Conjugate Radius and Sphere Theorem

Seong-Hun Paeng and Jong-Gug Yun

Abstract. Bessa [Be] proved that for given *n* and *i*₀, there exists an $\varepsilon(n, i_0) > 0$ depending on *n*, *i*₀ such that if *M* admits a metric *g* satisfying Ric_(M,g) $\ge n - 1$, $\operatorname{inj}_{(M,g)} \ge i_0 > 0$ and diam_(M,g) $\ge \pi - \varepsilon$, then *M* is diffeomorphic to the standard sphere. In this note, we improve this result by replacing a lower bound on the injectivity radius with a lower bound of the conjugate radius.

1 Introduction

Let (M, g) be an *n*-dimensional compact Riemannian manifold. Otsu [O] proved that for given n, $i_0 > 0$, and $k \in \mathbb{R}$, there exists an $\varepsilon(n, i_0) > 0$ depending on n, i_0 such that if Madmits a metric g satisfying Ricci curvature $\operatorname{Ric}_{(M,g)} \ge n-1$, sectional curvature $K_{(M,g)} \ge k$, injectivity radius $\operatorname{inj}_{(M,g)} \ge i_0$ and diameter $\operatorname{diam}_{(M,g)} \ge \pi - \varepsilon$, then M is diffeomorphic to the standard sphere S^n . Bessa [Be] improved this result by removing the condition on the sectional curvature. He used the C^{α} -compactness theorem [AC] as a basic tool and remarked that a lower bound on the injectivity radius cannot be replaced by a lower bound on the volume in the case of manifolds with dimension bigger than or equal to 4.

We consider the conjugate radius of M, $\operatorname{conj}_{(M,g)}$ and investigate the case that a lower bound on the injectivity radius is replaced by a lower bound on the conjugate radius. Recall that the conjugate radius is defined to be the maximal radius r such that for every $q \in M$, the exponential map \exp_q has maximal rank in the open ball of radius r centered at the origin of the tangent space $T_q M$.

In general, $inj_{(M,g)}$ and $conj_{(M,g)}$ have significant differences in each geometric contents. For example, consider the class of manifolds satisfying

 $\operatorname{Ric}_{(M,g)} \ge n-1, \quad \operatorname{inj}_{(M,g)} \ge i_0 \quad \text{and} \quad \operatorname{diam}_{(M,g)} \le D,$

then we know that the above class is C^{α} -compact [AC]. But if we replace the condition on the inj_(M,g) by the conj_(M,g), then it is not C^{α} -compact any longer since a collapsing may occur. Note also that if $K_M \leq K$, then $\operatorname{conj}_M \geq \frac{\pi}{\sqrt{K}}$.

The main purpose of this paper is to show the following theorem:

Theorem 1.1 Given an integer n and $c_0 > 0$, there exists an $\varepsilon = \varepsilon(n, c_0) > 0$ such that if M admits a metric g satisfying

 $\operatorname{Ric}_{(M,g)} \ge n-1, \quad \operatorname{conj}_{(M,g)} \ge c_0 \quad and \quad \operatorname{diam}_{(M,g)} \ge \pi-\varepsilon,$

then M is diffeomorphic to S^n .

Received by the editors September 3, 1997; revised April 1, 1998. Partially supported by KIAS and in part supported in BSRI and GARC-KOSEF. AMS subject classification: 53C20, 53C21. Keywords: Ricci curvature, conjugate radius.

[©]Canadian Mathematical Society 1999.

Conjugate Radius and Sphere Theorem

Theorem 1.2 Given an integer n and $c_0 > 0$, there exists an $\varepsilon = \varepsilon(n, c_0) > 0$ such that if M admits a metric g satisfying

$$\operatorname{Ric}_{(M,g)} \ge n-1, \operatorname{conj}_{(M,g)} \ge c_0 \quad and \quad \lambda_{1(M,g)} \le n+\varepsilon,$$

then M is diffeomorphic to S^n , where $\lambda_{1(M,g)}$ is the first eigenvalue of M.

Theorem 1.2 is an immediate consequence of Theorem 1.1 and the theorem due to Croke [Cr]. The proof of it is just similar to that of [Be], so we omit it.

We can also prove the following volume/diameter sphere theorem.

