A NECESSARY AND SUFFICIENT CONDITION FOR THE OSCILLATION OF AN EVEN ORDER NONLINEAR DELAY DIFFERENTIAL EQUATION

BHAGAT SINGH

1. Introduction. In this paper we study the oscillatory behavior of the even order nonlinear delay differential equation

(1)
$$(r(t)y'(t))^{(2n-1)} + \sum_{i=1}^{n} p_i(t)F_i(y_{\tau_i}(t), y_{\sigma_i}'(t), y_{\sigma_i}''(t), \dots y_{\sigma_i}^{(2n-1)}(t)) = 0,$$

where

 $y_{\tau_i}(t) = y(t - \tau_i(t)), \quad y_{\sigma_i}^{(i)}(t) = y^{(i)}(t - \sigma_i(t)), \quad i = 1, 2, 3, \dots, 2n - 1;$

(i) denotes the order of differentiation with respect to t. The delay terms τ_i , σ_i are assumed to be real-valued, continuous, non-negative, non-decreasing and bounded by a common constant M on the half line $(t_0, +\infty)$ for some $t_0 \geq 0$. It is also assumed throughout this paper that r(t) and $p_i(t)$ are all real valued and continuous in (t_0, ∞) . In addition sufficient smoothness of co-efficients for the existence of solutions in $C^{2n}(t_0, \infty)$ will be assumed without mention. A good discussion of these conditions can be found in [5] and [11].

A solution y(t) of (1) which is continuous and defined on some half line $[t_0, +\infty)$ is said to be oscillatory if it has arbitrarily large zeros, i.e. if $y(t_1) = 0$, $t_1 > t_0$ then there exists $t_2 > t_1$ such that $y(t_2) = 0$; otherwise it is non-oscillatory. Equation (1) is said to be oscillatory if all its non-trivial continuous solutions defined on some half line $[t_0, +\infty)$ are oscillatory; otherwise it is called non-oscillatory.

It will be further assumed throughout this paper that in relation to (1), the following conditions are satisfied.

(i) $p_i(t)$ are eventually positive;

(ii) $r(t) \in C^{2n-1}(t_0, \infty)$, r(t) is bounded and satisfies

$$r(t) > 0, r'(t) > 0, (-1)^{i+1}r^{(i)}(t) \ge 0 \quad i = 2, 3, \dots, 2n - 1.$$

Recently, Grollwitzer [5] has given necessary and sufficient condition for the delay equation

(2)
$$y''(t) + q(t)y_{\tau}^{\alpha}(t) = 0$$

to be oscillatory. Dahiya and Singh [3] extended these results to the even order delay equation

(3)
$$y^{(2n)}(t) + q(t)y_{\tau}^{\alpha}(t) = 0,$$

Received June 27, 1972 and in revised form, September 11, 1972.

and thus generalized similar other results due to Ličko and Švec [9]. In equations (2) and (3) it was assumed that α is the ratio of odd integers and either $\alpha > 1$ or $0 < \alpha < 1$. The case for $\alpha = 1$ was treated by Bradley [2] who considered the equation

(4)
$$y''(t) + p(t)y(t - \tau(t)) = 0$$

and proved sufficiency theorems not only for equation (4) but also for the more general equation

(5)
$$[r(t)y'(t)]' + p(t)f(y(t), y(g(t))) = 0.$$

A general situation is presented by the equation

(6)
$$x^{(n)} + p(t)g(x, x', x'', \dots, x^{n-1}) = 0, \quad (n \text{ even})$$

for which a necessary and sufficient condition is given by Onose [10] under one of the assumptions

$$\liminf_{|x_1|\to\infty} \frac{|g(x_1, x_2, \ldots, x_n)|}{|x_1|^{\tau}} > 0, \quad r > 1.$$

Our results extend Onose's results to a more general situation presented by a nonlinear delay equation (1). The proof for sufficiency part is entirely different.

By proving a necessary and sufficiency type theorem for an equation slightly less general than equation (1), we will generalize the results due to [1; 2; 3; 5; 9] and extend, in part, the results given in [10; 12; 13].

2. Main results. This section is given to proving necessity and sufficiency theorems. We will need the following two lemmas.

