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A NECESSARY AND SUFFICIENT CONDITION FOR THE 
OSCILLATION OF AN EVEN ORDER NONLINEAR 

DELAY DIFFERENTIAL EQUATION 

BHAGAT SINGH 

1. Introduction. In this paper we study the oscillatory behavior of the 
even order nonlinear delay differential equation 

(1) (r(t)y' ( 0 ) ( 2 - 1 ) + E PtVFtiyrAt), y./(f), yti"(t), . . . y . / ^ W ) = 0, 
i=l 

where 

yn(t) = y(t - rt(t)), 3V,«>(0 = ?<*>(*- *&)), i = 1, 2, 3, . . . , 2n - 1; 

(i) denotes the order of differentiation with respect to /. The delay terms ru Vi 
are assumed to be real-valued, continuous, non-negative, non-decreasing and 
bounded by a common constant M on the half line (/0, + °o ) for some t0 ^ 0. 
It is also assumed throughout this paper that r(t) and pi(t) are all real valued 
and continuous in (/0, oo ). In addition sufficient smoothness of co-efficients for 
the existence of solutions in C2n(t0j oo ) will be assumed without mention. A 
good discussion of these conditions can be found in [5] and [11]. 

A solution y(t) of (1) which is continuous and defined on some half line 
[t0, + oo) is said to be oscillatory if it has arbitrarily large zeros, i.e. iîy(h) = 0, 
t\ > to then there exists t2 > h such that y(h) = 0; otherwise it is non-oscil
latory. Equation (1) is said to be oscillatory if all its non-trivial continuous 
solutions defined on some half line [t0, + co) are oscillatory; otherwise it is 
called non-oscillatory. 

It will be further assumed throughout this paper that in relation to (1), the 
following conditions are satisfied, 

(i) pt(t) sere eventually positive; 
(ii) r(t) Ç C2w_1(/0,

 CO)J r(t) is bounded and satisfies 

r(t) > 0, rf(t) > 0, (-l)i+1r^(t) ^ 0 i = 2, 3, . . . , 2n - 1. 

Recently, Grollwitzer [5] has given necessary and sufficient condition for 
the delay equation 

(2) y"{t) +q(t)yT
a(t) =0 

to be oscillatory. Dahiya and Singh [3] extended these results to the even order 
delay equation 

(3) yW(t) +q(t)yT"(t) = 0 , 
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and thus generalized similar other results due to Licko and Svec [9]. In equa
tions (2) and (3) it was assumed that a: is the ratio of odd integers and either 
a > 1 or 0 < a < 1. The case for a = 1 was treated by Bradley [2] who 
considered the equation 

(4) /'(0+X0X'-X0) =0 
and proved sufficiency theorems not only for equation (4) but also for the 
more general equation 

(5) 1X0/(0]' + X0XX0, XXO)) = 0. 
A general situation is presented by the equation 

(6) *<n) + p(t)g(x, %', x", . . , x71-1) = 0, (n even) 

for which a necessary and sufficient condition is given by Onose [10] under one 
of the assumptions 

I A , h f ^ f - : f - ^ > 0 , r>l . 
IziUco | # l | 

Our results extend Onose's results to a more general situation presented by a 
nonlinear delay equation (1). The proof for sufficiency part is entirely different. 

By proving a necessary and sufficiency type theorem for an equation slightly 
less general than equation (1), we will generalize the results due to [1 ; 2; 3; 5 ; 9] 
and extend, in part, the results given in [10; 12; 13]. 

2. Main resul ts . This section is given to proving necessity and sufficiency 
theorems. We will need the following two lemmas. 

LEMMA 1 (Kiguradze [8]). If y{t) > 0, y'(t) > 0, y" (t) < 0 and y(t) is real, 
then for sufficiently large t, there exists a constant L > 0 such that 

/ (0 ^ L 
y(t) ~ t . 

LEMMA 2 [2, p. 398; 12]. Under the hypothesis of Lemma 1, there exist constants 
Ri > 0, i = 1, 2, . . . , n such that 

yit - r,(f)) 

and 

™ (X0) 
THEOREM 1. Suppose the following additional conditions are satisfied: 
{s)Ft : R2n —» R is continuous, sgn Fi(x0, xlf . . . , x2n-i) = sgn x0 and 
(b) Fi(—Xo, — Xi, . . . , x2n-i) = —Fi(x0, Xi, . . . , x2n-i) for all i, 
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(bi) there exists an index j such that 

Fj(\X0j XXi, . . . , \X2n-l) = \W+1Fj(x0, Xh . . . , X2n-l) 

for all (XQ, XI, . . . , x2n-i) G R2n, real X ̂  0 and some integer (3 ^ 0, 
(b2) Fj -* co as x0-> co and J"00/2* -1^) = oo. 

