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A NECESSARY AND SUFFICIENT CONDITION FOR THE
OSCILLATION OF AN EVEN ORDER NONLINEAR
DELAY DIFFERENTIAL EQUATION

BHAGAT SINGH

1. Introduction. In this paper we study the oscillatory behavior of the
even order nonlinear delay differential equation

1) Oy ;™" + ;1 PO F:(y=(0), ¥ @), 0" )y - . 370 (1) = 0,

where

Y (t) =y — 7:(0)), ¥.0(0) =P —0:i(8)), ©=1,2,3,...,2n —1;
(#) denotes the order of differentiation with respect to ¢. The delay terms 7;, ¢;
are assumed to be real-valued, continuous, non-negative, non-decreasing and
bounded by a common constant M on the half line (¢, + o) for some ¢, = 0.
It is also assumed throughout this paper that r(¢) and p.(¢) are all real valued
and continuous in (¢, ). In addition sufficient smoothness of co-efficients for
the existence of solutions in C**(ty, 0 ) will be assumed without mention. A
good discussion of these conditions can be found in [5] and [11].

A solution y(¢) of (1) which is continuous and defined on some half line
[to, + 0) is said to be oscillatory if it has arbitrarily large zeros, i.e. if y(¢,) = 0,
t1 > to then there exists t, > f; such that y(f;) = 0; otherwise it is non-oscil-
latory. Equation (1) is said to be oscillatory if all its non-trivial continuous
solutions defined on some half line [4, + o0 ) are oscillatory; otherwise it is
called non-oscillatory.

It will be further assumed throughout this paper that in relation to (1), the
following conditions are satisfied.

(i) p:(t) are eventually positive;
(i) 7(t) € C*™ (4, ), r(t) is bounded and satisfies

r(t) >0, () >0, (—1)HO@ =20 1=2,3,...,2n — 1.

Recently, Grollwitzer [5] has given necessary and sufficient condition for
the delay equation

(2) () 4+ q()y=(t) =0

to be oscillatory. Dahiya and Singh [3] extended these results to the even order
delay equation

(3) yE (1) + q()y2(@) =0,
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and thus generalized similar other results due to Litko and Svec [9]. In equa-
tions (2) and (3) it was assumed that « is the ratio of odd integers and either
a>1or 0 <a <1 The case for « = 1 was treated by Bradley [2] who
considered the equation

(4) Yy +pWyt — 7)) =0

and proved sufficiency theorems not only for equation (4) but also for the
more general equation

(5) [r@y D) + pO)f (@), ¥(&(©)) = 0.

A general situation is presented by the equation
(6) x™ 4+ p()gx, &', 2", .., x™1) =0, (neven)

for which a necessary and sufficient condition is given by Onose [10] under one
of the assumptions

Lim inf Ig(xly X2y o ooy xn)l
Iz1l-00 e

>0, r>1.

Our results extend Onose’s results to a more general situation presented by a
nonlinear delay equation (1). The proof for sufficiency part is entirely different.

By proving a necessary and sufficiency type theorem for an equation slightly
less general than equation (1), we will generalize the results dueto [1;2;3;5;9]
and extend, in part, the results given in [10; 12; 13].

2. Main results. This section is given to proving necessity and sufficiency
theorems. We will need the following two lemmas.

Lemma 1 (Kiguradze [8]). If y(#) > 0, 9" (¢) > 0, ¥ (¢) < 0 and y(¢) is real,
then for sufficiently large t, there exists a constant L > 0 such that

YO L
y(@) Tt .
LemMA 2 [2, p. 398; 12]. Under the hypothesis of Lemma 1, there exist constants
R, >0,7=1,2,...,nsuch that
¥t — 7))
IO
and
Ly — Ti(t)
PN CT0) B
TaEOREM 1. Suppose the following additional conditions are satisfied:
(@) F; : R — R is continuous, sgn F;(xe, X1, . . ., X2u—1) = SgN % and
(b) Fi(—x0, —%1, « - -, Xoy1) = —Fi (X0, %1, . . ., X2,—1) for all 1,
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(by) there exists an index j such that
Fi(\co, NX1, ooy A2u—1) = NPTUF (%00, %1, .« . o, Xope1)

for all (xo, X1, - . ., X2,—1) € R¥, real N # 0 and some integer 3 = 0,

(bg) F; — 00 as x¢ — 0 and fwtz”—lpj(t) = 0.
Then all bounded continuous solutions of equation (1) are oscillatory. If, however,
B in assumption (by) is such that B = 1, then all continuous solutions of equation
(1) are oscillatory.

