the system (2.3),
there exists a T̃ > 0, such that 0 ≤ x(t) ≤ M1, 0 ≤ y(t) ≤ M2 and 0 ≤ z(t) ≤ M3 for t > T̃ ,
where

M1 = 1, M2 =
ω6

4ω5
, M3 =

M2ω12

ω11(m2ω9 + ω8)
(see Appendix A.1 in Supplementary material). The model system (2.3) has
four nonnegative equilibria given as: (i) E0(0, 0, 0), (ii) E1(1, 0, 0), (iii)
E2(x̃, ỹ, 0), where x̃ = ω5ω7/(ω6 − ω5), ỹ = (1 − x̃)(x̃ + ω4), provided that 0 <
ω5ω7/(ω6 − ω5) < 1 with ω6 > ω5 and (iv) E∗(x∗, y∗, z∗) where, y∗ = (1 − x∗)(x∗ +

ω4), z∗ = ((ω12 − ω11)y∗ − ω10ω11)/(ω11(ω8 + ω9y∗)), such that 0 < x∗ < 1 and 0 <
ω10ω11/(ω12 − ω11) < y∗ with ω12 > ω11. Detailed stability analysis of delay free
model system (2.3) was discussed by Upadhyay and Naji [28]. Here, we study the
stability analysis of the coexisting equilibrium point for a delayed model system (2.3).

3. Local stability analysis and Hopf-bifurcation

Let E∗(x∗, y∗, z∗) be a positive equilibrium point of the model system (2.3). The
Jacobian matrix evaluated at E∗ yields the characteristic equation

det(A1 + e−λτ1 A2 + e−λτ2 A3 − λI3) = 0, (3.1)
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where I3 is an identity matrix of order 3 and

A1 =
∂F(W)
∂W(t)

=


−x∗

(
1 −

y∗

α2

)
−

x∗

α
0

0 −ω5 −
z∗(ω8z∗ + ω10)

γ2 −
y∗(y∗ + ω10)

γ2

0 0 −ω11

 ,

A2 =
∂F(W)

∂W(t − τ1)
=


0 0 0

ω6ω7y∗

β2

ω6x∗

β
0

0 0 0

 ,

A3 =
∂F(W)

∂W(t − τ2)
=


0 0 0
0 0 0

0
ω12z∗(ω8z∗ + ω10)

γ2

ω12y∗(y∗ + ω10)
γ2

 ,
with α = x∗ + ω4, β = x∗ + ω7 and γ = y∗ + (ω8 + ω9y∗)z∗ + ω10. From equation (3.1),
the characteristic equation of the model (2.3) is given as follows:

λ3 + Aλ2 + Bλ + C + e−λτ1 (Dλ2 + Eλ + F) + e−λτ2 (Gλ2 + Hλ + I)

+ e−λ(τ1+τ2)(Jλ + K) = 0, (3.2)
where
A = −(a11 + a22 + a33), B = a11a22 + a11a33 + a22a33, C = −a11a22a33,

D = −b22, E = a33b22 + a11b22 − a12b21, F = a12a33b21 − a33a11b22, G = −c33,

H = a22c33 + a11c33 − a23c32, I = a11a23c32 − a11a22c33, J = b22c33,

K = a12b21c33 − a11b22c33,

such that A1 = ai j|i, j=1,2,3, A2 = bi j|i, j=1,2,3 and A3 = ci j|i, j=1,2,3. We now discuss the
following cases.

Case I: τ1 = 0 = τ2.
In this case, equation (3.2) reduces to

λ3 + µ1λ
2 + µ2λ + µ3 = 0, (3.3)

where µ1 = A + D + G, µ2 = B + E + H + J, µ3 = C + F + I + K. By Routh–Hurwitz’s
criterion, E∗(x∗, y∗, z∗) is locally asymptotically stable, if µ1, µ3 and ∆ = µ1µ2 − µ3 are
positive. It gives the following conditions for E∗ to be locally asymptotically stable:

µ1 > 0⇒
x∗y∗

α2 +
y∗z∗(1 + ω9z∗)

γ2 ≤ x∗, (3.4)

µ2 > 0⇒ ω6ω7αγ
2 + y∗z∗β2(1 + ω9z∗) ≥ z∗α2β2(1 + ω9z∗), (3.5)

∆ > 0⇒ ω12(ω8 + ω9y∗) > (1 + ω9z∗). (3.6)

Case II: τ1 , 0 and τ2 = 0.
In this case, equation (3.2) becomes
λ3 + (A + G)λ2 + (B + H)λ + (C + I) + e−λτ1 (Dλ2 + (E + J)λ + (F + K)) = 0. (3.7)
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Let iω (ω > 0) be a root of equation (3.7). Then,

−ω3 + ω(B + H) = (−Dω2 + F + K) sinωτ1 − ω(E + J) cosωτ1 (3.8)
−ω2(A + G) + (C + I) = (Dω2 − F − K) cosωτ1 − ω(E + J) sinωτ1. (3.9)

Squaring and adding equations (3.8) and (3.9), we get

ω6 + âω4 + b̂ω2 + ĉ = 0, (3.10)

where

â = [(A + G)2 − 2(B + H) − D2],

b̂ = [(B + H)2 − 2(A + G)(C + I) + 2D(F + K) − (E + J)2],

ĉ = (C + I)2 − (F + K)2.

Now, we define
F(ω) = ω6 + âω4 + b̂ω2 + ĉ = 0

and assume that
(C + I)2 − (F + K)2 < 0. (3.11)

Then, note that F(0) < 0 and F(∞) = ∞. Thus, equation (3.10) has a finite number
of positive roots, say ω1, ω2, . . . , ωk. For every fixed ωi, i = 1, 2, . . . , k, there exist a
sequence {τ j

1i
| j = 1, 2, . . .}, such that

τ
j
1i

=
1
ωi

cos−1
[
Υ

Ω

]
+

2 jπ
ωi

, (3.12)

where i = 1, 2, . . . , k; j = 0, 1, 2 . . . and

Υ = ω4
i (E + J) − ω2

i (B + H)(E + J) − (−Dω2
i + F + K)(−ω2

i (A + G) + (C + I)),

Ω = (−Dω2
i + F + K)2 + ω2

i (E + J)2.

Let τ10 = min{τ j
1i
| i = 1, 2, . . . , k; j = 0, 1, 2, . . .}. We also obtain{ d

dτ1
Re(λ)

}
τ1=τ10

=
η1ρ1 − η2ρ2

Λ
> 0,

provided η1ρ1 − η2ρ2 > 0, where

Λ = (ωi(F + K) − ω3
i D)2 + ω4

i (E + J)2,

η1 = (−3ω2
i + B + H) sinωiτ1 + 2ωi(A + G) cosωiτ1 + 2ωiD,

η2 = (−3ω2
i + B + H) cosωiτ1 − 2ωi(A + G) sinωiτ1 + (E + J),

ρ1 = ωi(F + K) − ω3
i D, ρ2 = ω2

i (E + J).

Then, by the general Hopf-bifurcation theorem [18], we have the following result on
the stability and bifurcation of the system (2.3).