Theorem 1.3 Given an integer n, there exists $\varepsilon > 0$ such that if M is an n-dimensional Riemannian manifold with $\operatorname{Ric}_{(M,g)} \ge n-1$, $\frac{\operatorname{vol}_{(M,g)}}{\operatorname{diam}_{(M,g)}} \ge \frac{\omega_n}{\pi} - \varepsilon$ and $e_{(M,g)} < \varepsilon$, then M is diffeomorphic to S^n , where ω_n is the volume of the standard sphere S^n and $e_{(M,g)}$ is the excess of M.

The excess condition in Theorem 1.3 cannot be removed. This can be seen by using, for example, $M^4 = CP^2$ with metric normalized so that $\text{Ric}_M = 3$.

We would like to express our gratitude to Professor Hong-Jong Kim for much kind and helpful advice.

2 Preliminaries

We begin with the estimate of the Hessian of the distance function due to R. Brocks [Br].

Theorem 2.1 Let M^n be a complete Riemannian manifold with $\operatorname{conj}_M \ge c_0$ and $\operatorname{Ric}_M \ge -(n-1)k^2$ and c be a geodesic on M^n . Let A(t) be a Hessian of distance function along c(t) from c(0). Let $\alpha(t) = k^2t + 2k \coth k(c_0 - t)/2$, $\gamma(t) = 2\sqrt{(n-1)\alpha(t)}\sqrt{t}$ for $0 \le t \le c_0$. Then

$$\int_0^t \left\| A(\tau) - \frac{I}{\tau} \right\| d\tau \le 2\gamma(t)$$

for all t such that $\gamma(t) \leq 1/7$.

Let *M* be a manifold as the above theorem and c: $[0, I_0] \rightarrow M$ be a geodesic on *M*, where $I_0 \leq c_0/2$. If J(t) be a Jacobi field along c(t) such that J(0) = 0 and $\langle J'(0), c'(0) \rangle = 0$, then we know that A(t) can be written in normal coordinate as B(t) + I/t with B(t) smooth at t = 0.

More importantly, by the standard arguments for the estimate of the norm of Jacobi field (see [P1], [DSW], [DW]), we know that for $0 \le t \le l_0$,

$$e^{-\int_0^{t_0}\|B\|}\|J'(0)\|t\leq \|J(t)\|\leq e^{\int_0^{t_0}\|B\|}\|J'(0)\|t.$$

Now let's estimate $\int_0^{t_0} \|B\|$ in the case of $\operatorname{Ric}_M \ge -(n-1)\varepsilon^2$, $\operatorname{conj}_M \ge c_0 := C\varepsilon^{-1}$, where ε is a sufficiently small positive constant. To estimate $\int_0^{t_0} \|B\|$, it suffices to estimate $\gamma(t)$ in Theorem 2.1. For this purpose, first we estimate $\alpha(t) = \varepsilon^2 t + 2\varepsilon \operatorname{coth} \varepsilon(\frac{c_0-t}{2})$ in

Seong-Hun Paeng and Jong-Gug Yun

Theorem 2.1. For
$$0 \le t \le c_0/2$$
, we have $\frac{C}{4} = \frac{\varepsilon c_0}{4} \le \frac{\varepsilon (c_0 - t)}{2} \le \frac{\varepsilon c_0}{2} = \frac{C}{2}$ and

$$\begin{aligned} 2\varepsilon \coth \varepsilon \frac{(c_0-t)}{2} &= \frac{2}{c_0-t} 2\varepsilon \frac{c_0-t}{2} \coth \varepsilon \frac{(c_0-t)}{2} \\ &\leq \frac{8}{c_0} \varepsilon \frac{(c_0-t)}{2} \coth \varepsilon \frac{(c_0-t)}{2} \\ &\leq \frac{H}{c_0} = HC\varepsilon. \end{aligned}$$

for some constant H > 0, since we know that $f(x) = x \coth x$ is bounded for any x with $C/4 \le x \le C/2$. Now

$$\begin{split} \gamma(t) &= 2\sqrt{(n-1)\alpha(t)}\sqrt{t} \\ &= 2\sqrt{(n-1)\left\{(\varepsilon t)^2 + 2\left(\varepsilon \coth \varepsilon \left(\frac{(c_0-t)}{2}\right)\right) \cdot t\right\}} \\ &\leq 2\sqrt{(n-1)\left((\varepsilon t)^2 + HC\varepsilon t\right)} \end{split}$$

for $0 \le t \le c_0/2$. So we have

$$\gamma(t) \leq 2\sqrt{(n-1)\big((\varepsilon I_0)^2 + HC\varepsilon I_0\big)} = \tau(I_0|\varepsilon)$$

for $t \le l_0 \le c_0/2$. Here, $\tau(l_0|\varepsilon)$ is a positive number converging to zero as $\varepsilon \to 0$ if we fix l_0 .

