## A PROBLEM IN PARTITIONS: ENUMERATION OF ELEMENTS OF A GIVEN DEGREE IN THE FREE COMMUTATIVE ENTROPIC CYCLIC GROUPOID

by H. MINC<br>(Received 16th April 1959)

A groupoid is a set closed with respect to a binary operation. It is commutative and entropic if $x y=y x$ and $x y . z w=x z . y w$ hold for all its elements. It is cyclic if it is generated by one element. Let $x$ be the generator of the free commutative entropic cyclic groupoid $\mathfrak{A}$. Then any element of $\mathfrak{A}$ can be written in the form $x^{P}$ where $x^{1}=x$ and $x^{Q+R}=x^{Q} x^{R}$. Two indices $P, Q$ are equal (called " concordant" in (3)) if and only if $x^{P}=x^{Q}$. The groupoid of these indices, the free additive commutative entropic logarithmetic (cf. (3)), is clearly isomorphic to $\mathfrak{H}$.

We further define index $\theta$-polynomials

$$
\theta_{1}=0, \quad \theta_{P+Q}=\left(\theta_{P}+\theta_{Q}\right) \lambda+1
$$

where $\lambda$ is an indeterminate in the domain of integers. It has been shown in (3) that these polynomials represent $\mathfrak{A}$ faithfully.

If $\delta_{P}$ is the degree of $x^{P}$, i.e. $\delta_{P}$ is the number of factors equal to $x$ in $x^{P}$, we obviously have

$$
\delta_{1}=1, \quad \delta_{P+Q}=\delta_{P}+\delta_{Q} .
$$

The degree of $x^{P}$ is therefore the value of $P$ interpreted as an integer in ordinary arithmetic and is equal to $\theta_{P}(1)+1$, i.e. to the sum of coefficients in $\theta_{P}(\lambda)$ increased by 1 . It was called "potency of $P$ " in (2), (3) and (4) and "degree of $P$ " in (1). The degree of $\theta_{P}$ increased by 1 is called the altitude of $P$. A formula for enumeration of indices of a given altitude was given in (3). In the present paper we give a method for calculating the number of indices of given potency $\delta$, i.e. the number of elements in $\mathfrak{H}$ of degree $\delta$.

A non-zero polynomial $c_{0}+c_{1} \lambda+c_{2} \lambda^{2}+\ldots+c_{n} \lambda^{n}$, where the $c_{i}$ are positive integers, is a $\theta$-polynomial if and only if $c_{0}=1$ and $c_{i+1} \leqslant 2 c_{i}(i=0,1,2, \ldots, n-1)$ (cf. (3)). Hence the problem of finding the number of elements in $\mathfrak{A}$ of degree $d+1$ is equivalent to the problem of finding the number of partitions of $d$ such that $d=1+c_{1}+c_{2}+\ldots+c_{n}$ where $c_{1}=1$ or 2 and $c_{i+1} \leqslant 2 c_{i}$. To solve it, consider the more general problem: given two positive integers $c$ and $d$ find the number of partitions of $d$ such that $d=c+c_{1}+c_{2}+\ldots+c_{n}$ where $c_{1} \leqslant 2 c$ and $c_{i+1} \leqslant 2 c_{i}$. Denote this number by $v(c, d)$.

Since $c_{1}$ can take any value between 1 and $\min (2 c, d-c)$ we have

$$
v(c, d)=\sum_{i=1}^{2 c} v(i, d-c)
$$

where $v(x, y)=0$ unless $x \leqslant y$. The formula expresses $v(c, d)$ in terms of values of the function for smaller values of the second argument. Since $v(x, x)=1$
for all positive integers $x$, we can calcurace $v(c, a)$ for any given $c$ anu $a$ by repeated use of the formula. Thus

|  | $d=1$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $v(c, d)=$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $c=1$ | 1 | 1 | 2 | 3 | 5 | 9 | 16 | 28 | 50 | 89 | 159 | 285 | 510 | 914 |
| 2 | 0 | 1 | 1 | 2 | 4 | 7 | 12 | 22 | 39 | 70 | 126 | 225 | 404 | 725 |
| 3 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 | 42 | 76 | 137 | 245 | 441 |
| 4 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 | 43 | 78 | 140 | 251 |
| 5 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 | 43 | 78 | 141 |
| 6 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 | 43 | 78 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 | 43 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 4 | 7 | 13 | 24 |

The first row ( $c=1$ ) in the above table gives the numbers of elements in $\mathfrak{A}$ of degree $d+1$.

## REFERENCES

(1) I. M. H. Etherington, On non-associative combinations, Proc. Roy. Soc. Edin., 59 (1939), 153-162.
(2) H. Minc, Index polynomials and bifurcating root-trees, Proc. Roy. Soc. Edin., A, 64 (1957), 319-341.
(3) H. Minc, The free commutative entropic logarithmetic, Proc. Roy. Soc. Edin., A, 65 (1959), 177-192.
(4) H. Minc, Enumeration of indices of given altitude and potency, Proc. Edin. Math. Soc. 11 (1959), 207-209.

The University of British Columbia Vancouver, Canada