Theorem 3.1. Assume the conditions (3.4)–(3.6) and (3.11) hold. Then the equilibrium
E∗(x∗, y∗, z∗) is locally asymptotically stable for τ1 < τ10 and unstable for τ1 > τ10 .
Furthermore, the system (2.3) undergoes a Hopf-bifurcation at E∗(x∗, y∗, z∗) when
τ1 = τ10 .
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Case III: τ1 ∈ (0, τ10 ), τ2 , 0.
In this case, we allow a gestation time period for the top predator and also a constant
gestation time delay for the middle predator. We fix τ1 = τ̃1 at some value from its
stability range (0, τ10 ) and regard τ2 as a free parameter. We also assume that the
model parameters are such that the conditions (3.4)–(3.6) hold. Let iω with ω > 0 be a
root of equation (3.2). Then,

ω6 + ãω4 + b̃ω2 + 2c̃ sinωτ1 + 2d̃ cosωτ1 + ẽ = 0, (3.13)

where

ã = A2 + D2 −G2 − 2B,

b̃ = B2 − 2DF + E2 − 2AC + 2GI − H2 − J2,

c̃ = −AEω3 + CEω + ω3(−Dω2 + F) − Bω(−Dω2 + F) − Jω(−Gω2 + I) + HKω,

d̃ = −Aω2(−Dω2 + F) + C(−Dω2 + F) − Eω4 + BEω2 − K(−Gω2 + I) − HJω2,

ẽ = C2 + F2 − I2 − K2.

Similar to Case II, (3.13) has a finite number of positive roots ω1, ω2, . . . , ωk when

(C + F)2 − (I + K)2 < 0. (3.14)

Then, we have calculated the value of τ2 as τ̃ j
2p

given by

τ̃
j
2p

=
1
ωp

sin−1
 MpQp + NpS p

M2
p + N2

p

 +
2 jπ
ωp

, (3.15)

for p = 1, 2, . . . , k; j = 0, 1, 2 . . . , where

MP = (−Gω2
p + I) + Jωp sin(ωpτ̃1) + K cos(ωpτ̃1),

Np = −Hωp − Jωp cos(ωpτ̃1) + K sin(ωpτ̃1),

Qp = −ω3
p + Bωp + Eωp cos(ωpτ̃1) − (−Dω2

p + F) sin(ωpτ̃1),

S p = −ω2
pA + C + (−Dω2

p + F) cos(ωpτ̃1) + Eωp sin(ωpτ̃1).

Let τ̃ j
20

= min{τ̃ j
2p
| p = 1, 2, . . . , k; j = 0, 1, 2, . . .}, and by assuming that

d
dτ2

Re(λ)
λ=iωp

, 0,

we have the following theorem.

Theorem 3.2. Suppose that the parameters in model (2.3) are such that the conditions
(3.4)–(3.6), (3.11) and (3.14) hold for τ1 ∈ (0, τ10 ). Then the coexistence equilibrium
E∗(x∗, y∗, z∗) is locally asymptotically stable when τ2 ∈ (0, τ̃ j

20
) and it is unstable when

τ2 > τ̃
j
20

. Moreover, Hopf-bifurcation occurs when τ2 = τ̃
j
20

.
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Case IV: τ1 = 0 and τ2 , 0.
Similar to Case II, we calculate the critical value of τ2 in this case. For every fixed
ωl, l = 1, 2, . . . , k, there exist a sequence {τ j

2l
| j = 0, 1, 2, . . .}, where

τ
j
2l

=
1
ωl

cos−1
[
Φ

Ψ

]
+

2 jπ
ωl

(3.16)

such that l = 1, 2, . . . , k; j = 0, 1, 2 . . . , where
Φ = ω4

l (H + J) − ω2
l (B + E)(H + J) + (Gω2

l − I − K)(−ω2
l (A + D) + (C + F)),

Ψ = (−Gω2
l + I + K)2 + ω2

l (H + J)2,

and if condition (3.14) holds, then ωl, l = 1, 2, . . . , k are the finite positive roots of the
equation

ω6 + ǎω4 + b̌ω2 + č = 0, (3.17)
where,

ǎ = (A + D)2 − 2(B + E) −G2,

b̌ = (B + E)2 − 2(A + D)(C + F) + 2G(I + K) − (H + J)2,

č = (C + F)2 − (I + K)2.

Let τ20 = min{τ j
2l
| l = 1, 2, . . . , k; j = 0, 1, 2, . . .}. We have also obtained{ d

dτ2
Re(λ)

}
τ2=τ20

=
η3ρ3 − η4ρ4

Ω̂
> 0

provided that η3ρ3 − η4ρ4 > 0, where
Ω̂ = (ωl(I + K) − ω3

l G)2 + ω4
l (H + J)2,

η3 = (−3ω2
l + B + E) sinωlτ2 + 2ωl(A + D) cosωlτ2 + 2ωlG,

ρ1 = ωl(I + K) − ω3
l G,

η2 = (−3ω2
l + B + E) cosωlτ2 − 2ωl(A + D) sinωlτ2 + (H + J),

ρ2 = ω2
l (H + J).

Then, by the general Hopf-bifurcation theorem, we have the following result on the
stability and bifurcation of the system (2.3).

Theorem 3.3. Assume that the conditions (3.4)–(3.6) and (3.14) hold. Then the
equilibrium E∗(x∗, y∗, z∗) is locally asymptotically stable for τ2 < τ20 and unstable for
τ2 > τ20. Furthermore, the system (2.3) undergoes a Hopf-bifurcation at E∗(x∗, y∗, z∗)
when τ2 = τ20 .

Case V: τ2 ∈ (0, τ20 ), τ1 , 0.
Similar to Case III, we have calculated the critical value of τ1 for a fixed value of τ2
and stated the results as follows.

Theorem 3.4. Suppose that the parameters in model system (2.3) are such that
conditions (3.4)–(3.6), (3.14) and (3.11) hold for τ2 ∈ (0, τ20 ). Then the coexistence
equilibrium E∗(x∗, y∗, z∗) is locally asymptotically stable when τ1 ∈ (0, τ̃ j

10
), and it is
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unstable when τ1 > τ̃
j
10

. Moreover, Hopf-bifurcation occurs when τ1 = τ̃
j
10

, such that

τ̃
j
10

= min{τ̃ j
1s
| s = 1, 2, . . . , k; j = 0, 1, 2, . . .}, where

τ̃
j
1s

=
1
ωs

sin−1 VsTs + WsUs

V2
s + W2

s
+

2 jπ
ωs

, (3.18)

and

Vs = (−Dω2
s + F) + Jωs sinωsτ20 + K cosωsτ20 ,

Ws = −Eωs − Jωs cosωsτ20 + K sinωsτ20 ,

Ts = −ω3
s + Bωs + Hωs cosωsτ20 − (−Gω2

s + I) sinωsτ20 ,

Us = −ω2
s A + C + (−Gω2

s + I) cosωsτ20 + Hωs sinωsτ20 .

3.1. Global stability analysis We now establish the following result.

Theorem 3.5. If min{γ1, γ2, γ3} > 0, with

γ1 = −
y∗

m1(x∗ + ω4)
+

ω6y∗

m2(x∗ + ω7)

(
− 1 +

ω6M2τ1

m2

)
,

γ2 =
1

M1
+

ω6x∗

(x∗ + ω7)

( 1
M2
−
ω6M2τ1

m2
2

)
−
ω6

m2

(
1 −

ω6M2τ1

m2

)
−

z∗

m2Ω

(
1 − ω6M2τ1

)
−
ω12z∗

m3Ω

(
1 −

ω12M3(y∗ + ω10)τ2

m3Ω

)
,

γ3 =
y∗ + ω10

m2Ω

(
1 − ω6M2τ1

)
+
ω12y∗

M3Ω
−
ω12(y∗ + ω10)

m3Ω

×

(
1 +

ω12M3y∗τ2

m3Ω
−
ω12M3(y∗ + ω10)τ2

m3Ω

)
,

where Ω = (y∗ + (ω8 +ω9y∗)z∗ +ω10), m1 < x(t) < M1, m2 < y(t) < M2 and m3 < z(t) <
M3 for t > 0, then the interior equilibrium E∗ of the model system (2.3) is globally
asymptotically stable.