Remark. This theorem generalizes Theorem 1 of [13].

Proof of Theorem 1. We assume the existence of a non-oscillatory solution
y(t) # 0 of equation (1). Conditions of the theorem imply that —y(¢) is also
a solution. Therefore, without any loss, we can assume that y(¢) > 0 eventual-
ly. Suppose for ¢t = t; = 0, y(¢) and y(¢t — 7,(¢)) are positive for all . Choose
t2 so large that y(¢), y(¢ — 7,(¢)) and p,(¢) are all positive in [t2, ©0]. Due to
sign condition on F, it follows now from equation (1) that

(8) (r(®)y ()™= + p; () Fs(ye; (0), ¥5," (1), 35, (1), .+ oy 96,27V (1)) < 0.
Thus
9) (r@)y ()= <0, ¢E€ [tz 0]

This, in turn, implies that (r(¢)y’(¢))@®"~? is decreasing and must eventually
have a constant sign. Proceeding this way we find that r(¢)y’ (¢) must eventual-
ly have a constant sign and since r(¢) > 0, it implies 3’ (¢) must eventually
have a constant sign. Hence there exists a conveniently large ;3 = ¢, such that
for t = t3, y'(¢) is either positive or negative.

Case 1. y(¢t) > 0,y () < 0, ¢ € [t3, c0]: Since

[r@)y ()] <0 and 7y () <0
we claim that

(10) @)y’ @) =0 for € [{y, ), s = 1

For, suppose (r(¢)y’(¢t))’ > 0 eventually. Then (r(¢)y’(¢))"’ being monotonic
must eventually be non-positive because if (r(¢)y'(¢))”" > 0, then r(¢)y’(¢)
being concave up and increasing will eventually be positive, a contradiction.
Proceeding this way and remembering that all derivatives of r(f)y’(¢) are
monotonic, we find [7(¢)y' (£)]®*—P = 0, a contradiction to (9). Hence (10)
holds.

Integrating (10) between ¢, and ¢ we obtain 7(¢)y' (¢) < 7(ts)y'(t)) < 0, or

(11) NORS r(toy'(m,—(lt—).
Therefore from (11),

, ‘
(12) () < y(t) + )y () f s <.
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Now as t — o0, the right hand side of (12) tends to —co which is a contradic-
tion, since y(¢) > 0 in [ts, ) and r(¢) is bounded. Hence either y(¢) is oscil-
latory or the following case holds.

Case 2. y(t) > 0, ¥'(t) > 0 for ¢t € [ts, ®0): Since from inequality (9),
(r(@)y' (£))@=D < 0 and r(¢)y’(¢) > 0 in [£4, 00 ), we must have
(13) (r@)y' (£))#=2 > 0 eventually.

For if (ry’)@2 < 0, then (ry’)®* % is concave down decreasing and therefore
ultimately negative. This will eventually make y < 0, a contradiction.

We now claim that
(14) (=DHr@yE)® =0, i=0,1,2,...,2n — 1,

where () denotes the order of differentiation. To see this suppose first that y(¢)
is bounded. If (r(#)y (£)®*® > 0 eventually then because of (13),
(r(8)y’ (¢))@*=* will be eventually positive and tend to co. Proceeding this way
we find that 7(¢)y’(t) — o as t — o and since r(¢) is bounded, this leads to
the fact that y(t) — o0 as ¢t — o0, a contradiction. Hence

@)y’ (1)) 3 = 0 eventually,

and the claim holds by continuation of this process. Now suppose y(t) is
unbounded as ¢t — 0. Integrating (8) between {; and ¢, ¢; being conveniently
large we have

15)  COY O < (rt)y )"~ fl Pi()F;(yr;(5), 3, (5),

Yo @)y - oy 30,0 ())ds = (r ()Y (1))
t ’ (2n—1)
_ f S2n_1Pj(S) Fj(yrj(s)yyaj (S)v -1- . yyuj (S)) dS.
5