LEMMA 1 (Kiguradze [8]). If y(t) > 0, y'(t) > 0, y''(t) < 0 and y(t) is real, then for sufficiently large t, there exists a constant L > 0 such that

$$\frac{y'(t)}{y(t)} \le \frac{L}{t} \, .$$

LEMMA 2 [2, p. 398; 12]. Under the hypothesis of Lemma 1, there exist constants $R_i > 0, i = 1, 2, ..., n$ such that

$$\frac{y(t-\tau_i(t))}{y(t))} \ge R_i$$

and

$$\lim_{t \to \infty} \frac{y(t - \tau_i(t))}{(y(t))} = 1$$

THEOREM 1. Suppose the following additional conditions are satisfied: (a) $F_i : \mathbb{R}^{2n} \to \mathbb{R}$ is continuous, sgn $F_i(x_0, x_1, \ldots, x_{2n-1}) = \operatorname{sgn} x_0$ and (b) $F_i(-x_0, -x_1, \ldots, x_{2n-1}) = -F_i(x_0, x_1, \ldots, x_{2n-1})$ for all i, (b_1) there exists an index j such that

$$F_j(\lambda x_0, \lambda x_1, \ldots, \lambda x_{2n-1}) = \lambda^{2\beta+1} F_j(x_0, x_1, \ldots, x_{2n-1})$$

for all $(x_0, x_1, \ldots, x_{2n-1}) \in \mathbb{R}^{2n}$, real $\lambda \neq 0$ and some integer $\beta \geq 0$, (b₂) $F_j \to \infty$ as $x_0 \to \infty$ and $\int_{\infty}^{\infty} t^{2n-1} p_j(t) = \infty$.

Then all bounded continuous solutions of equation (1) are oscillatory. If, however, β in assumption (b₁) is such that $\beta \ge 1$, then all continuous solutions of equation (1) are oscillatory.

Remark. This theorem generalizes Theorem 1 of [13].

Proof of Theorem 1. We assume the existence of a non-oscillatory solution $y(t) \neq 0$ of equation (1). Conditions of the theorem imply that -y(t) is also a solution. Therefore, without any loss, we can assume that y(t) > 0 eventually. Suppose for $t \ge t_1 \ge 0$, y(t) and $y(t - \tau_i(t))$ are positive for all *i*. Choose t_2 so large that y(t), $y(t - \tau_i(t))$ and $p_i(t)$ are all positive in $[t_2, \infty]$. Due to sign condition on F_i , it follows now from equation (1) that

(8)
$$(r(t)y'(t))^{(2n-1)} + p_j(t)F_j(y_{\tau_j}(t), y_{\sigma_j}'(t), y_{\sigma_j}''(t), \dots, y_{\sigma_j}^{(2n-1)}(t)) < 0.$$

Thus

(9)
$$(r(t)y'(t))^{(2n-1)} < 0, t \in [t_2, \infty].$$

This, in turn, implies that $(r(t)y'(t))^{(2n-2)}$ is decreasing and must eventually have a constant sign. Proceeding this way we find that r(t)y'(t) must eventually have a constant sign and since r(t) > 0, it implies y'(t) must eventually have a constant sign. Hence there exists a conveniently large $t_3 \ge t_2$ such that for $t \ge t_3$, y'(t) is either positive or negative.

Case 1. y(t) > 0, y'(t) < 0, $t \in [t_3, \infty]$: Since $[r(t)y'(t)]^{(2n-1)} < 0$ and ry'(t) < 0

we claim that

(10)
$$(r(t)y'(t))' \leq 0 \quad \text{for} \quad t \in [t_4, \infty), \ t_4 \geq t_3.$$

For, suppose (r(t)y'(t))' > 0 eventually. Then (r(t)y'(t))'' being monotonic must eventually be non-positive because if (r(t)y'(t))'' > 0, then r(t)y'(t)being concave up and increasing will eventually be positive, a contradiction. Proceeding this way and remembering that all derivatives of r(t)y'(t) are monotonic, we find $[r(t)y'(t)]^{(2n-1)} \ge 0$, a contradiction to (9). Hence (10) holds.

Integrating (10) between t_4 and t we obtain $r(t)y'(t) \leq r(t_4)y'(t_4) < 0$, or

(11)
$$y'(t) \leq r(t_4)y'(t_4)\frac{1}{r(t)}$$

Therefore from (11),

(12)
$$y(t) \leq y(t_4) + r(t_4)y'(t_4) \int_{t_4}^t \frac{1}{r(s)} ds < 0.$$

Now as $t \to \infty$, the right hand side of (12) tends to $-\infty$ which is a contradiction, since y(t) > 0 in $[t_4, \infty)$ and r(t) is bounded. Hence either y(t) is oscillatory or the following case holds.