To prove Theorem 1.1, one needs the following result of Calabi and Hartman [CH] on the smoothness of isometries.

Theorem 2.2 Let (M,g) be a C^{α} -Riemannian manifold with respect to some coordinate. Then its geodesics are $C^{1,\alpha}$ with respect to the same coordinate. Moreover the $C^{1,\alpha}$ -norm of the geodesics can be bounded by the C^{α} -norm of the metric.

An immediate corollary of this result is the following lemma.

Lemma 2.3 If (M_i, g_i, p_i) converges to (M, g, p) in C^{α} -topology, then for any geodesics $\{\gamma^i\}$ in $B_{p_i}(r) \subset M_i$ for some r > 0, a subsequence of $\{\gamma^i\}$ converges to a geodesic γ in M in $C^{1,\alpha'}$ -topology, $\alpha' < \alpha$.

3 Proof of Theorem 1.1

Consider a sequence of Riemannian manifolds $\{(M_i, g_i)\}$ satisfying

 $\operatorname{Ric}_{(M_i,g_i)} \ge n-1, \quad \operatorname{conj}_{(M_i,g_i)} \ge c_0, \quad \operatorname{and} \quad \operatorname{diam}_{(M_i,g_i)} \ge \pi - \varepsilon_i,$

where $\lim_{i\to\infty} \varepsilon_i = 0$. If \tilde{M}_i is a universal covering of M_i , then we know that

$$\mathrm{Ric}_{(ilde{M}_i, ilde{g}_i)} \geq n-1, \quad \mathrm{conj}_{(ilde{M}_i, ilde{g}_i)} \geq c_0, \quad \mathrm{and} \quad \mathrm{diam}_{(ilde{M}_i, ilde{g}_i)} \geq \pi - arepsilon_i,$$

where \tilde{g}_i is the induced metric on \tilde{M}_i from M_i .

From now on, we will show that \tilde{M}_i converges to S^n with the standard metric in the C^{α} -topology and it suffices to prove Theorem 1.1 since the only Riemannian manifold with diameter close to π which has S^n (with the metric close to the standard metric of S^n in the C^{α} -sense) as a Riemannian covering space is S^n itself.

Note that if $inj_{\tilde{M}_i}$ is uniformly bounded below, then we have done by [Be]. So suppose that $inj_{\tilde{M}_i}$ converges to zero. (In this case, we will induce a contradiction.)

Theorem 3.1 ([P2]) Let M be an n-dimensional complete simply connected Riemannian manifold. Given $n, H, c_0 > 0$, there exists an $i_0(n, H, c_0) > 0$ depending on n, H, c_0 such that if $\operatorname{Ric}_M \geq (n-1)H^2$, $\operatorname{conj}_M \geq c_0$, then injectivity radius of M has a lower bound $i_0(n, H, c_0) > 0$.

Proof Consider a sequence of simply connected manifolds $\{(M_i, g_i)\}$ satisfying

$$\operatorname{Ric}_{(M_i,g_i)} \ge (n-1)H^2$$
, $\operatorname{conj}_{(M_i,g_i)} \ge c_0$ and $\operatorname{inj}_{(M_i,g_i)} \to 0$.

Let γ_i be the shortest closed geodesic on \tilde{M}_i and r_i be the length of γ_i as above. Then we know that γ_i are smooth and $r_i \to 0$ as $i \to \infty$.