Proof. Proof is given in Appendix A.2 (Supplementary material). �

4. Properties of periodic solutions

In Section 3, we have obtained sufficient conditions for system (2.3) to undergo
Hopf-bifurcation for different combinations of τ1 and τ2. In this section, we study
the properties of solutions of the bifurcating equilibrium point. These properties are
studied with respect to τ1 for fixed τ2 ∈ (0, τ20 ). The technique we use is based on
the normal form method and the centre manifold theory presented by Hassard et al.
[13]. Throughout this section, we assume that the system undergoes Hopf-bifurcation
at τ1 = τ̃10 and τ2 ∈ (0, τ20 ) at E∗(x∗, y∗, z∗). Let τ1 = τ̃10 + µ, µ ∈ R so that Hopf-
bifurcation occurs at µ = 0. Without loss of generality, it is assumed that τ∗2 < τ̃10

where τ∗2 ∈ (0, τ20 ). Let x1(t) = x(t) − x∗, y1(t) = y(t) − y∗, z1(t) = z(t) − z∗, and denote
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x1(t), y1(t), z1(t) by x(t), y(t), z(t), respectively. We normalize the delay with the scaling
t→ (t/τ1), so that system (2.3) may be rewritten as

u̇(t) = τ1M1u(t) + τ1M2u
(
t −

τ∗2
τ̃10

)
+ τ1M3u(t − 1) + τ1 f (x, y, z), (4.1)

where u(t) = (x(t), y(t), z(t))T ,

M1 =

a11 a12 0
0 a22 a23
0 0 a33

 , M2 =

0 0 0
0 0 0
0 c23 c33

 ,
M3 =

 0 0 0
b21 b22 0
0 0 0

 , f = ( f1, f2, f3)T .

The nonlinear terms

f1 = −x2(t) + e1x2(t) + e2x(t)y(t) + E∗y2(t) + e4x3(t) + e5x2(t)y(t) + e6x(t)y2(t)

+ e7y3(t) + h.o.t, (higher order terms)

f2 = p1x2(t − 1) + p2x(t − 1)y(t − 1) + p3y2(t − 1) + p4x3(t − 1) + p5x2(t − 1)y(t − 1)

+ p6x(t − 1)y2(t − 1) + p7y3(t − 1) + q1y2(t) + q2y(t)z(t) + q3z2(t) + q4y3(t)

+ q5y2(t)z(t) + q6y(t)z2(t) + q7z3(t) + h.o.t,

f3 = r1y2
(
t −

τ∗2
τ̃10

)
+ r2y

(
t −

τ∗2
τ̃10

)
z
(
t −

τ∗2
τ̃10

)
+ r3z2

(
t −

τ∗2
τ̃10

)
+ r4y3

(
t −

τ∗2
τ̃10

)
+ r5y2

(
t −

τ∗2
τ̃10

)
z
(
t −

τ∗2
τ̃10

)
+ r6y

(
t −

τ∗2
τ̃10

)
z2

(
t −

τ∗2
τ̃10

)
+ r7z3

(
t −

τ∗2
τ̃10

)
+ h.o.t.

where ei, pi,qi, ri; (i = 1,2, . . . ,7) are given in Appendix A.3 (Supplementary material).
For φ = (φ1, φ2, φ3)T ∈ C([−1, 0],R3), define

Lµφ = (τ1 + µ)
(
M1φ(0) + M2φ

(
−
τ∗2
τ̃10

)
+ M3φ(−1)

)
.

By the Riesz representation theorem [13], there exists a function η(θ, µ) whose
components are of bounded variation for θ ∈ [−1, 0], such that

Lµφ =

∫ 0

−1
φ(θ) dη(θ, µ) for φ ∈ C.

In fact, choosing

η(θ, µ) =



(τ̃10 + µ)(M1 + M2 + M3), θ = 0,

(τ̃10 + µ)(M2 + M3), θ ∈
[
−
τ∗2
τ̃10

, 0
)
,

(τ̃10 + µ)M3, θ ∈
[
− 1,

τ∗2
τ̃10

)
,

0, θ = −1,
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for φ ∈ C1([−1, 0],R3), we define

A(µ)φ =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
φ(ξ) dη(ξ, µ), θ = 0,

and

R(µ)φ =

{
0, θ ∈ [−1, 0),
h(µ, θ), θ = 0,

where

h(µ, φ) = (τ̃10 + µ)(h1, h2, h3)T , φ = (φ1, φ2, φ3)T ∈ C([−1, 0],R3)

f1 = −φ2
1(0) + e1φ

2
1(0) + e2φ1(0)φ2(0) + E∗φ2

2(0) + e4φ
3
1(0) + e5φ

2
1(0)φ2(0)

+ e6φ1(0)φ2
2(0) + e7φ

3
2(0) + · · · ,

f2 = p1φ
2
1(−1) + p2φ1(−1)φ2(−1) + p3φ

2
2(−1) + p4φ

3
1(−1) + p5φ

2
1(−1)φ2(−1)

+ p6φ1(−1)φ2
2(−1) + p7φ

3
2(−1) + q1φ

2
2(0) + q2φ2(0)φ3(0) + q3φ

2
3(0)

+ q4φ
3
2(0) + q5φ

2
2(0)φ3(0) + q6φ2(0)φ2

3(0) + q7φ
3
3(0) + · · · ,

f3 = r1φ
2
2

(
−
τ∗2
τ̃10

)
+ r2φ2

(
−
τ∗2
τ̃10

)
φ3

(
−
τ∗2
τ̃10

)
+ r3φ

2
3

(
−
τ∗2
τ̃10

)
+ r4φ

3
2

(
−
τ∗2
τ̃10

)
+ r5φ

2
2

(
−
τ∗2
τ̃10

)
φ3

(
−
τ∗2
τ̃10

)
+ r6φ2

(
−
τ∗2
τ̃10

)
φ2

3

(
−
τ∗2
τ̃10

)
+ r7φ

3
3

(
−
τ∗2
τ̃10

)
+ · · · .