Case 2. y(t) > 0, y'(t) > 0 for $t \in [t_4, \infty)$: Since from inequality (9), $(r(t)y'(t))^{(2n-1)} < 0$ and r(t)y'(t) > 0 in $[t_4, \infty)$, we must have

(13)
$$(r(t)y'(t))^{(2n-2)} > 0$$
 eventually.

For if $(ry')^{(2n-2)} < 0$, then $(ry')^{(2n-3)}$ is concave down decreasing and therefore ultimately negative. This will eventually make y < 0, a contradiction.

We now claim that

(14)
$$(-1)^{i}(r(t)y'(t))^{(i)} \ge 0, \quad i = 0, 1, 2, \dots, 2n - 1,$$

where (i) denotes the order of differentiation. To see this suppose first that y(t) is bounded. If $(r(t)y'(t)^{(2n-3)} > 0$ eventually then because of (13), $(r(t)y'(t))^{(2n-4)}$ will be eventually positive and tend to ∞ . Proceeding this way we find that $r(t)y'(t) \to \infty$ as $t \to \infty$ and since r(t) is bounded, this leads to the fact that $y(t) \to \infty$ as $t \to \infty$, a contradiction. Hence

$$(r(t)y'(t))^{2n-3} \leq 0$$
 eventually,

and the claim holds by continuation of this process. Now suppose y(t) is unbounded as $t \to \infty$. Integrating (8) between t_5 and t, t_5 being conveniently large we have

(15)
$$(r(t)y'(t)^{(2n-2)} < (r(t_5)y'(t_5))^{(2n-2)} - \int_{t_5}^t P_j(s)F_j(y_{\tau_j}(s), y_{\sigma_j}'(s), y_{\sigma_j}'(s), y_{\sigma_j}''(t), \dots, y_{\sigma_j}^{(2n-1)}(s))ds = (r(t_5)y'(t_5))^{(2n-2)} - \int_{t_5}^t s^{2n-1}P_j(s) \frac{F_j(y_{\tau_j}(s), y_{\sigma_j}'(s), \dots, y_{\sigma_j}^{(2n-1)}(s))}{s^{2n-1}} ds.$$

Since left hand side of (15) eventually becomes positive and by condition (b_2) of this theorem

$$\int_{t_5}^{\infty} t^{2n-1} p_j(t) dt = \infty,$$

we must have

(16)
$$\lim_{t \to \infty} \inf \left[\frac{F_j(y_{\tau_j}(t), \dots, y_{\sigma_j}^{(2n-1)}(t))}{t^{2n-1}} \right] = 0.$$

Now

$$\lim_{t \to \infty} \inf \left[\frac{F_{j}(y_{\tau_{j}}(t), \dots, y_{\sigma_{j}}^{(2n-1)}(t))}{t^{2n-1}} \right]$$

= $\lim_{t \to \infty} \inf \frac{y^{2\beta+1}(t)F_{j}\left[\frac{y_{\tau_{j}}(t)}{y(t)}, \dots, \frac{y_{\sigma_{j}}^{(2n-1)}(t)}{y(t)}\right]}{t^{2n-1}}$
(17) $\geq \left[\liminf_{t \to \infty} \frac{y^{2\beta+1}}{t^{2n-1}} \right] \left[\liminf_{t \to \infty} F_{j}(y_{\tau_{j}}(t)/y(t), \dots, y_{\sigma_{j}}^{(2n-1)}(t)/y(t)) \right].$

As will be shown later

(18)
$$\lim_{t\to\infty} \inf_{t\to\infty} F_j(y_{\tau_j}(t)/y(t),\ldots,y_{\sigma_j}^{(2n-1)}(t)/y(t)) = \lim_{t\to\infty} F_j(1,0,0,\ldots,0) > 0.$$

(16), (17) and (18) imply that

(19)
$$\lim_{t\to\infty} \inf \frac{y^{2\beta+1}}{t^{2n-1}} = 0.$$

Now

(20)

$$\lim_{t \to \infty} \inf \frac{y^{2\beta+1}}{t^{2n-1}} = \liminf_{t \to \infty} \frac{ry^{2\beta+1}(t)}{rt^{2n-1}}$$

$$\geq \left[\liminf_{t \to \infty} \frac{(ry(t))}{t^{2n-3}}\right] \left[\liminf_{t \to \infty} \frac{y(t)}{t}\right] \left[\liminf_{t \to \infty} \frac{y^{2\beta-1}(t)}{rt}\right].$$

First suppose $\lim_{t\to\infty} y'(t) \neq 0$ and $\beta \geq 1$.

