A POINTWISE ERGODIC THEOREM IN L_{p}-SPACES

M. A. AKCOGLU

1. Introduction. Let (X, \mathscr{F}, μ) be a measure space and $L_{p}=L_{p}(X, \mathscr{F}, \mu)$, $1 \leqq p \leqq \infty$, the usual Banach spaces. A linear operator $T: L_{p} \rightarrow L_{p}$ is called a positive contraction if it transforms non-negative functions into non-negative functions and if its norm is not more than one. The purpose of this note is to show that if $1<p<\infty$ and if $T: L_{p} \rightarrow L_{p}$ is a positive contraction then

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} T^{k} f
$$

exists a.e. for each $f \in L_{p}$. Related results in this direction were obtained by E. M. Stein [6], A. Ionescu-Tulcea [5], R. V. Chacon and J. Olsen [3] and by R. V. Chacon and S. A. McGrath [4]. It has been shown by Burkholder [2] that this theorem is false if T is not positive (see also [1]).

It is well known (see, e.g. [5]) that to prove this result it is enough to prove the following theorem.
(1.1) Theorem. Let $1<p<\infty$ and let $T: L_{p} \rightarrow L_{p}$ be a positive contraction. For each $f \in L_{p}$, let

$$
\bar{f}(x)=\sup _{n \geqslant 1}\left|\frac{1}{n} \sum_{k=0}^{n-1} T^{k} f(x)\right| .
$$

Then

$$
\|f\|\left\|\frac{p}{p-1}\right\| f \| .
$$

If the statement of this theorem is true for an operator then we will say that the Dominated (Ergodic) Estimate holds for this operator. In Section 2 it will be shown that the Dominated Estimate holds for a positive contraction on a finite dimensional L_{p}-space, by reducing this case to the case considered by A. Ionescu-Tulcea in [5]. In Section 3 the theorem will be proved for the general case.

Theorem 1.1 answers a question raised by Chacon and McGrath in [4]. This question was the starting point of the present work. It may be noted that the elementary results (2.4) and (2.5) also appeared in [4], but in a different context.

Received March 26, 1974 and in revised form, July 10, 1974. This research was supported by NRC Grant A-3974.

The author is grateful to Professor Louis Sucheston for very stimulating discussions on this problem.
2. Finite dimensional L_{p}-spaces. In this section the indices i and j will range through the integers $1,2, \ldots, n$ where $n \geqq 1$ is an arbitrary but fixed integer. Let m_{i} 's be strictly positive fixed numbers and introduce a norm on \mathbf{R}^{n} as $\|r\|_{p}=\left[\sum_{i}\left|r_{i}\right|^{p} m_{i}\right]^{1 / p}, r=\left(r_{i}\right) \in \mathbf{R}^{n}$. We denote the resulting L_{p}-space by l_{p}. Let $T: l_{p} \rightarrow l_{p}$ be a positive contraction determined by a matrix ($T_{i j}$) as $(T r)_{j}=\sum_{i} T_{i j} r_{i}$. First we will assume the following two conditions:

$$
\begin{align*}
& T_{i j}>0 \tag{2.1}\\
& \|T\|_{\nu}=1 .
\end{align*}
$$

(2.3) Lemma. There exists a vector $u \in l_{p}^{+}$so that $\|u\|_{p}=\|T u\|_{p}=1$.

Proof. Let $K=\max \|T u\|_{p}$ where the maximum is taken over the vectors $u \in l_{p}^{+}$with $\|u\|_{\nu}=1$. It is clear that $K \leqq 1$ and if $K=1$ then the lemma would follow. If $K<1$, then for any $r \in l_{p},\|T r\|_{p}=\left\|T r^{+}-T r^{-}\right\|_{p} \leqq$ $\left\|T r^{+}+T r^{-}\right\|_{p}<\left\|r^{+}+r^{-}\right\|_{p}=\|r\|_{n}$. This contradicts (2.2).