We will show that there are no conjugate points on $\gamma_i(t)$ for $t \le \pi/H$. Rescaling metrics by multiplying by r_1^{-2} , we obtain

$$\operatorname{Ric}_{(M_i,g_i')} \ge (n-1)H^2r_i^2 \to 0, \quad \operatorname{conj}_{(M_i,g_i')} \ge c_0/r_i \to \infty$$

and $\operatorname{inj}_{(M_i,g'_i)} \geq i_0$, where g'_i are the rescaled metrics. From the compactness theorem of [AC], we know that $M_i \to X$ for some smooth manifold X with C^{α} -metric. We also know that $\exp_i: T_{p_i}M_i \to M_i$ is nonsingular for $B(0, c_0/r_i)$ and $||d\exp_i||$ is estimated in previous sections. Let id be an identity map from $\mathbb{R}^n = T_{p_i}M_i$ to \mathbb{R}^n . From Section 2, we get that for any fixed l_0 ,

$$rac{\|d\exp_i\|}{\|\operatorname{id}_*\|} = e^{\int_0^{J_0}\|B_i\|} o 1$$

as $\varepsilon_i \rightarrow 0$. So exp, converges to id in Hölder sense for every compact set.

We know that exp is a covering map from $T_pM = \mathbb{R}^n$ to M if $\operatorname{conj}_M = \infty$ [BC]. By the same reason, we know that $\exp_p = \lim_{i \to \infty} \exp_i = \operatorname{id}$ is a covering map so \mathbb{R}^n is the universal covering space of the limit space X. So X is a flat manifold.

We know that the homomorphism

$$i: \pi_1(B(p_i, r_i)) \rightarrow \pi_1(B(p_i, c_0/2))$$

are inclusions. Consider the universal covering space of $B(p_i, c_0/2)$, $B(p_i, c_0/2)$. We know that γ_i do not represent 0 in $\pi_1(B(p_i, r_i))$. So we define T_i as $\langle \gamma_i \rangle$ -orbit of $c_0/2$ -ball centered at a lifting of p_i , \tilde{p}_i in $B(p_i, c_0/2)$.

Let $\bar{\gamma}_i = \mathbb{R}$ be the lifting of γ_i . We also know that the injectivity radii of $B(p_i, c_0/2)$ are bounded below [BK]. Then by compactness theorem, we know that (T_i, \tilde{p}_i) converges

to (X, p) in C^{α} -topology uniformly since $\pi_1(B(p_i, c_0/2))$ act on $B(p_i, c_0/2)$ cocompactly. Rescaling the metrics by multiplying r_i^{-2} as above, we easily know that

$$\frac{\int_0^{r_i} \|B_i\|}{r_i} \to 0$$

(The above values are invariant under rescaling. For the rescaled metrics, we know that $r_i = 1$ and (M_i, g'_i) converges to flat manifold so $\int_0^1 ||B'_i|| \to 0$, where B'_i is the B_i for g'_i .) We also know that the rotational parts of holonomy along γ_i depends only on $\int ||B_i||$ since M_i are simply connected and γ_i are smooth at t = 0. From Section 3, we obtain that the rotational part of parallel translation along $\tilde{\gamma} := \lim_{i\to\infty} \tilde{\gamma}_i = \mathbb{R} \subset T_p X$ from $\tilde{\gamma}(0)$ to $\tilde{\gamma}(r)$ is $\lim_{i\to\infty} l_i \int_0^{r_i} ||B_i||$, where $l_i r_i = r$ and $T_p X$ has the pull-back metric by exp. Since

$$rac{l_i\int_0^{r_i}\|B_i\|}{l_ir_i}
ightarrow 0,$$

we know that the parallel translation along $\bar{\gamma}$ is the same as that of T_pX with Euclidean metric. So we may consider X as $\mathbb{R} \times F$ for some C^{α} -manifold, F in infinitesimal tubular neighborhood of \mathbb{R} . This means that there exist geodesics in T_i such that the distance from p_i to the first conjugate point converges to infinity as $i \to \infty$. But $\operatorname{Ric}_M \geq (n-1)H^2 > 0$ implies that $t_0 \leq \pi/H$, which is a contradiction.

From this theorem, we know that M_i have a lower bound on injectivity radius so we completes the proof of Theorem 1.1.

Remark 3.2 We may wonder that the condition of $\operatorname{Ric}_M \ge (n-1)H^2$ can be replaced by $\operatorname{Ric}_M \ge -(n-1)H^2$. But considering Berger's spheres, we know that the positive Ricci curvature condition is essential. This theorem can be considered as a Ricci curvature version of Klingenberg's theorem for the lower bound on injectivity radius [CE].