Since $\beta \ge 1$, y'(t) > 0, and 1/r(t) is bounded away from zero, it follows from (19) and (20) that

(21)
$$\lim_{t\to\infty} \inf\left(\frac{ry}{t^{2n-3}}\right) = 0.$$

But due to monotonicity of $(ry)^{(i)}$, $i = 0, 1, 2, \ldots, 2n - 2$, we have

$$\liminf_{t \to \infty} \frac{ry(t)}{t^{2n-3}} = \lim_{t \to \infty} \frac{r(t)y(t)}{t^{2n-3}} = \lim_{t \to \infty} (r(t)y(t))^{(2n-3)}/(2n-3)! = 0$$

and since $(r(t)y(t))^{(2n-2)} > 0$ eventually, we must have $(r(t)y(t))^{(2n-3)} < 0$ for some $t \ge t_6 > t_5$, where t_6 is conveniently large. If, however, $y'(t) \to 0$ as $t \to \infty$, then $ry'(t) \to 0$ implies $(r(t)y'(t))^{(2n-3)} \to 0$ as $t \to \infty$ and the conclusion follows since $(ry)^{(2n-2)} > 0$ eventually. The rest of the lemma follows in an identical manner. Hence (14) holds.

Also since r(t) > 0, $r'(t) \ge 0$, $r''(t) \le 0$, ..., $r^{(2n-1)}(t) \ge 0$, we get from (14)

(22)
$$y(t) > 0, y'(t) > 0, y''(t) \le 0, y'''(t) \ge 0, \dots, y^{(2n)}(t) \le 0$$

and

(23)
$$\lim_{t\to\infty} y^{(i)}(t) = 0, i = 2, 3, \dots, 2n-1.$$

By invoking homogeneity condition on F_j we obtain from (8)

$$(24) \quad [r(t)y'(t)]^{(2n-1)} + p_j(t)y^{2\beta+1}(t)F_j\left[\frac{y_{\tau_j}(t)}{y(t)}, \frac{y_{\sigma_j}'(t)}{y(t)}, \dots, \frac{y_{\sigma_j}^{(2n-1)}(t)}{y(t)}\right] < 0.$$

Now suppose (14) and (22) hold for $t \ge t_5 \ge t_4$. Then multiplying (24) by

https://doi.org/10.4153/CJM-1973-115-0 Published online by Cambridge University Press

 $t^{2^{n-1}}$, dividing by $y^{2\beta+1}(t)$ and integrating between t_5 and t we obtain

(24a)
$$\int_{t5}^{t} \frac{s^{2n-1} [r(s)y'(s)]^{(2n-1)} ds}{(y(s))^{2\beta+1}} + \int_{t5}^{t} s^{2n-1} p_j(s) F_j\left(\frac{y_{\tau_j}(s)}{y(s)}, \frac{y_{\sigma_j}'(s)}{y(s)}, \dots, \frac{y_{\sigma_j}^{(2n-1)}(s)}{y(s)}\right) ds < 0.$$

Now

$$0 \leq \frac{y_{\sigma_j}'(t)}{y_{\tau_j}(t)} \leq \frac{y'(t-M)}{y(t-M)} \,.$$

Therefore, by Lemma 1

(25)
$$\lim_{t\to\infty}\frac{y'(t-M)}{y(t-M)}=0,$$

and by Lemma 2

(26)
$$\lim_{t\to\infty}\frac{y_{\tau_j}(t)}{y(t)}=1.$$

From (23), (25) and (26) and continuity in all the variables of F_j , it follows that

$$\lim_{t \to \infty} F_j \left[\frac{y_{\tau_j}(t)}{y(t)}, \frac{y_{\sigma_j}'(t)}{y(t)}, \dots, \frac{y_{\sigma_j}^{(2n-1)}(t)}{y(t)} \right] = F_j(1, 0, 0, 0, \dots, 0) > 0$$

and hence the second integral in (24a) tends to ∞ as $t \to \infty$. Now the first integral in (24a) gives an integration by parts,

