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1. Introduction

The subject matter of this note is the notion of a dependence structure
on an abstract set. There are a number of different approaches to this topic
and it is known that many of these lead to precisely the same structure x.
Axioms are given here to specify the minimal dependent sets for such a
structure. They are closely related to conditions introduced by Hassler
Whitney in [1] and to a certain "elimination axiom" given by A. P. Robert-
son and J. D. West on in [2]. Theorem 1 shows that a dependence structure
may equally well be defined by means of axioms for the independent sets.
Axiom (I) is adapted from a condition due to R. Rado [3]. Theorem 2
links our minimal dependent sets with Whitney's "circuits". Theorem 3
is an "elimination" theorem which generalizes the statement of our axiom
(C2). Theorem 4 is due to Rado ([3], Theorem 3, p. 307), and A. W. Ingleton
[4]. It is shown here to follow from Theorem 3.

2. Axioms and theorems

Let X be a set. Let ^ be a set of non-empty finite subsets of X. Further-
more, let ^ satisfy the following two conditions.

(Cx) No proper subset of a member of ?̂ is a member of *€.
(C2) / / E and F are distinct members of 'tf and x e E n F, then E u F

has a subset belonging to *£ but not containing x.

Axiom (C2) is the "elimination axiom" of Robertson and Weston [2]
who apply it to a set & of finite subsets of a set X and use no other con-
dition. For the case where the empty set is not a member of 8%, it can be
seen that the members of ^ are precisely the minimal members of £&, for
it is clear that the "elimination axiom" must hold with 8& replaced by the
set of its minimal members. In [2] the authors define "pure sets" as those
non-empty subsets of X which fail to contain members of &. Here we
define independent sets to be those subsets of X which fail to contain

1 A study of the various axioms for a dependence structure formed the topic of a M. Sc.
thesis by the author at Monash University.
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members of %'. The "pure sets" are then precisely the non-empty in-
dependent sets. The following theorem characterizes these independent sets.

THEOREM 1. A set °ll of subsets of a set X is the set of independent sets
defined by a set <& of non-empty finite subsets of X satisfying (Cx) and (C2) if,
and only if °U is non-empty, °il has the inductive property and °ll satisfies
the following condition.

(I) / / A and B are subsets of X such that A±qi, B$%, and
A c\Bz%, then for all elements x e A u B it follows that {A u B)\{x) $ <%.

PROOF. Firstly, let °U be the set of independent sets. Then % is non-
empty since D e t , where • is the empty set. Now if A e <%, then clearly
every subset of A belongs to tfl. If A $ 'W, then a member of <€ contained in
A is a finite subset of A which fails to belong to <%. Thus °tt has the in-
ductive property. To verify condition (I) let A $ <%, B$<%, A n B e # ,
x e A u B. Then there exist sets C e ^ , D e % such that CQA, DQB.
Also C ^D, since i n B e t . If x $ C n D, then either C Q (A <u B)\{x}
or D Q (A u B)\{x} and so (A u B)\{x] $<%. If x e C n D, then from
(C2) there exists E e ^ with £ C ( C u D)\{x} Q (A u B)\{x} so again
(A u B)\{x} $ Ql. Thus condition (I) holds. One may observe that the set
^ is precisely the set of subsets of X minimal with respect to not belonging
t o <%.

Secondly, let tfl be a set of subsets of X having the properties stated
in the theorem, and let ^ be the set of subsets of X minimal with respect
to not belonging to %. Since % is non-empty and possesses the inductive
property, it follows that • e 9t. Hence • £ <€. Also from the inductive
property, any subset not in °U contains a finite subset not in ^ . Hence
^ consists of non-empty finite sets. That (Cj) holds is clear from the defini-
tion of # . In order to verify (C2), let E e <€, F e %, E =£ F, and x e E n F.
Then E $%, F $ °U and also E n F e ^ because E n F is a proper subset
of E. It follows from condition (I) that (E u F)\{x} $ °U. Then since it is
a finite set, we have that (E u F)\{x} must contain a member of (€. To
complete the proof of the theorem one obseives that the set tfl consists
precisely of those subsets of X which fail to contain members of <4>.

In the paper [1], Whitney uses the following axiom (C2) together
with (Ci) and refers to the members of *€ by the name "circuits". Also
he restricts attention to the case where the set X is finite.

(C2) / / E and F are distinct members of <£, if x e E n F and if y e E\F,
then E u F has a subset belonging to ^ which contains y but fails to contain x.

Since (C2) seems to impose a stronger condition on the set <£ than
(C2), the following theorem may be of some interest. In any case it provides
the link between the two systems.
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THEOREM 2. / / ^? is a set of non-empty finite subsets of a set X, then
conditions (Cx) and (C2) together are equivalent to conditions (Cj) and (C2)
together.

