Conjugate Radius and Sphere Theorem

Seong-Hun Paeng and Jong-Gug Yun

Abstract

Bessa [Be] proved that for given n and i_{0}, there exists an $\varepsilon\left(n, i_{0}\right)>0$ depending on n, i_{0} such that if M admits a metric g satisfying $\operatorname{Ric}_{(M, g)} \geq n-1, \operatorname{inj}_{(M, g)} \geq i_{0}>0$ and $\operatorname{diam}_{(M, g)} \geq \pi-\varepsilon$, then M is diffeomorphic to the standard sphere. In this note, we improve this result by replacing a lower bound on the injectivity radius with a lower bound of the conjugate radius.

1 Introduction

Let (M, g) be an n -dimensional compact Riemannian manifold. Otsu [O] proved that for given $n, i_{0}>0$, and $k \in R$, there exists an $\varepsilon\left(n, i_{0}\right)>0$ depending on n, \dot{i}_{0} such that if M admits a metric g satisfying Ricci curvature $\operatorname{Ric}_{(m, g)} \geq n-1$, sectional curvature $K_{(m, g)} \geq k$, injectivity radius $\operatorname{inj}_{(M, g)} \geq i_{0}$ and diameter $\operatorname{diam}_{(M, g)} \geq \pi-\varepsilon$, then M is diffeomorphic to the standard sphere S^{n}. Bessa [Be] improved this result by removing the condition on the sectional curvature. He used the C^{α}-compactness theorem [AC] as a basic tool and remarked that a lower bound on theinjectivity radius cannot be replaced by a lower bound on the volume in the case of manifolds with dimension bigger than or equal to 4.

We consider the conjugate radius of $\mathrm{M}, \operatorname{conj}_{(\mathrm{M}, \mathrm{g})}$ and investigate the case that a lower bound on the injectivity radius is replaced by a lower bound on the conjugate radius. Recall that the conjugate radius is defined to be the maximal radiusr such that for every $q \in M$, the exponential map $\exp _{q}$ has maximal rank in the open ball of radius r centered at the origin of the tangent space $\mathrm{T}_{\mathrm{q}} \mathrm{M}$.

In general, $\mathrm{inj}_{(\mathrm{M}, \mathrm{g})}$ and conj ${ }_{(\mathrm{M}, \mathrm{g})}$ have significant differences in each geometric contents. For example, consider the class of manifolds satisfying

$$
\operatorname{Ric}_{(M, g)} \geq n-1, \quad \operatorname{inj}_{(M, g)} \geq i_{0} \quad \text { and } \quad \operatorname{diam}_{(M, g)} \leq D,
$$

then we know that the above class is C^{α}-compact [AC]. But if we replace the condition on the inj (M, g) by the conj ${ }_{(M, g)}$, then it is not C^{α}-compact any longer since a collapsing may occur. Note also that if $\mathrm{K}_{\mathrm{M}} \leq \mathrm{K}$, then conj ${ }_{M} \geq \frac{\pi}{\sqrt{K}}$.

The main purpose of this paper is to show the following theorem:
Theorem 1.1 Given an integer n and $\mathrm{c}_{0}>0$, there exists an $\varepsilon=\varepsilon\left(\mathrm{n}, \mathrm{c}_{0}\right)>0$ such that if M admits a metric g satisfying

$$
\operatorname{Ric}_{(\mathrm{M}, \mathrm{~g})} \geq \mathrm{n}-1, \quad \operatorname{conj}_{(\mathrm{M}, \mathrm{~g})} \geq \mathrm{c}_{0} \quad \text { and } \quad \operatorname{diam}_{(\mathrm{M}, \mathrm{~g})} \geq \pi-\varepsilon
$$

then M is diffeomorphic to S^{n}.