$$(27) \quad \int_{t_5}^{t} \frac{[r(s)y'(s)]^{(2n-1)}s^{2n-1}ds}{(y(s))^{2\beta+1}} \\ = \frac{t^{2n-1}[r(t)y'(t)]^{(2n-2)}}{(y(t))^{2\beta+1}} - \frac{t_5^{2n-1}[r(t_5)y'(t_5)]^{(2n-2)}}{(y(t_5))^{2\beta+1}} \\ - \int_{t_5}^{t} \frac{(ry')^{(2n-2)}(2n-1)s^{2n-2}ds}{(y(s))^{2\beta+1}} \\ + (2\beta+1) \int_{t_5}^{t} \frac{(ry')^{(2n-2)}s^{2n-1}y'(s)ds}{(y(s))^{2\beta+2}} \\ \ge k_1 - (2n-1) \int_{t_5}^{t} \frac{(ry')^{(2n-2)}s^{2n-2}ds}{(y(s))^{2\beta+1}},$$

since on the right hand side of (27), the first and the last term are positive in view of (14) and k_1 is a constant equal to second term in (27). Integrating again and again by parts we get

(28)
$$\int_{t_5}^t \frac{[ry']^{(2n-1)}s^{2n-1}ds}{(y(s))^{2\beta+1}} \ge R_1' - R_2' \int_{t_5}^t \frac{ry'(s)ds}{(y(s))^{2\beta+1}}$$

where R_1' and R_2' are constants and $R_2' > 0$. Since r(t) is non-decreasing we have from (28),

(28a)

$$\int_{t_5}^{t} \frac{[ry']^{(2n-1)} s^{2n-1} ds}{(y(s))^{2\beta+1}} \ge R_1' - R_2' r(t) \int_{t_5}^{t} \frac{y'(s) ds}{(y(s))^{2\beta+1}} = R_1' + R_2' r(t) \left(\frac{1}{2\beta}\right) \left[\frac{1}{(y(t))^{2p}} - \frac{1}{(y(t_5))^{2p}}\right]$$

$$< \infty \quad \text{as } t \to \infty$$

since r(t) is bounded and y(t) is increasing. Hence the left-hand side of (24a) tends to ∞ as $t \to \infty$ which is a contradiction. The proof is complete if $\beta \ge 1$ in (b₂). If $\beta = 0$ in (b₂) then right hand side of (28a) is

$$R_1' + R_2' r(t) [\ln |y(t)| - \ln |y(t_5)|]$$

and the result follows by boundedness and increasingness of y(t).

For necessity criteria we will consider the equation

$$(29) \quad [r(t)y'(t)]^{(2n-1)} + p_j(t)F_j(y_{\tau_j}(t), y_{\sigma_j}'(t), \ldots, y_{\sigma_j}^{(2n-1)}(t)] = 0$$

where p_j , F_j and r satisfy the same conditions as in Theorem 1 and in addition we will assume that $p_j(t)$ is bounded. For convenience we will drop the subscript j.

THEOREM 2. If all the nontrivial continuous solutions of (29) are oscillatory, then

$$\int^{\infty} t^{2n-1} p(t) dt = \infty.$$

Proof. We will prove this theorem by constructing a solution with a prescribed limit at ∞ , should the hypothesis

$$\int^{\infty} t^{2n-1} p(t) dt < \infty$$

hold. From equation (29)

(30)
$$ry'(t) = \int_{t}^{\infty} \frac{(s-t)^{2n-2}}{(2n-2)} p(s) F(y_{\tau}(s), y_{\sigma}'(s), \dots, y_{\sigma}^{(2n-1)}(s)) ds.$$

We consider the integral equation

(31)
$$y'(t) = 1 - \int_{t}^{\infty} \frac{1}{r(s)} \int_{s}^{\infty} \frac{(x-s)^{2n-2}}{(2n-2)} \times p(x) F(y_{\tau}(x), y_{\sigma}'(x), \dots, y_{\sigma}^{(2n-1)}(x)) dx \, ds.$$

Here we shall employ a process similar to the one used by Onose [10]. We first observe that for $t \ge t_5$

$$(32) \quad \int_{t}^{\infty} \frac{1}{r(s)} \int_{s}^{\infty} (x-s)^{2n-1} p(x) dx ds \leq \frac{1}{r(t_{5})} \int_{t}^{\infty} \int_{s}^{\infty} (x-s)^{2n-2} p(x) dx ds$$
$$= \frac{1}{r(t_{5})} \int_{t}^{\infty} \frac{(s-t)^{2n-1}}{(2n-1)} p(s) ds < \infty.$$