We now also consider the adjoint space $l_{p}{ }^{*}$ and identify this, as usual, with $l_{q}, q=p(p-1)^{-1}$, so that a vector $s \in l_{q}$ acts as functional on l_{p} defined as $(r, s)=\sum_{i} r_{i} s_{i} m_{i}, r \in l_{p}$. The adjoint of T will be a positive contraction $T^{*}: l_{q} \rightarrow l_{q}$ so that $(T r, s)=\left(r, T^{*} s\right)$ for all $r \in l_{p}, s \in l_{q}$. Since $(T r, s)=$ $\sum_{j} m_{j} s_{j} \sum_{i} T_{i j} r_{i}=\sum_{i} m_{i} r_{i} \sum_{j}(m j / m i) T_{i j} s_{j}$, we obtain that

$$
\left(T^{*} s\right)_{i}=\sum_{j} \frac{m j}{m i} T_{i j} s_{j} .
$$

For each $r \in l_{p}{ }^{+}$there is a unique $r^{*} \in l_{q}{ }^{+}$so that $\left(r, r^{*}\right)=\|r\|_{p}{ }^{p}=\left\|r^{*}\right\|_{q}{ }^{q}$. This vector is given as $r^{*}{ }_{i}=r_{i}{ }^{p-1}$.
(2.4) Lemma. Let u be the vector obtained in Lemma (2.3) and let $v=T u$. Then $u^{*}=T^{*} v^{*}$ and both u and v have strictly positive coordinates.

Proof. Since $1=\left(v, v^{*}\right)=\left(T u, v^{*}\right)=\left(u, T^{*} v^{*}\right)$ and since $\left\|T^{*} v^{*}\right\|_{q} \leqq 1$ we see that $u^{*}=T^{*} v^{*}$. Because of (2.1), v=Tu and $u^{*}=T^{*} v^{*}$ have strictly positive coordinates. Hence u also has strictly positive coordinates.
(2.5) Corollary. There exist two vectors $u=\left(u_{i}\right)$ and $v=\left(v_{j}\right)$ with strictly positive coordinates so that

$$
\begin{align*}
& v_{j}=\sum_{i} T_{i j} u_{i}, \tag{2.6}\\
& m_{i} u_{i}^{p-1}=\sum_{j} m_{j} T_{i j} v_{j}^{p-1} . \tag{2.7}
\end{align*}
$$

Given a positive contraction $T: l_{p} \rightarrow l_{p}$ satisfying (2.1) and (2.2) we are now going to construct a measure space (Z, \mathscr{F}, μ) and a transformation $\tau: Z$ $\rightarrow Z$.

The space Z will be a subset of the two dimensional cartesian space Oxy. The σ-algebra \mathscr{F} will be the class of two dimensional Borel subsets of Z and the measure μ will be the restriction of the two dimensional Lebesgue measure to \mathscr{F}. One and two dimensional Lebesgue measures will be denoted with l and l^{2}, respectively and no distinction will be made between l^{2} and μ. The differentials of l and l^{2} will also be denoted as $d x$ and $d x d y$, respectively.

Let I_{i} 's be n disjoint intervals on the x-axis and J_{i} 's n disjoint intervals on the y-axis so that $l\left(I_{i}\right)=m_{i}$ and $l\left(J_{i}\right)=1$. Let $I=\bigcup_{i} I_{i}$ and $E_{i}=I_{i} \times J_{i}$ and finally $Z=\cup_{i} E_{i}$.

To define the transformation $\tau: Z \rightarrow Z$, let

$$
\begin{align*}
\xi_{i j} & =T_{i j} \frac{u_{i}}{v_{j}} \tag{2.8}\\
\eta_{i j} & =T_{i j} \frac{v_{j}^{p-1}}{u_{i}} \frac{m_{j}}{m_{i}} \tag{2.9}
\end{align*}
$$

where $\left(u_{i}\right)$ and $\left(v_{j}\right)$ are as given by Corollary (2.5), and note that $\sum_{i} \xi_{i j}=1$ and $\sum_{j} \eta_{i j}=1$. Now divide each I_{j} into n disjoint subintervals $I_{1 j}, I_{2 j}, \ldots, I_{n j}$ and also divide each J_{i} into n disjoint subintervals $J_{i 1}, J_{i 2}, \ldots, J_{i n}$ so that $l\left(I_{i j}\right)=\xi_{i j} m_{j}$ and $l\left(J_{i j}\right)=\eta_{i j}$. Let $R_{i j}=I_{i} \times J_{i j}$ and $S_{i j}=I_{\imath j} \times J_{j}$. Note that $E_{i}=\bigcup_{j} R_{i j}$ and $E_{j}=\bigcup_{i} S_{i j}$.