Then all bounded continuous solutions of equation (1) are oscillatory. If, however, 
/3 in assumption (bi) is such that fi ̂  1, £/&ew a// continuous solutions of equation 
(1) are oscillatory. 

Remark. This theorem generalizes Theorem 1 of [13]. 

Proof of Theorem 1. We assume the existence of a non-oscillatory solution 
y(t) =ZÉ 0 of equation (1). Conditions of the theorem imply that ~y(t) is also 
a solution. Therefore, without any loss, we can assume that y(t) > 0 eventual
ly. Suppose for t ^ h ^ 0, y(t) and 3>(/ — r*(/)) are positive for all i. Choose 
h so large that y(t), y(t — Tt(t)) and pt(t) are all positive in [t2, oo]. Due to 
sign condition on 7^, it follows now from equation (1) that 

(8) (r(0y'(0) (M-" + />*(') ̂ W ) , y.j'(t), * / ' ( * ) , . . . , y , / 2 - 1 ^ ) ) < o. 

Thus 

(9) (r(0y(/)) ( 2 n-1 } < 0, / e [t2, oo]. 

This, in turn, implies that (r(£)y(0)(2w~2) is decreasing and must eventually 
have a constant sign. Proceeding this way we find that r{t)y' (t) must eventual
ly have a constant sign and since r(t) > 0, it implies y'(t) must eventually 
have a constant sign. Hence there exists a conveniently large h ^ t2 such that 
for t ^ /3, y ( 0 is either positive or negative. 

Case 1. y{t) > 0, / (* ) < 0, t £ [/3, oo]: Since 

[r(0y(0] ( 2 w _ 1 ) < 0 and ry'{t) < 0 
we claim that 

(10) (r(t)y'(t))' £0 for / £ [/4, oo ), *4 ^ *3. 

For, suppose (r(t)yf(t))f > 0 eventually. Then (r(t)yf(/))" being monotonie 
must eventually be non-positive because if (r(t)yf(/))" > 0, then r{t)y'{t) 
being concave up and increasing will eventually be positive, a contradiction. 
Proceeding this way and remembering that all derivatives of r(t)yf(t) are 
monotonie, we find [r{t)yf (t)]{2n~l) ^ 0, a contradiction to (9). Hence (10) 
holds. 

Integrating (10) between tA and t we obtain r(t)y'(t) ^ r(ti)y'(ti) < 0, or 

( ID y'(t)^r{h)y\U)~. 

Therefore from (11), 

(12) y W ^ y W + r W / W \~rds<Q. 
•J u r{s) 
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Now as /—> oo, the right hand side of (12) tends to - c o which is a contradic
tion, since y{t) > 0 in [£4, oo ) and r(t) is bounded. Hence either y(t) is oscil
la tory or the following case holds. 

Case 2. y{t) > 0, y'(t) > 0 for t G [*4, oo): Since from inequality (9), 
(r(t)y'(t)Y2n-v < 0 and r(t)y'{t) > 0 in [/4, oo), we must have 

(13) ( r ( 0 y W) (2W"2) > 0 eventually. 

For if (ry') (2^-2) < Q? t j i e n (ry)(2»-3) i s concave down decreasing and therefore 
ul t imately negative. This will eventually make y < 0, a contradiction. 

We now claim t h a t 

(14) ( - l ) * ( r ( / ) y ( 0 ) ( i ) è 0, i = 0, 1, 2, . . . , 2n - 1, 

where (i) denotes the order of differentiation. To see this suppose first t h a t y(t) 
is bounded. If (r(t)yf (t){2n~z) > 0 eventually then because of (13), 
(r(t)yr (t)){2n~A) will be eventually positive and tend to oo. Proceeding this way 
we find t ha t r(t)y'' (t) —» oo as / —> oo and since r(t) is bounded, this leads to 
the fact t ha t y(t) —» oo as t —•» oo , a contradiction. Hence 

(r(t)yf(t))2n~s g 0 eventually, 

and the claim holds by continuation of this process. Now suppose y(t) is 
unbounded as t —> oo. Integrat ing (8) between /5 and t, /5 being conveniently 
large we have 