Because of conditions on r(t), there exist constants $P_i > 0$ such that

$$|r(t))^{(i)}| \leq P_i, \quad i = 0, 1, 2, \dots 2n - 1.$$

Let

$$P = \max_{0 \le i \le 2n-1} P_i.$$

Define sets

$$D = \{ (x_0, x_1, \dots, x_{2n-1}) \colon 1/2 \leq x_0 \leq 1, |x_i| \leq 1/2, i = 1, 2, \dots, 2n-1 \}, N = \{ 0, 1, 2, 3, \dots, 2n-1 \}.$$

We choose T large enough so that for $t \ge T \ge t_5$

(34)
$$\left\| \left[\sup_{D} F \right] \max_{i \in N} \left[\int_{t}^{\infty} \frac{1}{r(s)} \int_{s}^{\infty} \frac{(x-s)^{2n-2}}{(2n-2)!} p(x) dx \, ds \right]^{(i)} \right\| \leq \frac{1}{2}.$$

This is possible due to (32), (33) and continuity of F. We now define a sequence of functions which will converge to a solution of (31). Let $t \ge T + M$. Let

(35)
$$y_0(t) \equiv 1, \quad y_0^{(i)}(t) \equiv 0, \quad i = 1, 2, \dots, 2n,$$

and for n = 1, 2, 3, ... let

(36)
$$y_n(t) = 1 - \int_t^\infty \frac{1}{r(s)} \int_s^\infty \frac{(x-s)^{2n-2}}{(2n-2)!} \times p(x) F(y_{n-1}(x-\sigma(x)), \dots, y_{n-1}^{(2n-1)}(x-\sigma(x))) dx ds.$$

From (35) and (36),

$$y_1(t) = 1 - F(1, 0, 0, 0, \dots, 0) \int_t^\infty \frac{1}{r(s)} \int_s^\infty \frac{(x-s)^{2n-2}}{(2n-2)!} p(x) dx \, ds.$$

Therefore in view of (34)

$$1/2 \leq y_1(t) \leq 1$$
 and $|y_1^{(i)}(t)| \leq 1/2, i = 1, 2, ..., 2n - 1.$

Similarly,

(37)
$$1/2 \leq y_k(t) \leq 1, \quad k = 1, 2, \ldots,$$

and

$$(38) |y_k^{(i)}(t)| \leq 1/2, \quad i = 0, 1, 2, \dots, 2n-1; k = 1, 2, \dots$$

Also from equation (29) and boundedness of p(t), r(t) and $(r(t))^{(i)}$, $i = 1, 2, \ldots, 2n - 1$, it follows that

 $(39) |y_k^{(2n)}(t)| \leq m_1.$

Since the family $\{y_k^{(i)}\}$ is uniformly bounded and equicontinuous by (38) and (39), there exists a uniformly convergent subsequence $y_{k_r}^{(i)}$ such that

$$\lim_{k_{r\to\infty}} y_{k_r}^{(i)} = y^{(i)}, \quad i = 0, 1, 2, \dots, 2n-1.$$

The proof is complete.

COROLLARY 1. Under the hypotheses of Theorem 1 regarding F_j , r(t) and p_j and the additional condition that $p_j(t)$ is bounded, and $\beta \ge 1$ in assumption (b₁) of Theorem 1, a necessary and sufficient condition that equation (29) oscillates is that

$$\int^{\infty} t^{2n-1} p_j(t) dt = \infty.$$

If, however, $\beta \ge 0$ in (b_1) of Theorem 1, then the above is a necessary and sufficient condition for all bounded continuous solutions of (29) to be oscillatory.

3. More on sufficiency. The following theorem generalizes Theorem 3 of [13, p. 700] by a relatively simpler technique.

THEOREM 3. Let equation (1) satisfy conditions (a) and (b) of Theorem (1), as well as the following:

(c) $F_i(\lambda x_0, \lambda x_1, \lambda x_2, \ldots, \lambda x_{2n-1}) = \lambda F_i(x_0, x_1, \ldots, x_{2n-1})$ for every $(x_0, x_1, \ldots, x_{2n-1}) \in \mathbb{R}^{2n}$ and $\lambda \in \mathbb{R}$;

(d) $I \neq \phi$, where I denotes the set of all indices for which the function $F_i(x_0, x_1, \ldots, x_{2n-1})$ is non-decreasing with respect to each variable $x_0, x_1, x_3, x_5, \ldots, x_{2n-1}$ separately and decreasing with respect to $x_2, x_4, \ldots, x_{2n-2}$ as well as the function $[F_i(x, 0, 0, 0, \ldots, 0)]/x$ is non-increasing on $(0, \infty)$;

(e) there exists a positive and differentiable function $\phi(t)$, $t \ge t_0$ for some t_0 , such that $\phi' \le 0$ and

$$\int_{0}^{\infty} \left[\phi(t) \sum_{i \in I} p_i(t) F_i(1, 0, 0, ..., 0) - \frac{{\phi'}^2(t) |r'^{(2n-2)}(t)|}{4\phi(t)} \right] dt = \infty.$$

Then equation (1) is oscillatory.

