A PROBLEM IN PARTITIONS: ENUMERATION OF ELEMENTS OF A GIVEN DEGREE IN THE FREE COMMUTATIVE ENTROPIC CYCLIC GROUPOID

by H. MINC (Received 16th April 1959)

A groupoid is a set closed with respect to a binary operation. It is commutative and entropic if xy=yx and xy.zw=xz.yw hold for all its elements. It is cyclic if it is generated by one element. Let x be the generator of the free commutative entropic cyclic groupoid \mathfrak{A} . Then any element of \mathfrak{A} can be written in the form x^P where $x^1=x$ and $x^{Q+R}=x^Qx^R$. Two indices P, Q are equal (called "concordant" in (3)) if and only if $x^P=x^Q$. The groupoid of these indices, the free additive commutative entropic logarithmetic (cf. (3)), is clearly isomorphic to \mathfrak{A} .

We further define index θ -polynomials

$$\theta_1 = 0, \quad \theta_{P+Q} = (\theta_P + \theta_Q)\lambda + 1$$

where λ is an indeterminate in the domain of integers. It has been shown in (3) that these polynomials represent \mathfrak{A} faithfully.

If δ_P is the degree of x^P , i.e. δ_P is the number of factors equal to x in x^P , we obviously have

$$\delta_1 = 1, \quad \delta_{P+Q} = \delta_P + \delta_Q.$$

The degree of x^P is therefore the value of P interpreted as an integer in ordinary arithmetic and is equal to $\theta_P(1) + 1$, i.e. to the sum of coefficients in $\theta_P(\lambda)$ increased by 1. It was called "potency of P" in (2), (3) and (4) and "degree of P" in (1). The degree of θ_P increased by 1 is called the altitude of P. A formula for enumeration of indices of a given altitude was given in (3). In the present paper we give a method for calculating the number of indices of given potency δ , i.e. the number of elements in \mathfrak{A} of degree δ .

A non-zero polynomial $c_0+c_1\lambda+c_2\lambda^2+\ldots+c_n\lambda^n$, where the c_i are positive integers, is a θ -polynomial if and only if $c_0=1$ and $c_{i+1} \leq 2c_i$ $(i=0, 1, 2, \ldots, n-1)$ (cf. (3)). Hence the problem of finding the number of elements in \mathfrak{A} of degree d+1 is equivalent to the problem of finding the number of partitions of d such that $d=1+c_1+c_2+\ldots+c_n$ where $c_1=1$ or 2 and $c_{i+1}\leq 2c_i$. To solve it, consider the more general problem : given two positive integers c and d find the number of partitions of d such that $d=c+c_1+c_2+\ldots+c_n$ where $c_1\leq 2c$ and $c_{i+1}\leq 2c_i$. Denote this number by v(c, d).

Since c_1 can take any value between 1 and min (2c, d-c) we have

$$v(c, d) = \sum_{i=1}^{2c} v(i, d-c)$$

where v(x, y) = 0 unless $x \le y$. The formula expresses v(c, d) in terms of values of the function for smaller values of the second argument. Since v(x, x) = 1

for all positive integers x, we can calculate v(c, a) for any given c and a by repeated use of the formula. Thus

	d = 1	2	3	_4	5	6	7	8	9	10	11	12	13	14
v((c, d) =													
c = 1	1	1	2	3	5	9	16	28	50	89	159	285	510	914
2	0	1	1	2	4	7	12	22	39	70	126	225	404	725
3	0	0	1	1	2	4	7	13	24	42	76	137	245	441
4	0	0	0	1	1	2	4	7	13	24	43	78	140	251
5	0	0	0	0	1	1	2	4	7	13	24	43	78	141
6	0	0	0	0	0	1	1	2	4	7	13	24	43	78
7	0	0	0	0	0	0	1	1	2	4	7	13	24	43
8	0	0	0	0	0	0	0	1	1	2	4	7	13	24

The first row (c=1) in the above table gives the numbers of elements in \mathfrak{A} of degree d+1.

REFERENCES

(1) I. M. H. Etherington, On non-associative combinations, Proc. Roy. Soc. Edin., 59 (1939), 153-162.

(2) H. Minc, Index polynomials and bifurcating root-trees, Proc. Roy. Soc. Edin., A, 64 (1957), 319-341.

(3) H. Minc, The free commutative entropic logarithmetic, Proc. Roy. Soc. Edin., A, 65 (1959), 177-192.

(4) H. Minc, Enumeration of indices of given altitude and potency, Proc. Edin. Math. Soc. 11 (1959), 207-209.

THE UNIVERSITY OF BRITISH COLUMBIA VANCOUVER, CANADA

224