The system (2.3) may be rewritten in the following form

u̇t = A(µ)ut + R(µ)ut, (4.2)

where ut(θ) = u(t + θ), u(t) = (x(t), y(t), z(t))T for θ ∈ [−1, 0]. For ψ ∈ C([0, 1], (R3)∗),
define

A∗ψ(s) =


−

dψ(s)
ds

, s ∈ (0, 1],∫ 0

−1
ψ(−ξ) dηT (ξ, 0), s = 0,

and a bilinear inner product

〈ψ, φ〉 = ψ̄(0) · φ(0) −
∫ 0

θ=−1

∫ θ

ξ=0
ψ̄(ξ − θ) dη(θ)φ(ξ) dξ,

where η(θ) = η(θ, 0). Then A(0) (here onwards we denote A(0) by A) and A∗ are
adjoint operators. Since ±iω0τ̃10 are the eigenvalues of A, they are also the eigenvalues
of A∗. We need to compute eigenvectors of A and A∗ corresponding to iω0τ̃10 and
−iω0τ̃10 , respectively. By direct computation, it is not difficult to obtain the vector
q(θ) = (1, a1, a2)T eiω0τ̃10 θ, (θ ∈ [−1, 0]) and q∗(s) = M(1, a∗1, a∗2)eiω0τ̃10 s, (s ∈ [0, 1])
where a1, a2, a∗1, a

∗
2 and M are given in Appendix A.4 (Supplementary material).
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Furthermore, 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0. Proceeding in the same manner
as in Hassard et al. [13], we compute the coordinates to describe the centre manifold
C0 at µ = 0. Let xt be the solution of equation (4.1) when µ = 0. Define

z(t) = 〈q∗, ut〉, W(t, θ) = ut(θ) − 2 Re{z(t)q(θ)}. (4.3)

On the center manifold C0,

W(t, θ) = W(z, z̄, θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · ,

and z, z̄ are local coordinates for centre manifold C0 in the direction of q∗ and q̄∗,
respectively. We now consider only the real solution xt ∈ C0 of equation (4.1), which
gives

ż = iω0τ̃10 z + q̄∗ · f (0,W(z, z̄, 0) + 2 Re{zq(0)}) = iω0τ̃10 z + g(z, z̄),

where

g(z, z̄) = q̄∗(0) f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · . (4.4)

Hence, we have to obtain the expressions for g(z, z̄) (Appendix A.5 in Supplementary
material) and for g20, g11, g02, g21 (Appendix A.5 in Supplementary material).

In order to compute g21, we need to compute W20(i)(θ),W11(i)(θ), (i = 1, 2). From
equations (4.2) and (4.3),

Ẇ = ẋt − żq − ˙̄zq̄

=

AW − 2 Re{q̄∗(0) f0q(θ)}, θ ∈ [−1, 0),

AW − 2 Re{q̄∗(0) f0q(θ)} + f0, θ = 0,

= AW + H(z, z̄, θ), (4.5)

with

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z2

2
+ · · · . (4.6)

Following Hassard et al. [13], from equations (4.5) and (4.6), we get

H20(0) = −g20q(0) − ḡ02q̄(0) + 2τ̃10 (H1,H2,H3)T ,

and
H11(0) = −g11q(0) − ḡ11q̄(0) + 2τ̃10 (P1, P2, P3)T ,

where H1, H2, H3, P1, P2, P3 are given in Appendix A.6 (Supplementary material).
Also, (

iω0τ̃10 I −
∫ 0

−1
eiω0τ̃10 θ dη(θ)

)
q(0) = 0,

and noticing that (
−iω0τ̃10 I −

∫ 0

−1
e−iω0τ̃10 θ dη(θ)

)
q̄(0) = 0,

we obtain (
2iω0τ̃10 I −

∫ 0

−1
e2iω0τ̃10 θ dη(θ)

)
E1 = 2τ̃10 (H1,H2,H3)T .
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This leads to
2iω0 − a11 −a12 0

−b21e−2iω0τ̃10 2iω0 − a22 − b22e−2iω0τ̃10 −a23

0 −c32e−2iω0τ
∗
2 2iω0 − a33 − c33e−2iω0τ

∗
2

 E1 = 2

H1
H2
H3

 .
Solving this system for E1, we obtain

E(1)
1 =

2
Ã

∣∣∣∣∣∣∣∣∣∣
H1 −a12 0

H2 2iω0 − a22 − b22e−2iω0τ̃10 −a23

H3 −c32e−2iω0τ
∗
2 2iω0 − a33 − c33e−2iω0τ

∗
2

∣∣∣∣∣∣∣∣∣∣ ,

E(2)
1 =

2
Ã

∣∣∣∣∣∣∣∣∣∣
2iω0 − a11 H1 0

−b21e−2iω0τ̃10 H2 −a23

0 H3 2iω0 − a33 − c33e−2iω0τ
∗
2

∣∣∣∣∣∣∣∣∣∣ ,

E(3)
1 =

2
Ã

∣∣∣∣∣∣∣∣∣∣
2iω0 − a11 −a12 H1

−b21e−2iω0τ̃10 2iω0 − a22 − b22e−2iω0τ̃10 H2

0 −c32e−2iω0τ
∗
2 H3

∣∣∣∣∣∣∣∣∣∣ ,
where

Ã =

∣∣∣∣∣∣∣∣∣∣
2iω0 − a11 −a12 0

−b21e−2iω0τ̃10 2iω0 − a22 − b22e−2iω0τ̃10 −a23

0 −c32e−2iω0τ
∗
2 2iω0 − a33 − c33e−2iω0τ

∗
2

∣∣∣∣∣∣∣∣∣∣ .
Similarly, we get 

−a11 −a12 0

−b21 −a22 − b22 −a23

0 −c32 −a33 − c33

 E2 = 2

P1
P2
P3

 ,
and hence

E(1)
2 =

2
B̃

∣∣∣∣∣∣∣∣∣∣
P1 −a12 0

P2 −a22 − b22 −a23

P3 −c32 −a33 − c33

∣∣∣∣∣∣∣∣∣∣ ,

E(2)
2 =

2
B̃

∣∣∣∣∣∣∣∣∣∣
−a11 P1 0

−b21 P2 −a23

0 P3 −a33 − c33

∣∣∣∣∣∣∣∣∣∣
E(3)

2 =
2
B̃

∣∣∣∣∣∣∣∣∣∣
−a11 −a12 P1

−b21 −a22 − b22 P2

0 −c32 P3

∣∣∣∣∣∣∣∣∣∣ ,
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where

B̃ =

∣∣∣∣∣∣∣∣∣∣
−a11 −a12 0

−b21 −a22 − b22 −a23

0 −c32 −a33 − c33

∣∣∣∣∣∣∣∣∣∣ .
Thus, we can determine W20(θ) and W11(θ). Furthermore, g21 in equation (4.4) may
be expressed by the model parameters and delay. Thus, we compute the following
values

c1(0) =
i

2ω0τ̃10

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re{c1(0)}

Re{λ′(τ̃10 )}
,

β2 = 2 Re{c1(0)},

T2 = −
Im{c1(0)} + µ2 Im{λ′(τ̃10 )}

ω0τ0
,

(4.7)

which determine the properties of the bifurcating periodic solutions in the centre
manifold at the critical value τ̃10 . Now we state the results in the following theorem.

Theorem 4.1. For the expressions given in equation (4.7), the following results
hold.

(1) The sign of µ2 determines the direction of the Hopf-bifurcation. If µ2 > 0, then
the Hopf-bifurcation is supercritical, and the bifurcating periodic solutions exist
for τ > τ̃10 . If µ2 < 0, then the Hopf-bifurcation is subcritical and the bifurcating
periodic solutions exist for τ < τ̃10 .

(2) The parameter β2 determines the stability of the bifurcating periodic solutions.
The bifurcating periodic solutions are stable if β2 < 0 and are unstable if
β2 > 0.

(3) Also, T2 determines the period of the bifurcating periodic solutions. The
period of the bifurcating periodic solutions increases if T2 > 0 and decreases if
T2 < 0.

5. Numerical simulations

We perform numerical computations to realize various dynamics of the coexistence
equilibrium point E∗(x∗, y∗, z∗) for the model systems (2.3), (5.1) and (5.2),
respectively. For this purpose, we use standard packages (ode45 and dde23) of
MATLAB 7.6.0 (R2008a). First we consider the following fixed parameter values

Set1 : ω4 = 0.35, ω5 = 0.152, ω6 = 0.42, ω7 = 0.65, ω8 = 0.01,
ω9 = 0.21, ω10 = 0.48, ω11 = 0.015, ω12 = 0.05.
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Table 1. Stability results of system (2.3) with parameter Set1.