Proof. From equation (1), as in the proof of Theorem 1,

(40)
$$(r(t)y'(t))^{(2n-1)} + \sum_{i \in I} p_i(t)F_i(y_{\tau_i}(t), y_{\sigma_i}'(t), \dots, y_{\sigma_i}^{(2n-1)}(t)) < 0$$

for $t \ge t_5$ for some convenient t_5 . Also for any non-oscillatory solution y(t) conclusions (14) and (22) of the proof of Theorem 1 hold for $t \ge t_5$. Multi-

plying and dividing (40) by $\phi(t)$ and y(t) respectively and invoking conditions (c) of this theorem we get

(41)
$$[r(t)y'(t)]^{(2n-1)}\phi(t)/y(t)$$

+ $\phi(t) \sum_{i \in I} p_i(t)F_i \bigg[\frac{y_{\tau_i}(t)}{y(t)}, \frac{y_{\sigma_i}'(t)}{y(t)}, \dots, \frac{y_{\sigma_i}^{(2n-1)}(t)}{y(t)} \bigg] < 0.$

Now

$$F_{i}\left[\frac{y_{\tau_{i}}(t)}{y(t)}, \frac{y_{\sigma_{i}}'(t)}{y(t)}, \dots, \frac{y_{\sigma_{i}}^{(2n-1)}(t)}{y(t)}\right] \ge F_{i}\left[\frac{y(t-M)}{y(t)}, 0, 0, \dots, 0\right],$$

in view of (14) and (22) and condition (d) of this theorem. Therefore

$$F_{i}\left(\frac{y_{\tau_{i}}(t)}{y(t)}, \frac{y_{\sigma_{i}}'(t)}{y(t)}, \dots, \frac{y_{\sigma_{i}}^{(2n-1)}(t)}{y(t)}\right) \\ \ge \left\{F_{i}\left[y(t-M)/y(t), 0, 0, \dots, 0\right] \middle/ \frac{y(t-M)}{y(t)}\right\} \frac{y(t)}{y(t-M)} \ge F_{i}[1, 0, 0, \dots, 0],$$

since y(t - M)/y(t) increases to 1 as $t \to \infty$ by Lemma 2. Hence from (41) and this fact,

(42)
$$[r(t)y'(t)]^{(2n-1)}\phi(t)/y(t) + \phi(t) \sum_{i \in I} p_i(t)F_i(1,0,0,0\ldots,0) < 0.$$

Adding and subtracting $\phi'^2(t)|r^{(2n-2)}(t)|/4\phi(t)$ to (42) and integrating between t_5 and t we get

(43)
$$\int_{t_{5}}^{t} \left[\frac{(ry')^{(2n-1)}\phi(s)}{y(s)} + \frac{{\phi'}^{2}(s)|r^{(2n-2)}(s)|}{4\phi(s)} \right] ds + \int_{t_{5}}^{t} \left[\phi(s) \sum_{i \in I} p_{i}(s)F_{i}(1,0,0,\ldots,0) - \frac{{\phi'}^{2}(s)|r^{(2n-2)}(s)|}{4\phi(s)} \right] ds < 0.$$

Since the second integral in (43) tends to ∞ as $t \to \infty$ we only need to consider the first integral.