For each (i, j) we can now find four constants $a_{i j}, b_{i j}, c_{i j}, d_{i j}$ so that the affine transformation

$$
\tau_{i j}(x, y)=\left(a_{i j} x+b_{i j}, c_{i j} y+d_{i j}\right)
$$

transforms $R_{i j}$ onto $S_{i j}$, up to an l^{2}-null set. Let $\tau: Z \rightarrow Z$ be defined as $\tau_{i j}$ on each $R_{i j}$.

The transformation $\tau: Z \rightarrow Z$ is invertible and measurable in both directions. Also, $\mu(B)=0$ if and only if $\mu\left(\tau^{-1} B\right)=\mu(\tau B)=0$. Let $\nu=\mu \tau^{-1}$ be the measure obtained by transporting μ by τ. It is clear that ν is absolutely continuous with respect to μ and its Radon Nikodym derivative is given as

$$
\rho=\frac{d \nu}{d \mu}=\sum_{i, j} \frac{\mu\left(R_{i j}\right)}{\mu\left(S_{i j}\right)} \chi_{S i j}=\sum_{i, j}\left(\frac{v_{j}}{u_{i}}\right)^{p} \chi_{S i j}
$$

where χ denotes the characteristic function of a set.
This transformation $\tau: Z \rightarrow Z$ is an automorphism, in the terminology of [5]. Hence $(Q f)(x, y)=[\rho(x, y)]^{1 / p} f\left(\tau^{-1}(x, y)\right),(x, y) \in Z, f \in L_{p}=L_{p}(Z, \mathscr{F}, \mu)$ defines a positive invertible isometry $Q: L_{p} \rightarrow L_{p}$, for which the Dominated Ergodic Estimate holds [5]. From this fact we will now obtain the same theorem for T as follows.

Let $\left\{E_{i}\right\}$ be the partition of Z as defined above and let $E: L_{p} \rightarrow L_{p}$ be the conditional expectation operator with respect to $\left\{E_{i}\right\}$. More explicitly, let

$$
E f=\sum_{i} \chi_{E i} \frac{1}{m_{i}} \int_{E i} f d \mu, \quad f \in L_{p}
$$

Note that this operator is a positive contraction of L_{1} and L_{∞} simultaneously, and hence a positive contraction $E: L_{p} \rightarrow L_{p}$ for each $p, 1<p<\infty$.
(2.10) Lemma. Let $f, g \in L_{p}$ be two functions on Z depending only on the x-coordinate of a point $(x, y) \in Z$. If $E f=E g$ then $E Q f=E Q g$.

Proof. Let $F: I \rightarrow \mathbf{R}$ be a function so that $f(x, y)=F(x),(x, y) \in Z$. We will compute $E Q f$ as follows:

$$
\begin{aligned}
(Q f)(x, y) & =\sum_{i, j} \frac{v_{j}}{u_{i}} f\left(\tau_{i j}^{-1}(x, y)\right) \chi_{S i j}(x, y) \\
\int_{E_{j}} Q f d \mu & =\sum_{i} \frac{v_{j}}{u_{i}} \int_{S_{i j}} f\left(\tau_{i j}^{-1}(x, y)\right) d x d y \\
& =\sum_{i} \frac{v_{j}}{u_{i}} \frac{\mu\left(S_{i j}\right)}{\mu\left(R_{i j}\right)} \int_{R_{i j}} f(x, y) d x d y \\
& =\sum_{i}\left(\frac{v_{j}}{u_{i}}\right)^{1-p} \eta_{i j} \int_{I i} F(x) d x \\
& =\sum_{i} T_{i j} \frac{m_{j}}{m_{i}} \int_{E_{i}} f d \mu .
\end{aligned}
$$

This means that

$$
\begin{equation*}
E Q f=\sum_{j} \chi_{E_{j}} \sum_{i} T_{i j} \frac{1}{m_{i}} \int_{E_{i}} f d \mu \tag{2.11}
\end{equation*}
$$

If $E f=E g$ then

$$
\int_{E i} f d \mu=\int_{E i} g d \mu
$$

which shows that $E Q f=E Q g$.
(2.12) Lemma. If $r \in l_{p}$ then

$$
E Q\left(\sum_{i} r_{i} \chi_{E i}\right)=\sum_{j}(T r)_{j} \chi_{E j} .
$$

Proof. This follows directly from the formula (2.11) obtained above.
(2.13) Theorem. For any $r \in l_{p}$ and for any integer $k \geqq 0$,

$$
E Q^{k} \sum_{i} r_{i} \chi_{E i}=\sum_{j}\left(T^{k} r\right)_{j} \chi_{E j} .
$$