2n—

N

Since left hand side of (15) eventually becomes positive and by condition (bs)
of this theorem
f 7, ()dt = o,

t5
we must have

r j . (@2n—1)
(16) Lim inf | £20 ), SHRY ] _,
150
Now
(2n—1)
b ot [Fj(y” O (t))]
>
y2’3+1(t)F-|:y—”—(tl yv_z(h__i)@]
i ey
= Lim inf y (t)t‘-’n—l M0)
1>
1] .
(17) = [Lim inf ZEE:TJ [Lim inf F;(y.,(8)/y(t), . .., 95, (t)/y(t)):|
5o o
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As will be shown later

(18)  Lim inf 7,(y:; () /3 (©), - - - 9@ [y () =
Lim F,(1,0,0,...,0) > 0.

>
(18), (17) and (18) imply that

9841

(19) Lifg inf %]ﬂ:f = 0.
Now
Lim inf y—jj;; = Lim inf 2 21:1@
15 w7t
(20) > I:Lutn inf (t%)"(f)):l [Lirtn inf @} [Ln,n inf Qﬂ; (t)]

First suppose Lim,..y'(t) % 0and 8 = 1.
Since 8 = 1, y'(¢) > 0, and 1/7(¢) is bounded away from zero, it follows from
(19) and (20) that

21 Lim inf (t‘)"{’a) = 0.
>0
But due to monotonicity of (ry)®,7 =0,1,2,...,2n — 2, we have
Lmnmng_L ’%%@u—umoﬂno»W*VQn 3) =0
>0 AR

and since (7(£)y())@# =2 > 0 eventually, we must have (r(¢)y(£))@® < 0 for
some ¢ = tg > 5, where fg is conveniently large. 1f, however, ¥/ (£) — 0 as
t — oo, then ry'(t) — 0 implies (r(¢)y'(¢))**» — 0 as { — o and the con-
clusion follows since (ry)@"=2 > 0 eventually. The rest of the lemma follows
in an identical manner. Hence (14) holds.

Also sincer(¢) > 0,7 (t) 2 0,7’ (¢) £0, ..., 7 D) =0, we get from (14)

(22) ¥y >0, ¥y >0, y"® =0, y'®)z0,...,9%(@) =0

and

(23) Limy®(@#) =0, =2,3,...,2n — 1.

[AYe]

By invoking homogeneity condition on F; we obtain from (8)

7 ()] ) 26+1 ) yr.i(t) Yo, (t) y”(zn—n(t)
@) YOI + 5,0y (t)pj[y(t) 20w 20]

Now suppose (14) and (22) hold for ¢t = ¢; = t,. Then multiplying (24) by
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121, dividing by y%+!(¢) and integrating between ¢; and ¢ we obtain

U (5)y! ()1 Vs
ew J, 5 ()*

! 2n—1 y‘rj(s) yoj’(s) y”j(2n—1)(s)
+ fl s pj(s)F,-(————y(s) G T T ) ds < 0.

Now

/(1) _ ¥ (= M)

0= ;) T oyt — M) "

Therefore, by Lemma 1
! —
Lim 2= _ o

25 =
( ) >0 y(t - M)
and by Lemma 2
0
26 Lim =2+ = 1.
(26) AT
From (23), (25) and (26) and continuity in all the variables of F;, it follows
that
: MO0 2,70 @)
LmF.[y—L,*f—,...,—f———— = F;(1,0,0,0...,0) >0
L0 0 0] i )

and hence the second integral in (24a) tends to o0 as ¢t — 0. Now the first
integral in (24a) gives an integration by parts,

Clr(s)y’ ()]s ds
@ f

_ ATy I )y )

(@)™ B ()™
()T 2 — 1)s s
5 (y(s))*!

t (ry')(2n—2)s2n—ly,(s)ds
28 + 1 4
t@EAD ) T ey

t (2n—2) 2n—2

(ry") s ds

> — J— T
= k1 (2n 1) fs (y(s))_ﬁ-H ’