Case Condition Critical value Delay value Status Figure 2
I µ1 = 0.673 > 0, NA NA Stable Case I

µ2 = 7.5327 × 10−4 > 0,
∆ = 6.2566 × 10−5 > 0

II Σ = 3.9987 × 10−7 > 0, NA τ1 = 0.1, τ2 = 0 Stable Case II(i)
with condition of Case I τ1 = 1.5, τ2 = 0 Stable Case II(ii)

III Σ = 3.9987 × 10−7 > 0, NA τ1 = 0.1, τ2 = 0.5 Stable Case III(i)
Ψ = −3.3061 × 10−7 < 0, τ1 = 0.1, τ2 = 3 Stable Case III(ii)
with condition of Case I

IV Ψ = −3.3061 × 10−7 < 0, ω0 = 0.0291, τ1 = 0, τ2 = 0.6 Stable Case IV(i)
with condition of Case I τ20 = 1.6079 τ1 = 0, τ2 = 11.7 Unstable Case IV(ii)

V Σ = 3.9987 × 10−7 > 0, NA τ1 = 0.1, τ2 = 0.6 Stable Case V(i)
Ψ = −3.3061 × 10−7 < 0, τ1 = 5, τ2 = 0.6 Stable Case V(ii)
with condition of Case I

By using this parameter set, the co-existence abundance is x∗ = 0.8233, y∗ = 0.2073
and z∗ = 0.0571. First we observe the two-dimensional bifurcation scenario of system
(2.3) in the τ1τ2-plane (Figure 1(a)). On the red line on the τ2-axis, the system (2.3) is
unstable, while in the rest of the plane the system is stable. Also, when τ2 crosses the
critical value τ20 = 1.6079, the system exhibits Hopf-bifurcation. These two different
characteristic dynamical phenomena are presented numerically in this section. We
show five different numerical examples corresponding to five analytical results (Cases
(I)–(V)) (See Table 1).

(i) For Case I, first we consider the system (2.3) when τ1 = τ2 = 0. Then µ1 =

0.673 > 0, µ2 = 7.5327 × 10−4 > 0 and ∆ = 6.2566 × 10−5 > 0. In this case, the
system is asymptotically stable (Figure 2 (Case I)).

(ii) For Case II, (C + I)2 − (F + K)2(= Σ) = 3.9987 × 10−7 > 0, hence the parameter
set does not satisfy the criteria of conditional stability. In this case, the system is
asymptotically stable for all τ1 ≥ 0 (Figure 2 (Case II(i)): τ1 = 0.1 and Figure 2
(Case II(ii)): τ1 = 1.5).

(iii) For Case III, (C + I)2 − (F + K)2 = 3.9987 × 10−7 > 0, (C + F)2 − (I + K)2(=
Ψ) = −3.3061 × 10−7 < 0, so the parameter set does not satisfy the criteria of
conditional stability. In this case, the system is asymptotically stable for all
τ1, τ2 ≥ 0 (Figure 2 (Case III(i)): τ1 = 0.1, τ2 = 0.5 and Figure 2 (Case III(ii)):
τ1 = 0.1, τ2 = 3).

(iv) For Case IV, we see that (C + F)2 − (I + K)2 = −3.3061 × 10−7 < 0, the
parameter set satisfies the conditional stability criteria. Here, ω0 = 0.0291 and
τ20 = 1.6079. In this case, the system is asymptotically stable for 0 < τ2 = 0.6 <
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Figure 1. Stability regions of system (2.3) (a), system (5.1) (b) and system (5.2) (c) in the τ1τ2-plane
where the systems shows stable and unstable dynamics in the ‘stable region’ and ‘unstable range’ (red
line), respectively. Hopf-bifurcation occurs when (a) τ2 crosses the critical value τ20 = 1.6079, (b) τ1
crosses the critical value τ10 = 1.322 and (c) τ2 crosses the critical value τ20 = 6.8102. Rather than Case
IV, other cases of system (2.3) (a), system (5.1) (b) and system (5.2) (c) are absolutely stable by the choice
of different combinations of τ1 and τ2. Parameters are as in the text (colour available online).

τ20 = 1.6079 (Figure 2 (Case IV(i))) and unstable for τ2 = 11.7 > τ20 = 1.6079
(Figure 2 (Case IV(ii))). The system experiences Hopf-bifurcation when the
delay parameter τ2 crosses its critical value τ20 = 1.6079.
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Figure 2. Time evolution of system (2.3) with parameter Set1. For Case I, when τ1 = τ2 = 0, the positive
interior equilibrium E3(0.8233, 0.2073, 0.0571) is locally asymptotically stable. For Case II (τ2 = 0),
system remains stable for all τ1 ≥ 0. Similarly for Case III, system is stable for all τ2 ≥ 0 by choosing
τ1 = 0.1. For Case IV (τ1 = 0), the system remains stable at τ2 = 0.6 < τ20 = 1.6079 and it shows stable
periodic solution at τ2 = 11.7 > τ20 = 1.6079. Again for Case V, the system is stable for all τ1 ≥ 0 by
choosing τ2 = 0.6. Parameters are as in the text.

(v) For Case V, it turns out that (C + I)2 − (F + K)2 = 3.9987 × 10−7 > 0, (C +

F)2 − (I + K)2 = −3.3061 × 10−7 < 0, so the parameter set does not satisfy the
conditional stability criteria. In this case, the system is asymptotically stable for
all τ1 ≥ 0 while τ2 ∈ [0, τ20 ) (Figure 2 (Case V(i)): τ1 = 0.1, τ2 = 0.6 and Figure 2
(Case V(ii)): τ1 = 5, τ2 = 0.6).

We can verify the previous results by following the bifurcation diagram
(Figure 3(a)). Here we choose τ2 as a bifurcation parameter when τ1 = 0 (Case IV)
and other parameters are the same as in Figure 2. This figure shows that, there is a
critical value of the delay parameter τ2, say τ20 = 1.6079, below which the system is
stable and above this value it is unstable. System experiences Hopf-bifurcation when
delay parameter τ2 crosses its critical value. We also observe that when we change
the ratio of death rate of the middle predator and growth rate of the prey (that is,
ω5 = a2/a1) from 0.152 to 0.2, surprisingly the delayed system (Cases II–V) becomes
asymptotically stable for all permissible τ1, τ2 ≥ 0 (see Figure 4). This may be viewed
as a case of delay independent stability.
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Figure 3. Bifurcation diagrams of: (a) system (2.3) with respect to delay parameter τ2 when τ1 = 0
(Case IV) with other parameters the same as in Figure 1(a), here system (2.3) is stable when τ2 ∈

[0, τ20 = 1.6079), unstable when τ2 > τ20 = 1.6079 and Hopf-bifurcation occurs when τ2 = τ20 = 1.6079;
(b) system (5.1) with respect to delay parameter τ1 when τ2 = 0 (Case IV) with other parameters the same
as in Figure 1(b), here system (5.1) is stable when τ1 ∈ [0, τ10 = 1.322), unstable when τ1 > τ10 = 1.322
and Hopf-bifurcation occurs when τ1 = τ10 = 1.322; (c) system (5.2) with respect to delay parameter
τ2 when τ1 = 0 (Case IV) with other parameters the same as in Figure 1(c), here system (5.2) is
stable when τ2 ∈ [0, τ20 = 6.8102), unstable when τ2 > τ20 = 6.8102 and Hopf-bifurcation occurs when
τ2 = τ20 = 6.8102.
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Figure 4. Time evolution of system (2.3) with parameter Set2. For Case I, when τ1 = τ2 = 0, the
positive interior equilibrium E3(0.8244, 0.2063, 0.024) is locally asymptotically stable. For Cases II, III,
IV and V, the system remains stable for all possible combinations of τ1, τ2 ≥ 0. Parameters are as in
the text.