Let

$$P = \int_{t_5}^{t} \left[\frac{(ry')^{(2n-1)} \phi(s)}{y(s)} + \frac{{\phi'}^2(s) |r'^{(2n-2)}(s)|}{4\phi(s)} \right] ds$$

= $\frac{(ry')^{(2n-2)} \phi(t)}{y(t)} - \frac{(r(t_5)y'(t_5))^{(2n-2)} \phi(t_5)}{y(t_5)}$
- $\int_{t_5}^{t} \left[\frac{(ry')^{(2n-2)} \phi'(s)}{y(s)} - \frac{(ry')^{(2n-2)} \phi(s)y'(s)}{y^2(s)} - \frac{{\phi'}^2(s) |r'^{(2n-2)}(s)|}{4\phi(s)} \right] ds$
\ge L_0 + $\int_{t_5}^{t} \left[\frac{(ry')^{(2n-2)} \phi(s)y'(s)}{y^2(s)} - \frac{(ry')^{(2n-2)} \phi'(s)}{y(s)} + \frac{{\phi'}^2(s) |r'^{(2n-2)}(s)|}{4\phi(s)} \right] ds$,

where

$$L_{0} = \frac{(r(t_{5})y'(t_{5}))^{(2n-2)}\phi(t_{5})}{y(t_{5})}.$$

$$P \ge L_{0} + \int_{t_{5}}^{t} \frac{(ry')^{(2n-2)}y'(s)}{\phi(s)} \left(\frac{\phi^{2}(s)}{y^{2}(s)} - \frac{\phi(s)\phi'(s)}{y(s)y'(s)} + \frac{{\phi'}^{2}(s)|r^{(2n-2)}(s)|}{4(ry')^{(2n-2)}y'(s)}\right) ds.$$

Now

$$\frac{|r^{(2n-2)}(s)|y'(s)}{(ry')^{(2n-2)}} \ge \frac{|r^{(2n-2)}(s)|y'(s)|}{|r^{(2n-2)}|y'(s) + (2n-2)|r^{(2n-3)}|y''| + \ldots + r|y^{2n-1}|} = l^2$$

in view of (14) and (22) and 0 < l < 1. Hence

(44)
$$P \ge P_{0} + \int_{t_{5}}^{t} \frac{(ry')^{(2n-2)}y'(s)}{\phi(s)} \left[\frac{\phi^{2}(s)}{y^{2}(s)} - \frac{\phi'(s)\phi(s)l}{yy'} + \frac{\phi'^{2}l^{2}}{4y'^{2}} \right] ds$$
$$= P_{0} + \int_{t_{5}}^{t} \frac{(ry')y'^{(2n-2)}(s)}{\phi(s)} \left[\frac{\phi(s)}{y(s)} - \frac{\phi'l}{2y'} \right]^{2} ds.$$

which indicates that left hand side of 43 tends to ∞ as $t \to \infty$. This is a contradiction and the proof is complete.

The author is grateful to the referee for his valuable suggestions.

References

- 1. F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643-647.
- 2. John S. Bradley, Oscillation theorems for a second-order delay equation, J. Differential Equations 8 (1970), 397-403.
- **3.** R. S. Dahiya and Bhagat Singh, *Oscillatory behavior of even order delay equations* (to appear in J. Math. Anal. Appl.).
- 4. L. E. El'sgolts, Introduction to the theory of differential equations with deviating arguments (Holden-Day, San Francisco, 1966).
- 5. H. E. Gollwitzer, On non-linear oscillations for a second order delay equation, J. Math. Anal. Appl. 26 (1969), 385–389.
- A. G. Kartsatos, Criteria for oscillation of solutions of differential equations of arbitrary order, Proc. Japan Acad. 44 (1968), 599–602.
- 7. I. T. Kiguradze, Oscillation properties of solutions of certain ordinary differential equations (Russian), Dokl. Akad. Nauk SSSR 144 (1962), 33-36.
- J. Levin, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc. 53 (1965), 534-541.
- **9.** L. Ličko and M. Švec, Le caractere oscillatoire des solutions de l'equation $y^{(n)} + f(t) y^{\alpha} = 0, n > 1$, Czechoslovak Math. J. 13 (1963) 481–491.
- Hiroshi Onose, Oscillatory properties of ordinary differential equations of arbitrary order, J. Differential Equations 7 (1970), 454-458.
- Y. G. Sficas, Contribution to the study of differential equations with delay (Greek; English Summary), Bull. Soc. Math. Grèce 9 (1968), 25–93.

- 12. Bhagat Singh, On the oscillation of certain second order non-linear delay equation (to appear in Indian J. Pure Appl. Math.).
- 13. V. A. Staikos and A. G. Petsoulas, Some oscillation criteria for second order non-linear delay differential equations, J. Math. Anal. Appl. 30 (1970), 695-701.
- 14. J. W. Wong, A note on second order non-linear oscillations, SIAM Rev. 10 (1968), 88-91.

University of Wisconsin Center–Manitowoc, Manitowoc, Wisconsin