Proof. We apply induction on k. The theorem is trivial for $k=0$. Assume that it is true for an integer k. First note that if $f \in L_{p}$ depends only on the x-coordinate then the same is also true for $Q f$, as follows from the definition of Q. Hence $Q^{k} \sum_{i^{r}{ }_{i} \chi_{E i}}$ depends only on the x-coordinate. Hence, by Lemmas
(2.10) and (2.12) and by the induction hypothesis,

$$
\begin{aligned}
E Q^{k+1} \sum_{i} r_{i} \chi_{E i} & =E Q E Q^{k} \sum_{i} r_{i} \chi_{E i} \\
& =E Q \sum_{i}\left(T^{k} r\right)_{i} \chi_{E i} \\
& =\sum_{j}\left(T^{k+1} r\right)_{j} \chi_{E j} .
\end{aligned}
$$

(2.14) Theorem. The Dominated Ergodic Estimate holds for a positive contraction $T: l_{p} \rightarrow l_{p}$ satisfying (2.1) and (2.2).

Proof. It is enough to prove the theorem for a positive vector. Let $r \in l_{p}{ }^{+}$ and let

$$
\bar{r}_{i}=\sup _{k \geqslant 1} \frac{1}{K} \sum_{k=0}^{K-1}\left(T^{k} r\right)_{i} .
$$

We have to show that

$$
\|\bar{r}\|_{p} \leqq \frac{p}{p-1}\|r\|_{p} .
$$

Define $\mathrm{f} \in L_{p}{ }^{+}(Z)$ as $f=\sum_{i} r_{i} \chi_{E i}$, and let

$$
\bar{f}=\sup _{K \geqslant 1} \frac{1}{K} \sum_{k=0}^{K-1} Q^{k} f .
$$

Then we have that $\|f\|_{p}=\|r\|_{p}$ and hence that

$$
\|\bar{f}\|_{p} \leqq \frac{p}{p-1}\|f\|_{p}=\frac{p}{p-1}\|r\|_{p},
$$

by the result of [5].
Now, since

$$
\frac{1}{K} \sum_{k=0}^{K-1} E Q^{k} f \leqq E \bar{f}
$$

for all $K \geqq 1$, we also have that

$$
\sup _{K \geqslant 1} \frac{1}{K} \sum_{k=0}^{K-1} E Q^{k} f \leqq E \tilde{f} .
$$

But

$$
\begin{aligned}
\sup _{K \geqslant 1} \frac{1}{K} \sum_{k=0}^{K-1} E Q^{k} f & =\sup _{K \geqslant 1} \frac{1}{K} \sum_{k=0}^{K-1} \sum_{i}\left(T^{k} r\right)_{i} \chi_{E i} \\
& =\sum_{i} \bar{r}_{i} \chi_{E i} .
\end{aligned}
$$

Therefore

$$
\|\bar{r}\|_{p}=| | \sum_{i} \bar{r}_{i} \chi_{E i}\left\|_{p} \leqq\right\| E \bar{f}\left\|_{p} \leqq \frac{p}{p-1}\right\| r \|_{p} .
$$

(2.15) Theorem. The Dominated Ergodic Estimate holds for any positive contraction $T: l_{p} \rightarrow l_{p}$ without any additional hypotheses.

Proof. First assume that $T_{i j}>0$ but $\|T\|_{p}=1 / \lambda, \lambda>1$. Then the operator λT satisfies the hypotheses of the previous theorem and we obtain

$$
\left|\left|\sup _{K \geqslant 1} \frac{1}{K} \sum_{k=0}^{K-1} \lambda^{k} T^{k} r\right|_{p} \leqq \frac{p}{p-1}\|r\|_{p},\right.
$$

for any $r \in l_{p}{ }^{+}$. But this clearly implies the same estimate for T.
Next suppose that $T_{i j}=0$ for some (i, j) and that the Dominated Estimate does not hold for T. This means that there is an integer $N \geqq 1$ and an $r \in l_{p}{ }^{+}$ so that

$$
\left|\left|\sup _{1 \leqslant K \leqslant N} \frac{1}{K} \sum_{k=0}^{K-1} T^{k} r\right|_{p}>\frac{p}{p-1}\|r\|_{p} .\right.
$$