(15) ( r ( % ' 0 ) < 2 " - 2 ) < (r(h)y'(h))(2n-2) - f P^Fjiyr^.y.; (s), 
•J ta 

? , / ' ( / ) , . . .,y.<*-»(s))ds = ( r (* B )y ' (*5)) ( M ) 

f ' / w - 1 p • (s) F^^s^y^^s\n- • » 3v/2w~1)'(*)) ^ 

Since left hand side of (15) eventually becomes positive and by condition (b2) 
of this theorem 

f fn~lpj(t)dt = oo, 

we must have 

(16) Liminfr^^'-^--^»l = 0. 
Now 

(2»-l) 

Lim inf 

= Lim inf ,2n-\ 
t-$co 

(17) è [Lim inf S I k i r n inf F,(yT,.(*)/:y(0, . . . . y.^x\t)/y{t)) 1 . 
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As will be shown later 

(18) Lim inf ^ (y T > (0 /y (0 y , /*" 1 ' <t)/y(t)) = 
/->oo 

Lim 7^(1, 0,0, . . . ,0) > 0. 

(16), (17) and (18) imply that 

(19) 

Now 

(20) 

2/3+1 

y 
Lim inf ~2n-J = 0. 

2/3+1 

Lim inf T2̂ =ï = Lim inf — 

> Lim inf — 5 ^ 3 -
^ 0 0 ^ - J L_ ^ o o 

Lim inf y-fA 
y Lim inf — *-\t) 

rt 

First suppose L i m ^ ^ y (t) ^ 0 and 0 ^ 1. 
Since 0 = 1, yf (t) > 0, and l/r(t) is bounded away from zero, it follows from 
(19) and (20) that 

(21) Lim inf I -9̂ =3 1 = 0 . 

But due to mono tonicity of (ry)(i\ i = 0, 1, 2, . . . , 2n — 2, we have 

Lim inf ^ S = L i m ^ P = Lim {r {t)y {t)){*n~z) / (2n - 3)! = 0 

and since (r(0y(0) ( 2 n"2 ) > 0 eventually, we must have ( r (%(0) ( 2 w - 3 ) < 0 for 
some t ^ tQ > fa, where fa is conveniently large. If, however, y' (t) —-> 0 as 
£-^oo, then ry'(t)—>0 implies ( r ( / ) / (0) ( 2 w - 3 ) —» 0 as / —> GO and the con
clusion follows since (ry)(2w~2) > 0 eventually. The rest of the lemma follows 
in an identical manner. Hence (14) holds. 

Also since r(t) > 0, r' (t) = 0, r" (t) = 0, . . . , r^n~l) (t) = 0, we get from (14) 

(22) y(t)>0, / ( / ) > ( ) , y"(t)^0, ym (t) = 0, . . . , y^{t) = 0 

and 

(23) Lim y(i) (t) = 0, i = 2, 3, . . . , 2n - 1. 

By invoking homogeneity condition on Fj we obtain from (8) 

2/3+1/ 
(24) [ r ( 0 / ( 0 r - 1 ' + ^ ( 0 / ' , + W , 

* 
rf) 3v/(0 3V/_ 

(2n-l) (0 <o. y(t) ' y(t) '•••' y(t) 

Now suppose (14) and (22) hold for / ^ fa = £4. Then multiplying (24) by 

https://doi.org/10.4153/CJM-1973-115-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-115-0


DELAY DIFFERENTIAL EQUATION 1083 

t2"-1, dividing by yw+l{t) and integrating between h and t we obtain 

( a ) J* (y(s)fs+l ~ 

(' s^i> (s)F M ? ) iflià. y^is)) 
J,/ PAS)PAy(s) ' y(s) y(s) ) 

Now 

= yri(t) = y(t-M) 

Therefore, by Lemma 1 

(25Ï Lim
y ' { t~M ) - 0 

and by Lemma 2 

(26) L i m ^ = l . 

From (23), (25) and (26) and continuity in all the variables of Fh it follows 
that 

and hence the second integral in (24a) tends to oo as t —-> oo. Now the first 
integral in (24a) gives an integration by parts, 

( 2 7 ) J» (y(5))25+i 

~ (y(t)fs+1 (y(h)r+1 

Ç1 (ry'fn-2)(2n-l)s
in-2ds 

J„ (y(s)fB+1 

since on the right hand side of (27), the first and the last term are positive in 
view of (14) and ki is a constant equal to second term in (27). Integrating 
again and again by parts we get 

(28) J „ (y(s)r+1 -Rl~Ril, WÔ7* 2/3+1 
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where i?/ and i?2' are constants and RJ > 0. Since r(t) is non-decreasing we 
have from (28), 

J" [ry'](2w""Vn~1*fo Ç1 y'{s)ds 

* ~ b ^ ) 7 ^ - Rl' - RMt) Ju (^)?m 

( 2 8 a> = *'+*Mè)[^-w] 
< 00 as t —» 00 

since r (0 is bounded and y(t) is increasing. Hence the left-hand side of (24a) 
tends to 00 as t —> 00 which is a contradiction. The proof is complete if /3 ̂  1 
in (b2). If P = 0 in (b2) then right hand side of (28a) is 

R,' + R2'r(t)[\n\y(t)\ - ln |y(fc) | ] 

and the result follows by boundedness and increasingness of y(t). 