For the same parameter set taken by Upadhyay and Naji [28]

Set2 : ω4 = 0.25, ω6 = 0.8, ω7 = 0.25, ω8 = 0.01,
ω9 = 0.1, ω10 = 0.28, ω11 = 0.06, ω12 = 0.25,

we have plotted the bifurcation diagrams (Figure 5) with respect to the parameter ω5

for the populations y (panel (a)) and z (panel (b)) of both nondelayed and delayed
model system (2.3). The period doubling phenomena started at a higher value of the
parameter ω5 in the bifurcation diagram for the delayed model system compared to
the nondelayed model system for both populations y and z. Also, the periodic window
of the bifurcation diagram for the nondelayed model system has been observed in the
ranges 0.35 < ω5 < 0.385, which splits into two parts in the bifurcation diagram drawn
for the delayed model system (for both populations y and z). For the delayed model
system, we have taken delays as τ1 = τ2 = 0.5.

Now, we consider food chain models with BD and HV type functional responses in
place of a CM type functional response, and study how it affects the overall dynamics
of the model system.
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Figure 5. Bifurcation diagram for populations y and z in (a) and (b), respectively, of system (2.3) with
varying ω5. Black diagrams (online) are for τ1 = τ2 = 0 and red diagrams (online) are for τ1 = τ2 = 0.5.
The rest of the parameters are the same as given in the text as parameter Set2.

5.1. Dynamics of the model system having Holling type II and BD type
functional responses The model equations are

dX
dT

= a1X
(
1 −

X
K

)
−
ω0XY
X + D

,

dY
dT

= −a2Y +
ω1X(T − τ1)Y(T − τ1)

X(T − τ1) + D1
−

ω2YZ
Y + bZ + D2

,

dZ
dT

= −a3Z +
ω3Y(T − τ2)Z(T − τ2)

Y(T − τ2) + bZ(T − τ2) + D2
,

(5.1)
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where D2 and b represent the protection provided to the intermediate predator by its
environment and intensity of interference between individuals of the top predator,
respectively. For finding out the analytical stability conditions of system (5.1),
symbolically (3.1)–(3.18) are the same for all calculations of this model and the
Jacobian matrix has the following entities:

A1 = X∗ + D = X∗ + D1, B1 = Y∗ + bZ∗ + D2, a11 =
w0X∗Y∗

A2
1

−
a1X∗

K
,

a12 = −
w0X∗

A1
, a22 = −a2 −

w2Z∗(bZ∗ + D2)
B2

1

, a23 = −
w2Y∗(Y∗ + D2)

B2
1

,

a33 = −a3, b21 =
w1D1Y∗

A2
1

, b22 =
w1X∗

A1
,

c32 =
w3Z∗(bZ∗ + D2)

B2
1

, c33 =
w3Y∗(Y∗ + D2)

B2
1

.

We perform numerical computations to observe various dynamics of the
coexistence equilibrium point E∗(X∗, Y∗, Z∗) for the model system (5.1). We consider
the fixed parameter values as

Set3 : a1 = 1, K = 50, ω0 = 0.75, D = 50, a2 = 0.05, ω1 = 0.6, D1 = 50,
ω2 = 0.2, D2 = 50, b = 0.25, a3 = 0.06, ω3 = 0.12.

By using this parameter set, we find the coexistence abundance is X∗ = 13.408,Y∗ =

61.8334, Z∗ = 47.5221. First we observe the two-dimensional bifurcation scenario of
system (5.1) in the τ1τ2-plane (Figure 1(b)). On the red line in the τ1-axis, the system is
unstable and in the rest of the τ1τ2-plane the system is stable. Also, when τ1 crosses the
critical value τ10 = 1.322, the system possesses Hopf-bifurcation. These two different
characteristic dynamical phenomena are presented numerically in this section. We
show five different numerical examples corresponding to five analytical results (Cases
(I)–(V), see Table 2).

(i) For Case I, first we consider the nondelayed system of (5.1), that is when
τ1 = τ2 = 0, then µ1 = 0.0808 > 0, µ2 = 0.0713 > 0 and ∆ = 0.0051. In this case
the system is asymptotically stable (Figure 6 (Case I)).

(ii) For Case II, (C + I)2 − (F + K)2 = −2.8749 × 10−8 < 0, so the parameter set
satisfies the conditional stability condition. Here, ω0 = 0.2456 and τ10 = 1.322.
In this case the system is asymptotically stable for τ1 = 0.7 < τ10 = 1.322
(Figure 6 (Case II(i))) and unstable for τ1 = 1.5 > τ10 = 1.322 (Figure 6 (Case
II(ii))). The system experiences Hopf-bifurcation when the delay parameter τ1

crosses its critical value τ10 = 1.322.

https://doi.org/10.1017/S144618111700044X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111700044X


392 R. Agrawal et al. [23]

Figure 6. Time evolution of system (5.1) with parameter Set3. For Case I, when τ1 = τ2 = 0, the positive
interior equilibrium E3(13.408, 61.8334, 47.5221) is locally asymptotically stable. For Case II (τ2 = 0),
the system remains stable for τ1 = 0.7 < τ10 = 1.322. Similarly for Case III, the system is stable for all
τ2 ≥ 0 by choosing τ1 = 0.7. For Case IV (τ1 = 0), the system remains stable for all τ2 ≥ 0 and finally for
Case V, the system is stable for all τ1, τ2 ≥ 0. Parameters are as in the text.

(iii) For Case III, it follows that (C + I)2 − (F + K)2 = −2.8749 × 10−8 < 0, (C +

F)2 − (I + K)2 = 4.8354 × 10−6 > 0, so the parameter set does not satisfy the
conditional stability criteria. In this case the system is asymptotically stable
for all τ2 ≥ 0 while τ1 ∈ [0, τ10 ) (Figure 6 (Case III(i)): τ1 = 0.7, τ2 = 0.5 and
Figure 6 (Case III(ii)): τ1 = 0.7, τ2 = 3).

(iv) For Case IV, the expression (C + F)2 − (I + K)2 = 4.8354 × 10−6 > 0, the
parameter set does not satisfy the conditional stability criteria. In this case the
system is asymptotically stable for all τ2 > 0 (Figure 6 (Case IV(i)): τ1 = 0, τ2 =

0.6 and Figure 6 (Case IV(ii)): τ1 = 0, τ2 = 11.7).
(v) For Case V, it turns out that (C + I)2 − (F + K)2 = −2.8749 × 10−8 < 0, (C +

F)2 − (I + K)2 = 4.8354 × 10−6 > 0, so the parameter set does not satisfy the
conditional stability criteria. In this case the system is asymptotically stable for
all τ1, τ2 ≥ 0 (Figure 6 (Case V(i)): τ1 = 0.1, τ2 = 1.6 and Figure 6 (Case V(ii)):
τ1 = 1.5, τ2 = 1.6).
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Table 2. Stability results of system (5.1) with parameter Set3.