12
since on the right hand side of (27), the first and the last term are positive in
view of (14) and k; is a constant equal to second term in (27). Integrating
again and again by parts we get

t (2n—1) 2n—1 t ’
[ry'] sds o 5 ry’ (s)ds
Iyl S 4S5 pr_ Ry Lo
f; E)# =7 *Ju ()P

(28)

5
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where R," and R, are constants and R," > 0. Since r(¢) is non-decreasing we
have from (28),

1TSS ‘Y (s)ds
> Ry — RJS7 (¢ o
L e EROSRIO ) wrgymE

(252) - st 170 (55) [y ~ G

<00 ast—

since 7(¢) is bounded and ¥(¢) is increasing. Hence the left-hand side of (24a)
tends to 0 as t — 00 which is a contradiction. The proof is complete if 8 = 1
in (by). If 3 = 0 in (bs) then right hand side of (28a) is

Ry + Ry'r(§){In]y (1) — In|y(%)]]
and the result follows by boundedness and increasingness of y(¢).
For necessity criteria we will consider the equation

29) @y @O + p;OF;(ye; @), yo,' (1), -+, 35,70 ()] = 0

where p;, F; and 7 satisfy the same conditions as in Theorem 1 and in addition
we will assume that p,(¢) is bounded. For convenience we will drop the
subscript j.

THEOREM 2. If all the nontrivial continuous solutions of (29) are oscillatory,

then
[ee] 2’1‘
f p(t)dt = oo,

Proof. We will prove this theorem by constructing a solution with a pre-
scribed limit at oo, should the hypothesis

J £ (dt < o
hold. From equation (29)

60 o= [ R, 36, 1 s

We consider the integral equation

G yO) =1- .f, 7(s) J‘m (3(6‘7;%);

X P(x)F(yr(x), yo,(x), . ey qu_l) (x))dx ds.
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Here we shall employ a process similar to the one used by Onose [10]. We first
observe that for ¢ = ¢;

(32) lﬁjjj@—n%%wmmgr@%fji@—g“2mmw

= 7,(2) lw (22’7/ 2 ”—) p(s)ds < o0.

Because of conditions on r(t), there exist constants P; > 0 such that
r@)® =Py, i=0,1,2,...2n — 1.
Let
(33) P = max P,
0<i<on—1

Define sets

D= (o, .o w): /28w S 1 e S1/2,i = 1,2, 20 — 1,
=1{0,1,2,3,..,2n — 1}.

We choose T° large enough so that fort = 7 = 5

[Su F | Max I: J‘m L m-(gc——-—s—)zn— p(x)dx ds](i)
PRI L) vy ) e =2

This is possible due to (32), (33) and continuity of /. We now define a sequence

of functions which will converge to a solution of (31). Let ¢t = 7"+ M. Let

(35) yo(t) =1, yo(i)(t) = Or 1= 1,2,...,2n,

and forn =1,2,3,... let

(36) ya.() = 1 — f:";(_lsj “ch%_js% )'

8

X P E W1l — o))y« ooy ¥0d™ V(6 — o (x))dxds.

(34) <1

From (35) and (36),

yi(t) =1— F(,0,0,0...,0) :O ;(‘185 ) —(‘2%;1—*{)‘5%_'— p(x)dx ds.

Therefore in view of (34)

1/2 < yi(¢) £1 and |y =1/2, i=1,2,...,2n — 1.
Similarly,
(37) 12=y@) 21, k=1,2,....,
and
(38) @) £1/2, i=0,1,2,...,20 —1;k=1,2,....
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Also from equation (29) and boundedness of p(¢), 7(t) and (r(¢))®, ¢+ = 1, 2,
..., 2n — 1, it follows that

(39) [y ()] = ma.

Since the family {y:(?} is uniformly bounded and equicontinuous by (38) and
(39), there exists a uniformly convergent subsequence y;,(? such that

Limy,? =%, 1=0,1,2,..,2z — 1.

kr->o

The proof is complete.

COROLLARY 1. Under the hypotheses of Theorem 1 regarding F;, r(t) and p; and
the additional condition that p;(t) is bounded, and B = 1 in assumption (b:) of
Theorem 1, a necessary and sufficient condition that equation (29) oscillates is that

fw £, ()dt = .

If, however, 8 = 0in (b1) of Theorem 1, then the above is a necessary and sufficient
condition for all bounded continuous solutions of (29) to be oscillatory.