Then there is a number $c<1$ so that the same inequality holds if T is replaced by $c T$. But then there is an $e>0$ so that $T^{\prime}{ }_{i j}=c T_{i j}+e$ still defines a positive contraction $T^{\prime}: l_{p} \rightarrow l_{p}$ for which the Dominated Estimate does not hold. This is a contradiction, since T^{\prime} has strictly positive entries.
3. General L_{p}-spaces. Let (X, \mathscr{F}, μ) be a measure space and let $T: L_{p} \rightarrow L_{p}$ be a positive contraction of $L_{p}=L_{p}(X, \mathscr{F}, \mu)$. If $\left\{E_{1}, \ldots, E_{n}\right\}$ is a finite partition of X then the conditional expectation operator will be defined as

$$
E f=\sum_{i} \alpha_{i} \chi_{E i}, \quad f \in L_{p}
$$

where

$$
\alpha_{i}=\left\{\begin{array}{l}
0, \quad \text { if } \mu\left(E_{i}\right)=0 \text { or } \mu\left(E_{i}\right)=\infty, \\
\frac{1}{\mu\left(E_{i}\right)} \int_{E i} f d \mu, \quad \text { if } 0<\mu(E)<\infty
\end{array}\right.
$$

As before, $E: L_{p} \rightarrow L_{p}$ is a positive contraction. Furthermore, if f_{1}, \ldots, f_{K} are finitely many members of L_{p} and if $e>0$ then there is a conditional expectation E so that

$$
\left\|f_{k}-E f_{k}\right\|<e, \quad k=1, \ldots, K
$$

(3.1) Lemma. Given an $e>0$, an integer $K \geqq 1$ and an $f \in L_{p}$ then there is a conditional expectation E so that

$$
\left\|T^{k} f-(E T)^{k} E f\right\|<e
$$

for all $k, 0 \leqq k \leqq K-1$.
Proof. Choose E so that $\left\|T^{k} f-E T^{k} f\right\|<e / K$ for all $k=0,1, \ldots, K-1$. We will show that $\left\|T^{k} f-(E T)^{k} E f\right\|<e(k+1) / K$ for all $k=0, \ldots$, $K-1$. The proof is by induction. The result is true for $k=0$. If it is true for k,
then

$$
\left\|T^{k+1} f-T(E T)^{k} E f\right\|<e(k+1) / K
$$

and hence

$$
\left\|E T^{k+1} f-(E T)^{k+1} E f\right\|<e(k+1) / K
$$

But also,

$$
\left\|T^{k+1} f-E T^{k+1} f\right\|<e / k
$$

which gives that

$$
\left\|T^{k+1} f-(E T)^{k+1} E f\right\|_{p}<e(k+2) / K
$$

(3.2) Lemma. Given an $e>0$ and finitely many functions f_{1}, \ldots, f_{k} in $L_{p}{ }^{+}$, there is an $S>0$ so that if g_{1}, \ldots, g_{k} are K functions in $L_{p}{ }^{+}$satisfying $\left\|f_{k}-g_{k}\right\|_{p}$ $<S, k=1, \ldots, K$, then

$$
\left|\left|\max _{1 \leqslant k \leqslant K} f_{k}-\max _{1 \leqslant k \leqslant K} g_{k}\right|\right|_{p}<e
$$

Proof. First choose a set $A \in \mathscr{F}$ so that $\mu(A)<\infty$ and so that

$$
\sum_{k=1}^{K}\left\|\chi_{A} c f_{k}\right\|<\frac{e}{10}
$$

Next choose a $\lambda>0$ so that $\mu(B)<\lambda$ implies that $\sum_{k=1}^{K}\left\|\chi_{B} f_{k}\right\|<e / 10$. Then let

$$
0<S<\min \left(\frac{e}{10 K},\left[\frac{\lambda}{K \mu(A)}\right]^{1 / p} \frac{e}{10}\right)
$$

Assume that $\left\|g_{k}-f_{k}\right\|<S$ for each $k=1, \ldots, K$.
Let

$$
B_{k}=\left\{x| | f_{k}(x)-\left.g_{k}(x)\right|^{p}>\frac{e^{p}}{10^{p} \mu(A)}\right\} .
$$