Case Condition Critical value Delay value Status Figure 8
I µ1 = 0.0808 > 0, NA NA Stable Case I

µ2 = 0.0713 > 0,
∆ = 0.0051

II Σ = −2.8749 × 10−8 < 0, ω0 = 0.2456 τ1 = 0.7, τ2 = 0 Stable Case II(i)
with condition of Case I τ10 = 1.322 τ1 = 1.5, τ2 = 0 Unstable Case II(ii)

III Σ = −2.8749 × 10−8 < 0, NA τ1 = 0.7, τ2 = 0.5 Stable Case III(i)
Ψ = 4.8354 × 10−6 > 0, τ1 = 0.7, τ2 = 3 Stable Case III(ii)
with condition of Case I

IV Ψ = 4.8354 × 10−6 > 0, NA τ1 = 0, τ2 = 0.6 Stable Case IV(i)
with condition of Case I τ1 = 0, τ2 = 11.7 Stable Case IV(ii)

V Σ = −2.8749 × 10−8 < 0, NA τ1 = 0.1, τ2 = 1.6 Stable Case V(i)
Ψ = 4.8354 × 10−6 > 0, τ1 = 1.5, τ2 = 1.6 Stable Case V(ii)
with condition of Case I

We can verify the previous results by observing the bifurcation diagram
(Figure 3(b)), here we choose τ1 as a bifurcation parameter when τ2 = 0 (Case II) and
other parameters are as in Figure 6. This figure shows that, there is a critical value of
the delay parameter τ1, say τ10 = 1.322, below which the system is stable and above the
system is unstable. The system experiences Hopf-bifurcation when delay parameter τ1

crosses its critical value.
Again, we consider the fixed parameter values as

Set4: a1 = 1, K = 50, ω0 = 0.7, D = 5, a2 = 0.25, ω1 = 0.5, D1 = 5,
ω2 = 0.5, D2 = 1, b = 0.25, a3 = 0.06, ω3 = 0.25.

Using this parameter set, show the effect of delays on the dynamics of the model
system (5.1). It is interesting to see the role of the delays on the dynamics of the
model system (5.1) as we all know that delay destabilizes the system in general, but
here we observed that delay reduces the chaotic system in limit cycle as well as in
stable mode. It is clearly shown in Figure 7(a)–(f), how the dynamic behaviour of the
system is affected by single or multiple delays. In Figure 7(a), we have shown that
the nondelayed (τ1 and τ2 = 0) model system (5.1) exhibits chaotic dynamics. If we
consider single delay τ1 (taking τ2 = 0), the chaotic behaviour changes to limit cycle
as well as stable focus due to variation of τ1 from τ1 = 7.35 to τ1 = 10 (Figure 7(b)
and (c)) and if we consider τ2 only (taking τ1 = 0), the system remains in chaotic
state for τ2 = 1 (Figure 7(d)) or changes to limit cycle for τ2 = 15 (Figure 7(e)). Also,
the system shows stable behaviour due to multiple delays, when τ1 = 10 and τ2 = 1
(Figure 7(f)).
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Figure 7. Phase plot diagram of system (5.1) for different combination of τ1 and τ2: (a) τ1 = 0, τ2 = 0, (b)
τ1 = 7.35, τ2 = 0, (c) τ1 = 10, τ2 = 0, (d) τ1 = 0, τ2 = 1, (e) τ1 = 0, τ2 = 15, (f) τ1 = 10, τ2 = 1. The rest of
the parameters are taken as given in the text.

5.2. Dynamics of the model system having Holling type II and HV type of
functional responses We consider the following system

dX
dT

= a1X
(
1 −

X
K

)
−
ω0XY
X + D

,

dY
dT

= −a2Y +
ω1X(T − τ1)Y(T − τ1)

X(T − τ1) + D1
−

ω2YZ
mZγ + Y

,

dZ
dT

= −a3Z +
ω3Y(T − τ2)Z(T − τ2)

m(Z(T − τ2))γ + Y(T − τ2)
,

(5.2)
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where m and γ are half saturation constants and the Hassell–Varley constant [33],
respectively. For finding out the analytical stability conditions of system (5.2),
symbolically (3.1)–(3.18) are the same for all calculations of this model and the
Jacobian matrix has the following entities:

A1 = X∗ + D = X∗ + D1, B1 = Y∗ + mZγ, a11 =
w0X∗Y∗

A2
1

−
a1X∗

K

a12 = −
w0X∗

A1
, a22 = −a2 −

w2mZ∗(γ+1)

B2
1

,

a23 = −
w2mY∗Z∗γ(1 − γ) + w2Y∗

B2
1

, a33 = −a3,

b21 =
w1D1Y∗

A2
1

, b22 =
w1X∗

A1
,

c32 =
w3mZ∗(γ+1)

B2
1

, c33 =
w3mY∗Z∗γ(1 − γ) + w3Y∗2

B2
1

.

We perform numerical computations to observe various dynamics of the
coexistence equilibrium point E∗(X∗, Y∗, Z∗) for the model system (5.2). We consider
the fixed parameter values as

Set5: a1 = 1, K = 10, ω = 0.7, D = 10, a2 = 0.05, ω1 = 0.6, D1 = 10,
ω2 = 0.2, m = 5, γ = 0.2, a3 = 0.06, ω3 = 0.12.

By using this parameter set, the coexistence abundance is X∗ = 5.2673, Y∗ =

8.6743, Z∗ = 15.7146. First we observe the two-dimensional bifurcation scenario of
the system (5.2) in the τ1τ2-plane (Figure 1(c)). On the red line in the τ2-axis the
system is unstable, and in the rest of the τ1τ2-plane the system is stable. Also, when τ2
crosses the critical value τ20 = 6.8102, the system experiences Hopf-bifurcation. These
two different characteristic dynamical phenomena are presented numerically in this
section. We show five different numerical examples corresponding to five analytical
results (Cases (I)–(V), see Table 3).

(i) For Case I, first we consider the nondelayed system of (5.2), that is when
τ1 = τ2 = 0, then µ1 = 0.3983 > 0, µ2 = 0.0165 > 0 and ∆ = 0.0042. In this case
the system is asymptotically stable (Figure 8 (Case I)).

(ii) For Case II, (C + I)2 − (F + K)2 = 7.5464 × 10−6 > 0, so the parameter set
does not satisfy the conditional stability criteria. In this case the system is
asymptotically stable for all τ1 > 0 (Figure 8 (Case II(i)): τ1 = 0.4 and Figure 8
(Case II(ii)): τ1 = 1.5).

(iii) For Case III, it follows that (C + I)2 − (F + K)2 = 7.5464 × 10−6 > 0,
(C + F)2 − (I + K)2 = −3.1483 × 10−6 < 0, so the parameter set does not satisfy
the conditional stability criteria. In this case the system is asymptotically stable
for all τ1, τ2 ≥ 0 (Figure 8 (Case III(i)): τ1 = 0.4, τ2 = 1.6 and Figure 8 (Case
III(ii)): τ1 = 0.4, τ2 = 7.7).
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Table 3. Stability results of system (5.2) with parameter Set5.