For necessity criteria we will consider the equation 

(29) [r(t)y'(t)]^-^ + pMF^uO), y./(t), ..., y , /*-»(0] = 0 

where ph Fù and r satisfy the same conditions as in Theorem 1 and in addition 
we will assume that pj(t) is bounded. For convenience wTe will drop the 
subscript j . 

THEOREM 2. If all the nontrivial continuous solutions of (29) are oscillatory, 
then 

Joo 

t2n~lp(t)dt = oo. 

Proof. We will prove this theorem by constructing a solution with a pre
scribed limit at oo , should the hypothesis 

CO J»oo 

f-'piodt < 

hold. From equation (29) 

(30) ry'(t) = f* (S
{2~T2) P(s)F(yr(s),y„'(s), . . . ,y,iU-v(s))ds. 

We consider the integral equation 

X p(x)F(yT(x), ya'(x), . . , y^n~l)(x))dx ds. 
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Here we shall employ a process similar to the one used by Onose [10]. We first 
observe that for t ^ tb 

(32) J -~T J (x - s)2n-1p(x)dxds :g ~ r J J (x - s)2"-2p(x)dxds 

Because of conditions on r(t), there exist constants Pt > 0 such that 

|r(/)) ( i ) | ^ Pu i = 0, 1, 2, . . . 2» - 1. 

Let 
(33) P = max P z . 

Define sets 

£> = {(*<,, *i, • •• , *2»-i): 1/2 S xo ^ 1, |x<| ^ 1/2, i = 1, 2, . . . t 2n - 1}, 
N = {0, 1,2, 3, . . ,2n - 1). 

We choose T large enough so that for / ^ T ^ /5 

(34) | [ sup F j Max [ £ " J L £ ^ ^ P ^ d s _ £h-

This is possible due to (32), (33) and continuity of F. We now define a sequence 
of functions which will converge to a solution of (31). Let / ^ T + M. Let 

(35) yo(0 = 1, y 0
( i ) ( 0 = 0 , i = 1, 2, . . . , 2«, 

and for w = 1, 2, 3, . . . let 

5 ) 2 B - 2 

(36) y . w =i - ft-~r% *(s) J , (2w - 2)! 

X p(x)F(yn-i(x — a(x)), . . . , yn-i
2n~l) (x — a(x))dxds. 

From (35) and (36), 

J°° i r» (x — 5N)2w~2 

, rV) J, l ^ - ^ y r ^ W ^ ^ -
Therefore in view of (34) 

1/2 ^ yi(0 ^ 1 and \yi(i)(t)\ ^ 1/2, i = 1, 2, . . . , 2n - 1. 

Similarly, 

(37) 1/2 £yk(t) £ 1, * = 1, 2 

and 

(38) |y*W(/)| ^ 1/2, * = 0, 1, 2, . . . , 2n - 1; £ = 1, 2, . . . . 
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Also from equation (29) and boundedness of p(t), r(t) and (r(t))(i\ i = 1, 2, 
. . . , 2n — 1, it follows that 

(39) W2n){t)\ ^nn. 

Since the family {yk{i)} is uniformly bounded and equicontinuous by (38) and 
(39), there exists a uniformly convergent subsequence ykr

{i) such that 

Limy*/0 =y(i\ i = 0,1,2,..,2n-l. 

The proof is complete. 

COROLLARY 1. Under the hypotheses of Theorem 1 regarding Fjy r(t) and pj and 
the additional condition that pj(t) is bounded, and /3 ^ 1 in assumption (bi) of 
Theorem 1, a necessary and sufficient condition that equation (29) oscillates is that 

J " t^ptftdt = oo. 

/ / , however, /3 ^ 0 in (bi) of Theorem 1, /Aew £Â£ afr^e is a necessary and sufficient 
condition for all hounded continuous solutions of (29) to be oscillatory. 

