Fourier Analysis of Line-Profile Variations: Toward Stellar $m - \nu$ Diagrams?

W.J. Merryfield¹, E.J. Kennelly²

¹University of Victoria, ²University of British Columbia

Abstract

Numerous rapidly rotating δ Scuti stars exhibit variable line profiles containing traveling subfeatures [1]-[2], which may be signatures of nonradial pulsations having relatively high azimuthal order |m|. We describe a procedure whereby a time series of spectral line profiles is Fourier analysed both in time and in a wavelength variable that is presumed to correspond to azimuthal position ϕ on the star. What such an analysis can tell us is examined by analysing artificially-generated data. For an ideal example in which $\sin i = 1$ and a single mode having $\ell = -m = 10$ is present, the two-dimensional Fourier transform yields a power spectrum in frequency ν and an apparent azimuthal order \hat{m} that provides a good indication of the actual ν and m. Such a straightforward interpretation is also possible when $\sin i < 1$, and when multiple sectoral modes $(\ell = |m|)$ are present. For tesseral modes $(\ell > |m|)$, \hat{m} may correspond more closely to ℓ than to m.

Figure Caption. (a) Residual line-profile variations for a ten-hour observation when a single mode is present having $\ell = -m = 10$, $\nu = 20$ cycles d^{-1} , and radial velocity amplitude $V_r = 2.5$ km s⁻¹; (b) Two-dimensional Fourier transform of (a). The position of the primary peak corresponds closely to the input values of m and ν .

References:

Walker, G.A.H., Yang, S. & Fahlman, G.G. 1987, Astrophys. J. 320, L139. Kennelly, E.J., Yang, S., Walker, G.A.H. & Hubeny, I. 1992, P.A.S.P. 104, 15.