Case Condition Critical value Delay value Status Figure 12
I µ1 = 0.3983 > 0, NA NA NA Case I

µ2 = 0.0165 > 0,
∆ = 0.0042

II Σ = 7.5464 × 10−6 > 0, NA τ1 = 0.4, τ2 = 0 Stable Case II(i)
with condition of Case I τ1 = 1.5, τ2 = 0 Stable Case II(ii)

III Σ = 7.5464 × 10−6 > 0, NA τ1 = 0.4, τ2 = 0.5 Stable Case III(i)
Ψ = −3.1483 × 10−6 < 0, τ1 = 0.4, τ2 = 2.7 Stable Case III(ii)
with condition of Case I

IV Ψ = −3.1483 × 10−6 < 0, ω0 = 0.0661, τ1 = 0, τ2 = 1.6 Stable Case IV(i)
with condition of Case I τ20 = 6.8102 τ1 = 0, τ2 = 7.7 Unstable Case IV(ii)

V Σ = 7.5464 × 10−6 > 0, NA τ1 = 0.1, τ2 = 3.6 Stable Case V(i)
Ψ = −3.1483 × 10−6 < 0, τ1 = 2.5, τ2 = 3.6 Stable Case V(ii)
with condition of Case I

(iv) For Case IV, we obtain (C + F)2 − (I + K)2 = −3.1483 × 10−6 < 0, the parameter
set satisfies the conditional stability criteria. Here,ω0 = 0.0661 and τ20 = 6.8102.
In this case the system is asymptotically stable for τ2 < τ20 = 6.8102 and
unstable for τ2 > τ20 = 6.8102 (Figure 8 (Case IV(i)) : τ1 = 0, τ2 = 1.6 and
Figure 8 (Case IV(ii)): τ1 = 0, τ2 = 7.7). The system undergoes Hopf-bifurcation
when the delay parameter τ2 crosses its critical value τ20 = 6.8102.

(v) For Case V, (C + I)2 − (F + K)2 = 7.5464 × 10−6 > 0, (C + F)2 − (I + K)2 =

−3.1483 × 10−6 < 0, so the parameter set does not satisfy the conditional
stability condition. In this case, the system is asymptotically stable for all τ1 ≥ 0
while τ2 ∈ [0, τ20 ) (Figure 8 (Case V(i)): τ1 = 0.1, τ2 = 3.6 and Figure 8 (Case
V(ii)): τ1 = 2.5, τ2 = 3.6).

We verify the above results from the bifurcation diagram (Figure 3(c)). Here we
choose τ2 as a bifurcation parameter when τ1 = 0 (Case IV) and other parameters are
as in Figure 8. This figure shows that there is a critical value of the delay parameter
τ2, say τ20 = 6.8102, below which the system is stable and above which the system
is unstable. The system experiences Hopf-bifurcation when the delay parameter τ2
crosses its critical value.

Again, we consider the fixed parameter values as

Set6: a1 = 1, K = 20, ω = 0.7, D = 10, a2 = 0.05, ω1 = 0.6, D1 = 10,
ω2 = 0.2, m = 5, γ = 0.2, a3 = 0.06, ω3 = 0.12.

The effect of delays on the dynamics of the model system (5.2) are shown by using
this parameter set. Again, we observe that the dynamics of the model system is affected
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Figure 8. Time evolution of system (5.2) with parameter Set5. For Case I, when τ1 = τ2 = 0, the
positive interior equilibrium E3(6.2673, 8.6743, 15.7146) is locally asymptotically stable. For Case II
(τ2 = 0), the system remains stable for all τ1 > 0. Similarly for Case III, the system is stable for all
τ1, τ2 > 0. For Case IV (τ1 = 0), the system remains stable for τ2 = 1.6 < τ20 = 6.81020 and unstable for
τ2 = 7.7 > τ20 = 6.8102 and finally for Case V, the system is stable for all τ1 ≥ 0 by choosing τ2 = 3.6.
Parameters are as in the text.

by single or multiple delays. The chaotic dynamic behaviour of the nondelayed (τ1 and
τ2 = 0, see Figure 9(a)) model system (5.2) changes to limit cycle behaviour due to
the presence of any single (τ1 or τ2 = 0) or both the delays (τ1 and τ2 , 0) in Figure 9.
The system reduces to limit cycle in all three combinations of delays, that is, when (i)
τ1 = 1 and τ2 = 0 (Figure 9(b)), (ii) τ1 = 0 and τ2 = 1.66 (Figure 9(c)) and (iii) τ1 = 1
or τ2 = 1 (Figure 9(d)).

6. Discussion and conclusions

In this work, the dynamic behaviour of a three-species food chain model
incorporating multiple time delays has been studied. The interaction between the prey
and an intermediate predator follows the HT II functional response, and that between
the top predator and its prey (middle predator) has been taken as a mutual interference
type functional response. The dynamics of the model system has been analysed for all
the functional responses considered. We also studied the effect of gestation delays, τ1

and τ2, on the considered model systems, and observed very interesting results in all
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Figure 9. Phase plot diagram of system (5.2) for different combination of τ1 and τ2: (a) τ1 = 0, τ2 = 0,
(b) τ1 = 1, τ2 = 0, (c) τ1 = 0, τ2 = 1.66, (d) τ1 = 1, τ2 = 1. The rest of the parameters are taken as given in
the text.

cases of the multiple delays. We have carried out numerical simulations to realize the
quantitative effect of both delays in the given ranges. For different parameter sets, we
find different dynamics of the model systems.

First, we have studied the dynamics of the model system with CM functional
response. For a particular set, we obtain a critical value of τ2, that is, τ20 = 1.6079
at which the system experiences Hopf-bifurcation, whereas for some other parameter
sets, we find that the system remains stable for all values of τ1, τ2 ≥ 0. This clearly
indicates that the incorporation of gestation delay τ2 in the top predator z, is more
effective than the gestation delay, τ1 in the middle predator y. Choosing the death
rate of the intermediate predator, that is, ω5 as a bifurcation parameter, the analysis
is carried out. The bifurcation diagram for populations y and z with respect to ω5
is obtained for two cases, taking τ1 = τ2 = 0 and τ1 = τ2 = 0.5. We observe that the
periodic window splits into two parts for both populations y and z. We have derived the
explicit formulae which determine the stability, direction and period of the bifurcating
periodic solutions by normal form theory and centre manifold reduction with respect
to τ1 for fixed τ2 ∈ (0, τ20 ). It is also shown that the positive equilibria of the system
remains stable under certain conditions.

It is interesting to see the effect of delays with different functional responses. When
we analysed the model system with BD functional response, we observed that delay
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stabilizes the model system in the future, despite destabilization. Chaotic dynamic
behaviour of the nondelayed model system reduces to limit cycle (for τ1 = 7.35, τ2 = 0
and τ1 = 0, τ2 = 15) as well as stable focus (for τ1 = 10, τ2 = 0 and τ1 = 10, τ2 = 1)
with respect to the different values of the delays τ1 and τ2. Whereas chaotic dynamic
behaviour of the nondelayed model system changes to only limit cycle (for τ1 = 1, τ2 =

0; τ1 = 0, τ2 = 1.66; τ1 = 1, τ2 = 1) bahaviour for all the possible combinations of
τ1 and τ2 while studying the model system with HV functional response. For some
particular sets, we obtain a critical value of τ1, that is, τ10 = 1.322 at which the system
experiences Hopf-bifurcation for the model system with BD functional response, and
the system with HV functional response experiences Hopf-bifurcation for τ2, that is,
τ20 = 6.8012.

The role of time delays on all of the three discussed models is significant in the
presence of different functional responses. Since this is a hybrid food chain model
and we have shown the effect of both time delays with different functional responses
in the middle and top predators of the systems, the findings are interesting from the
application point of view.
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