3. More on sufficiency. The following theorem generalizes Theorem 3 of
[13, p. 700] by a relatively simpler technique.

TuEOREM 3. Let equation (1) satisfy conditions (a) and (b) of Theorem (1),
as well as the following:

(c) Fi(\xo, Mx1, MNXs, ..., Nl2u—1) = MNFi(%0, %1, ..., Xou—1) for every (xo,
X1, .., Xom—1) € R¥™and \ € R;

(d) I # ¢, where I denotes the set of all indices for which the function F(x,,
X1, . ., Xou—1) 1S non-decreasing with respect to each variable xq, X1, X3, X5, . .,
Xon_1 Separately and decreasing with respect 0 xay X1, .., Xou—2 aS well as the
Sfunction [F;(x,0,0,0, .., 0)]/x s non-increasing on (0, ©);

(e) there exists a positive and differentiable function ¢(t), t = to for some i,
such that ¢’ < 0 and

o B i,z(t)v(zn_zzim ~
f |:¢(t) 1621 p:()Fi(1,0,0,..,0) —“—“‘4(#0) ]dt = 0.

Then equation (1) is oscillatory.
Proof. From equation (1), as in the proof of Theorem 1,
0) @y ) + iEZI biO)F (e (0), 96 @)y -+ o, 3070 (1)) <O

for t = t; for some convenient ¢;. Also for any non-oscillatory solution y(¢)
conclusions (14) and (22) of the proof of Theorem 1 hold for ¢ = ¢;. Multi-
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plying and dividing (40) by #(¢) and v(¢) respectively and invoking conditions
(c) of this theorem we get

@1 ey O1* @) /y0)

¥ 2./ 300
+o0 3 ror| %0 200 20 <o

Now

N ORE0) y_,,-““"-"(n] [ya — M)
F"[ya)'y(t) T30 JERTS0

in view of (14) and (22) and condition (d) of this theorem. Therefore

OO PR ()
F"(ya) 0 T 30 )

> {Fi[y(t — M)/y(®),0,0, .. ,0]/y(‘y@)M)}y(tyf)M) > F,[1,0,0,..,0],

since y(t — M)/y(t) increases to 1 as ¢ — o0 by Lemma 2. Hence from (41)
and this fact,

42)  [r@y I e@) /vt + @) ZEI p:«()F:(1,0,0,0..,0) < 0.

,0,0,..,0],

Adding and subtracting ¢'2(¢) |72 (¢)| /44 (¢) to (42) and integrating between
ts and ¢ we get

y(s) 4¢(5)
‘ OO
+ ‘I:5|:¢(S) ;1 pi(s)F’lCeryOy--yO) 4¢(S) ]ds <0-

Since the second integral in (43) tends to c© as ¢ — o0 we only need to consider
the first integral.

Let
TN Pe6) | 6 6)]
P= ~£|: y(s) T 44(s) ]ds
_0F @) )y )™ o (k)
y(t) y(ts)
- [W)m—% () _ () e )y' () _ @) gn] is
Jis y(s) ¥ (s) 4¢(s)
T )™ 2e6)y' () )V (6) | ¢76)|r )]
gL"*f,s[ ) O TI0) ]‘“’
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where

@)Y ) 6 (ts)
Lo= )

e, [(EETE) (¢2<s) _ 9 ¢'2<s>lr“""'”<s>1) is.

s (s) Y(s) vy () T Ay (s)
Now
lr(Qn_Z)(%)J%,\(i) > |2 (f‘))‘b,:;(_sl)7 = P
(ry) " T [7 " ly'(s) + 2n — 2)'1’ o )‘y [ + .y [
in view of (14) and (22) and 0 < [ < 1.
Hence
‘(ry'>“"—”y'<s>[¢2<s> ¢’ (5)$(s)! W]
2 p - 7 YR
) Pzl fts (s) ¥ (s) v Ty
B t (ryl)yl(Qn—Q)(S) I:¢>(S) 3 12S_,é""z
=Pt f o Lo e

which indicates that left hand side of 43 tends to o0 as ¢t — co. This is a contra-
diction and the proof is complete.

The author is grateful to the referee for his valuable suggestions.
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