4 Proof of Theorem 1.3

Consider a sequence of manifolds $\{(M_i, g_i)\}$ such that $\operatorname{Ric}_{(M_i, g_i)} \ge n-1$, $\frac{\omega_n}{\pi} - \varepsilon_i \le \frac{\operatorname{vol}_{(M_i, g_i)}}{\operatorname{diam}_{(M_i, g_i)}}$ and $e_{(M_i, g_i)} < \varepsilon_i$, where $\lim_{i \to \infty} \varepsilon_i = 0$, $\varepsilon_i > 0$.

Passing to a subsequence, if necessary, we assume that $diam_{(M_i,g_i)} \leq \pi/2$ for all *i* or $diam_{(M_i,g_i)} > \pi/2$ for all *i*.

Case 1

diam $_{(M_i,g_i)} > \frac{\pi}{2}$ for all *i*:

Let p_i , q_i be the points satisfying $\max_x e_{p_i,q_i}(x) = e_{(M_i,g_i)}$ and d_i be the distance between p_i and q_i .

From diam_(M_i,g_i) $\leq e_{(M_i,g_i)} + d_i$, it follows immediately that $d := \lim_{i \to \infty} d_i = \lim_{i \to \infty} \dim_{(M_i,g_i)} \geq \frac{\pi}{2}$. So we can choose α_i , β_i so that $\alpha_i + \beta_i = d_i$ and $\alpha_i \uparrow \pi/2$,

 $\beta_i \uparrow d - \pi/2$. Using the volume comparison theorem, we have

$$\begin{aligned} \frac{\operatorname{vol}_{(M_i,g_i)}}{\operatorname{diam}_{(M_i,g_i)}} &\leq \frac{1}{d_i} \left\{ \operatorname{vol} \left(B_{p_i} \left(\alpha_i + \frac{\epsilon_i}{2} \right) \right) + \operatorname{vol} \left(B_{q_i} \left(\beta_i + \frac{\epsilon_i}{2} \right) \right) \right\} \\ &\leq \frac{1}{d_i} \left\{ \omega_{n-1} \int_0^{\alpha_i + \frac{\epsilon_i}{2}} \sin^{n-1} t \, dt + \omega_{n-1} \int_0^{\beta_i + \frac{\epsilon_i}{2}} \sin^{n-1} t \, dt \right\} \\ &= \frac{\omega_{n-1}}{d_i} \left\{ \int_0^{\alpha_i} \sin^{n-1} t \, dt + \int_0^{\beta_i} \sin^{n-1} t \, dt \right\} + \delta_i \\ &\leq \frac{\omega_{n-1}}{d_i} \left\{ \frac{\alpha_i}{\pi} \int_0^{\pi} \sin^{n-1} t \, dt + \frac{\beta_i}{\pi} \int_0^{\pi} \sin^{n-1} t \, dt \right\} + \delta_i \\ &= \frac{\omega_n}{\pi} + \delta_i, \end{aligned}$$

where $\delta_i \to 0$ as $i \to \infty$. Since $\frac{\operatorname{vol}_{(M_i, g_i)}}{\operatorname{diam}_{(M_i, g_i)}} \ge \frac{\omega_n}{\pi} - \varepsilon_i$, we obtain by letting $i \to \infty$, that $\frac{1}{d - \pi/2} \int_0^{d - \pi/2} \sin^{n-1} t \, dt = \frac{1}{\pi} \int_0^{\pi} \sin^{n-1} t \, dt$.

Now since $f(x) = \frac{\int_0^x \sin^{n-1} r \, dr}{x}$ is strictly increasing function of $x (\leq \frac{\pi}{2})$, we have $d - \pi/2 = \pi/2$ or $d = \pi$. So $\operatorname{vol}_{(M_i, g_i)} \to \omega_n$ and the result follows from the Appendix 1 of [CCo2] (*cf.* [CCo1]).