PROOF. It is clear that (C2) follows from (C2). Suppose now that (Cx)
and (C2) hold but that (C2) fails to hold and let m be the least integer such
that for some pair of sets E and F belonging to ^ and satisfying | £ u F | = w
there exist elements x e E n F and y e E\F such that E u F contains no
member G of & satisfying y sG and x $ G. By supposition such an integer
exists, and we may assume that E, F, x and y have the stated properties.
Then by (C2) there exists a subset G of E u F belonging to ^ and failing
to contain x. But then y $ G. From (Cj) we may choose z e G\E, and then
using the fact that \G u F\ <.m and the minimality of m we may apply
(C2) to the sets G and F and the elements z e G n F and x e F\G. Thus there
exists a subset H oiG u F belonging to # and containing a; but not containing
z. But then |Zf u H\ < m since z £ E v H and we may apply (C2) to the
sets E and H and the elements x e E n H and 2/ e £ \ ^ to show the existence
of a subset / of E u H belonging to <€, containing y and failing to contain
x. This, however, is a contradiction.

THEOREM 3. / / Ax, A2, • • •, An are members of <&, if n 2: 2 and if

A{ $ \}{A,:j < * } , * = 2, • • • , »

/or eacA subset B of X with \B\ = r < n, there exist members

x, C2, • • •, Cn_r of ^ such that

Ct ^ \ J { A k : k = 1 , - - •, n } \ B and

Ct $ U {C,: / ^ »} AoW /or i = 1, 2, • • •, n—r.

PROOF. Let (n, r) denote the case of the theorem for which n members
of the set ^ are considered and the set B consists of r elements.

Case (n, 0). By the hypothesis and since Q ^ w e may choose x1e Ax

and elements x( e A(\ \J [A; : j < i} for i = 2, • • •, n. The following sets
Bt j are defined for the indices / = i-\-\, • • •, n and i = 1, 2, • • •, n. For
/ = 2, • • •, n, if xx $ A, put Bltj = .4^ and if xx e A} using (C2) choose
B^jE^ such that Bltj ^ Ax<u Ait xx$BXi, and ^ e B ^ , - . Then by in-
duction, if x̂  ^ B{_t^ define 5 t > i = Bt_itj and if xt e Bt_x t choose B{ , e ^
such that B,. y c B{_hi u B{_x it xt $ Biyi and x3- e Bt- ,- where the choice
is made possible by (C2) and by the fact that xie Bt_x ^ n B(_hi and
x, e BMi,\B<_!,,. Then let Cx = ^ , C2 = Blit, • • ; Cn = Bn^n.' Then
for i = 1, . . ., n we have xi e Ci and ^ ^ |J \Ci : j = i-\-l, • • •, n). Also
one observes that for i = 2, • • •, n we have x8- £ (J {C3- : / < i). Thus for
* = ! , • • • , « the relation C,- $ IJ {C;: / =£ i} holds. Finally it is clear that
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•Ct £ U {Ak: k = 1, • • •, n) must also hold and hence the sets Clt • • •, Cn

satisfy the requirements of the theorem in this case.
Case (n, r). This case of the theorem is shown to depend on the case

(n—1, r—1) and so ultimately on the case (n—r, 0) which is a case already
proved. Let B c X and \B\ = r. By the case (n, 0) it may be assumed that
the sets Ax, • • •, An already satisfy the relation A{ $ |J {Aj : / ^ i). Let
x e B. If x $ (J {At : i' = 1, • • •, n}, the case reduces immediately to the
case (n—I, r— 1). Otherwise, by the symmetry it may be assumed that
x e An. Now choose elements yi e At\\J {A} : / ^ i} for i= 1,2, • • -, n—\.
Using (C'2) where necessary, there exist members Bx, B2, • • •, Bn_x of (&
such that for / = 1, 2, • • •, n—1 we have Bt s An u A}, x $ Bs and ys e Bt.
One then notices that ys $ (J {B( :i^j} and so B5 % (J {B{ : i ^ /} for
j = 1, • • -,n— 1. Applying the theorem for the case {n—1, r—l) to these
members Bx, • • •, Bn_x of <€ and to the set B\{x} we obtain members
C1; C2, • • •, Cn_r of I? having the required properties.

THEOREM 4. / / Ax, A2, • • •, An are subsets of X which do not belong
to the set ^l of independent sets, and if for i = 2, 3, • • •, n the sets
At n U {At: j < i) belong to (W, then for any subset B of X with \B\ < n it
follows that (J {A( : i = 1, • • •, n}\B is not a member of <%.

PROOF. Let Bt, B2, • • •, Bn be minimal dependent sets (i.e. members
of ^) contained in Ax, A2, • • •, An respectively. Then for i = 1, 2, • • •, n
we have

Btn [j {B, : i < i } C i f n U {A, : j < i}.

Then since B( $ % it follows that B( $ \J {B, : j < i) for i = 2, 3, • • •, n.
By theorem 3, if \B\ = r, there are (n—r) > 0 minimal dependent sets
contained in \J {A{: i = 1, 2, • • •, n}\B and hence this latter set is not a
member of <%.
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