Then

$$
\frac{e^{p}}{10^{p} \mu(A)} \mu\left(B_{k}\right)<\frac{\lambda e^{p}}{K} 10^{p} \mu(A) .
$$

This means that if $B=\bigcup_{k=1}^{K} B_{k}$ then $\mu(B)<\lambda$.
Now let

$$
\bar{f}=\max _{1 \leqslant k \leqslant K} f_{k} \text { and } \bar{g}=\max _{1 \leqslant k \leqslant K} g_{k} .
$$

Note that

$$
|\bar{f}(x)-\bar{g}(x)|^{p}<\frac{e^{p}}{10^{p} \mu(A)} \quad \text { if } x \in R=A \cap B^{c}
$$

and

$$
|\bar{f}(x)-\bar{g}(x)|<\sum_{k=1}^{K}\left(f_{k}(x)+g_{k}(x)\right) \quad \text { if } x \in S=R^{c}=A^{c} \cap B
$$

(This last inequality is true everywhere, but we need it only on S.) Hence $\|\bar{f}-\bar{g}\| \leqq\left\|\chi_{R}(\bar{f}-\bar{g})\right\|+\left\|\chi_{S}(\bar{f}-\bar{g})\right\|$. But $\left\|\chi_{R}(\bar{f}-\bar{g})\right\|<e / 10$ and

$$
\begin{aligned}
\left\|\chi_{S}(\bar{f}-\bar{g})\right\| & \leqq \sum_{k=1}^{K}\left(\left\|\chi_{S} f_{k}\right\|+\left\|\chi_{S} g_{k}\right\|\right) \\
& \leqq \sum_{k=1}^{K}\left(2\left\|\chi_{S} f_{k}\right\|+\left\|\chi_{S}\left(g_{k}-f_{k}\right)\right\|\right) \\
& \leqq \sum_{k=1}^{K} 2\left\|\chi_{S} f_{k}\right\|+\frac{e}{10}
\end{aligned}
$$

Since $\left\|\chi_{s} f_{k}\right\| \leqq\left\|\chi_{A} c f_{k}\right\|+\left\|\chi_{B} f_{k}\right\|$, this shows that $\|\bar{f}-\bar{g}\|<2 e / 10+2 e / 10+$ $2 e / 10<e$.
(3.3) Theorem. The Dominated Estimate holds for any positive contraction $T: L_{p} \rightarrow L_{p}$.

Proof. If the Dominated Estimate does not hold for T then there is an integer N and a function $f \in L_{p}{ }^{+}$so that

$$
\left\|\max _{1 \leqslant K \leqslant N} \frac{1}{K} \sum_{k=0}^{K-1} T^{k} f| |>\frac{p}{p-1}\right\| f \| .
$$

Then, by the previous two lemmas, there is a conditional expectation E so that

$$
\left\|\left.\left|\max _{1 \leqslant K \leqslant N} \frac{1}{K} \sum_{k=0}^{K-1}(E T)^{k} E f\right| \right\rvert\,>\frac{p}{p-1}\right\| E f \|
$$

Let $\left\{E_{1}, \ldots, E_{n^{\prime}}\right\}$ be the partition corresponding to E, and let $\left\{E_{1}, \ldots, E_{n}\right\}$ be the atoms of this partition with finite non-zero measures. The class of L_{p} functions which are constant on these atoms can be identified with l_{p} and $E T$ defines a positive contraction on this l_{p}. Hence the last inequality contradicts Theorem (2.15).

References

1. M. A. Akcoglu and L. Sucheston, On the dominated ergodic theorem in L_{2} space (to appear in Proc. Amer. Math. Soc.).
2. D. L. Burkholder, Semi-Gaussian subspaces, Trans. Amer. Math. Soc. 104 (1962), 12:3-131.
3. R. V. Chacon and J. Olsen, Dominated estimates of positive contractions, Proc. Amer. Math. Soc. 20 (1969), 266-271.
4. R. V. Chacon and S. A. McGrath, Estimates of positive contractions, Pacific J. Math. 30 (1969), 609-620.
5. A. Ionescu-Tulcea, Ergodic properties of isometries in L_{p}-spaces, Bull. Amer. Math. Soc. 70 (1964), 366-371.
6. E. M. Stein, On the maximal ergodic theorem, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), $1894-$ 1897.

University of Toronto, Toronto, Ontario