Case 2

diam $_{(M_i,g_i)} \leq \frac{\pi}{2}$ for all *i*:

Note that there exists a space M such that $M_i \to M$ in the Gromov-Hausdorff topology. Let $l = \text{diam}_M$ then $\text{diam}_{(M_i,g_i)} =: l_i \to l \leq \frac{\pi}{2}$ and we have

$$\frac{\operatorname{vol}_{(M_i,g_i)}}{\omega_n} \leq \frac{\int_0^{l_i} \sin^{n-1} r \, dr}{\int_0^\pi \sin^{n-1} r \, dr} \leq \frac{l_i}{\pi} \to \frac{l}{\pi}.$$

Thus by the limit argument, we obtain

$$\frac{\int_0^l \sin^{n-1} r \, dr}{l} = \frac{\int_0^\pi \sin^{n-1} r \, dr}{\pi}.$$

Now as in the case 1, we have $l = \frac{\pi}{2}$. So, we observed that diam $_{(M_i,g_i)} \to \frac{\pi}{2}$. Under the same setting as in Case 1, choose α_i , β_i so that $\alpha_i \uparrow \pi/3$, $\beta_i \uparrow \pi/6$. Then we have

$$\frac{\operatorname{vol}_{(M_i,g_i)}}{\operatorname{diam}_{(M_i,g_i)}} \leq \frac{\omega_{n-1}}{d_i} \left\{ \int_0^{\alpha_i} \sin^{n-1} t \, dt + \int_0^{\beta_i} \sin^{n-1} t \, dt \right\} + \delta_i$$
$$\leq \frac{\omega_{n-1}}{d_i} \left\{ \frac{\alpha_i}{\pi} \int_0^{\pi} \sin^{n-1} t \, dt + \frac{\beta_i}{\pi} \int_0^{\pi} \sin^{n-1} t \, dt \right\} + \delta_i$$
$$= \frac{\omega_n}{\pi} + \delta_i.$$

By letting $i \to \infty$, we know that the above inequalities are equalities. Consequently, we have a contradiction to the strict increasing property of $f(x) = \frac{\int_0^x \sin^{n-1} r \, dr}{x} (0 \le x \le \frac{\pi}{2})$.

Seong-Hun Paeng and Jong-Gug Yun

References

- [AC] M. T. Anderson and J. Cheeger, C^{α} -compactness for manifolds with Ricci curvature and injectivity radius bounded below. J. Differential Geom. 35(1992), 265-281.
- [Be] G. P. Bessa, Differentiable sphere theorems for Ricci curvature. Math. Z. 214(1993), 245-259.
- [BC] R. Bishop and B. Crittenden, Geometry of manifolds. Academic Press, New York, 1964.
- [BK] P. Buser and H. Karcher, Gromov's almost flat manifolds. Astérisque 81 (1981).
- [Br] R. Brocks, Convexité et courbure de Ricci. C. R. Acad. Sci. Paris Sér. I 319(1994), 73-75.
- M. Cai, A splitting theorem for manifolds of almost nonnegative Ricci curvature. Ann. Global Anal. Geom. [Ca] 11(1993), 373-385.
- J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products. [CCo1] Ann. of Math. 144(1996), 189-237.
- [CCo2] On the structure of spaces with Ricci curvature bounded below. Preprint.
- J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry. Amsterdam, 1975. [CE]
- [CH] E. Calabi and P. Hartman, On the smoothness of isometries. Duke Math. J. 37(1970), 741-750.
- C. Croke, An eigenvalue pinching theorem. Invent. Math. 68(1982), 253-256.
- [Cr] [DSW] X. Dai, Z. Shen and G. Wei, Negative Ricci curvature and isometry group. Duke Math. J. 76(1994), 59-73.
- [DW] X. Dai and G. Wei, A comparison estimate of Toponogov type for Ricci curvature. Math. Ann. 303(1995),
 - 297-306.
- [GHL] S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry. Springer-Verlag, 1987.
- Y. Otsu, On manifolds of small excess. Amer. J. Math. 115(1993), 1229-1280. [0]
- [P1] S.-H. Paeng, Topological entropy for geodesic flows under a Ricci curvature condition. Proc. Amer. Math. Soc. 125(1997), 1873-1879.
- A generalization of Gromov's almost flat manifolds and topological entropy for geodesic flow. [P2] Preprint.
- [Wei] G. Wei, Ricci curvature and Betti number. J. Geom. Anal., to appear.

Korea Institute for Advanced Study (KIAS) 207-43 Cheongryangri-dong Dongdaemun-gu Seoul 130-012 Korea email: shpaeng@kias.kaist.ac.kr

Department of Mathematics Seoul National University Seoul 151-742 Korea email: jgyun@math.snu.ac.kr