3. More on sufficiency. The following theorem generalizes Theorem 3 of 
[13, p. 700] by a relatively simpler technique. 

THEOREM 3. Let equation (1) satisfy conditions (a) and (b) of Theorem (1), 
as well as the following: 

(c) Fi(\xo, Xxi, Xx2, . . . , \X2n-i) = ^Fi(x0, Xi, . . . , X2n-i) for every (x0, 
Xi, . . , x2n-i) £ R2n and X £ R; 

(d) I ?£ <t>, where I denotes the set of all indices for which the function Fi(x0, 
Xi, . . , x2n-i) is non-decreasing with respect to each variable X{), X \ , XZy X§, . . , 
X2n-i separately and decreasing with respect to x2, Xi, . . , x2n-2 as well as the 
function [Ft(x, 0, 0, 0, . . , 0)]/x is non-increasing on (0, co ); 

(e) there exists a positive and differentiable function <t>{t), t ^ to for some t0, 
such that <f>r ^ 0 and 

f [*(') Z Pi(t)Fi(h 0, 0, . . . 0) - £2jÛ^-m]dt = oo. 

Then equation (1) is oscillatory. 

Proof. From equation (1), as in the proof of Theorem 1, 

(40) (r(;)/(0) (2n-1) + Z Pi(t)Fi(yu(t),y</(t), • • • . ^ . " ^ ( O ) < o 

for £ ^ /s for some convenient /5. Also for any non-oscillatory solution y{t) 
conclusions (14) and (22) of the proof of Theorem 1 hold for t ^ t5. Multi-

https://doi.org/10.4153/CJM-1973-115-0 Published online by Cambridge University Press

file:///X2n-i
https://doi.org/10.4153/CJM-1973-115-0


DELAY DIFFERENTIAL EQUATION 1087 

plying and dividing (40) by <j>(t) and y(t) respectively and invoking conditions 
(c) of this theorem we get 

(41) K^ 'COP^WMO 

Now 

(2i Ju(t) y,/(t) y.<^n(t)~\ > \y{t - M) "I 
y(t) ' y(t) '•••' y(t) J ~ t y(t) ' U ' U ' - " U J ' F,\ 

in view of (14) and (22) and condition (d) of this theorem. Therefore 

F(yrAt) y./(t) y^n-'\t)\ 
' \ y ( 0 ' y(t) " • • ' y(t) J 

* {p[y(t - M)/y(f), o, o,..,o] / y A ^ ) ^ m fc ^[i,o, o,.., o], 

since y(t — M)/y{t) increases to 1 as t —» oo by Lemma 2. Hence from (41) 
and this fact, 

(42) KO/tOl^'VtoMO + *(') E i>i(0^(i, o, o, o... o)< o. 

Adding and subtracting 0/2(/)|r(2w~2)(O|/40(O to (42) and integrating between 
/5 and t we get 

(43) (•\iiïï^ + &^Mls 
JtsL y(s) 40(5) J 

+ f [*(*) E ^ ) ^ ( i , o, o,.., o) - ^ ^ ^ } f c < o. 

Since the second integral in (43) tends to oo as t —> oo we only need to consider 
the first integral. 
Let 

= ( ry ' ) ( ^%(0 _ (r(h)y'(h)y2n-2)4>(h) 
y it) y(h) 

Ç1 [WY^fjs) (ry')(*-%(s)y'(s) 4>'2(s)k(2*-2)(5)ll, 

> L + f r(V)(2K->(5)/(5) oy)(2"-V(s) * ' W - % ) I " L 
~ ° J !5L /(s) y(s) H(s) J ' 
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where 

r (K<5)/P5))(2"-2)<K<5) 
U ~ y(h) 

P > , 4. r ' ^ O ^ V W / ^ W »(*)»'(*) ^(5)lr(2"-2)(5)l\, 

Now 

V™ (5) |y (s) > |/2"-2)(s) I / M _ /2 
, >v(2w-2) = I (2n-2) i ' / \ I / o o \ I ( 2 " - 3 ) | " I , , I 2 n - l | ~ * 

(ry ) |r |y (5) + (2w — 2)|f |y | + . . . + r\y | 

in view of (14) and (22) and 0 < I < 1. 
Hence 

(44) PtP,+ rèïï^\ifù_î^m+£tls 
Jts <Ks) Ly 00 yy ±y J 

Jn 4>(s) ly(s) 2y J 

which indicates t h a t left hand side of 43 tends to 00 as / —> co . This is a contra
diction and the proof is complete. 

T h e au thor is grateful to the referee for his valuable suggestions. 
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