[^0]Theorem 1.2 Given an integer n and $\mathrm{c}_{0}>0$, there exists an $\varepsilon=\varepsilon\left(\mathrm{n}, \mathrm{c}_{0}\right)>0$ such that if M admits a metric g satisfying

$$
\operatorname{Ric}_{(\mathrm{M}, \mathrm{~g})} \geq \mathrm{n}-1, \operatorname{conj}_{(\mathrm{m}, \mathrm{~g})} \geq c_{0} \quad \text { and } \quad \lambda_{1(\mathrm{~m}, \mathrm{~g})} \leq \mathrm{n}+\varepsilon,
$$

then M is diffeomorphic to S^{n}, where $\lambda_{1(\mathrm{M}, \mathrm{g})}$ is the first eigenvalue of M .
Theorem 1.2 is an immediate consequence of Theorem 1.1 and the theorem due to Croke [Cr]. The proof of it is just similar to that of [Be], so we omit it.

We can also prove the following volume/diameter sphere theorem.
Theorem 1.3 Given an integer n, there exists $\varepsilon>0$ such that if M is an n-dimensional Riemannian manifold with $\operatorname{Ric}_{(M, g)} \geq n-1, \frac{\operatorname{vol}_{(M, g)}}{\operatorname{diam}_{(M, 9)}} \geq \frac{\omega_{n}}{\pi}-\varepsilon$ and $\mathrm{e}_{(M, g)}<\varepsilon$, then M is diffeomorphic to S^{n}, where ω_{n} is the volume of the standard sphere S^{n} and $\mathrm{e}_{(\mathrm{M}, \mathrm{g})}$ is the excess of M.

The excess condition in Theorem 1.3 cannot be removed. This can be seen by using, for example, $\mathrm{M}^{4}=C P^{2}$ with metric normalized so that $\mathrm{Ric}_{M}=3$.

We would like to express our gratitude to Professor Hong-Jong Kim for much kind and helpful advice.

2 Preliminaries

We begin with the estimate of the Hessian of the distancefunction due to R. Brocks [Br].
Theorem 2.1 Let M^{n} be a complete Riemannian manifold with conj $j_{M} \geq c_{0}$ and $\operatorname{Ric}_{M} \geq$ $-(\mathrm{n}-1) \mathrm{k}^{2}$ and c be a geodesic on M^{n}. Let $\mathrm{A}(\mathrm{t})$ be a Hessian of distance function along $\mathrm{c}(\mathrm{t})$
 Then

$$
\int_{0}^{\mathrm{t}}\left\|\mathrm{~A}(\tau)-\frac{1}{\tau}\right\| \mathrm{d} \tau \leq 2 \gamma(\mathrm{t})
$$

for all t such that $\gamma(\mathrm{t}) \leq 1 / 7$.
Let M bea manifold as the above theorem and $\mathrm{c}:\left[0, \mathrm{I}_{0}\right] \rightarrow \mathrm{M}$ bea geodesic on M , where $\mathrm{I}_{0} \leq \mathrm{c}_{0} / 2$. If $\mathrm{J}(\mathrm{t})$ be a Jacobi field along $\mathrm{c}(\mathrm{t})$ such that $\mathrm{J}(0)=0$ and $\left\langle J^{\prime}(0), \mathrm{c}^{\prime}(0)\right\rangle=0$, then we know that $\mathrm{A}(\mathrm{t})$ can be written in normal coordinate as $\mathrm{B}(\mathrm{t})+\mathrm{I} / \mathrm{t}$ with $\mathrm{B}(\mathrm{t})$ smooth at $\mathrm{t}=0$.

M ore importantly, by the standard arguments for the estimate of the norm of Jacobi field (see [P1], [DSW], [DW]), we know that for $0 \leq t \leq I_{0}$,

$$
\mathrm{e}^{-\int_{0}^{10}\|B\| \|}\left\|J^{\prime}(0)\right\| \mathrm{t} \leq\|J(\mathrm{t})\| \leq \mathrm{e}^{\mathrm{f}^{10}\|B\| \|}\left\|J^{\prime}(0)\right\| \mathrm{t} .
$$

Now let's estimate $\int_{0}^{\mathrm{I}_{0}}\|\mathrm{~B}\|$ in the case of $\mathrm{Ric}_{M} \geq-(\mathrm{n}-1) \varepsilon^{2}, \operatorname{conj}_{M} \geq \mathrm{c}_{0}:=\mathrm{C} \varepsilon^{-1}$, where ε is a sufficiently small positive constant. To estimate $\int_{0}^{I_{0}}\|\mathrm{~B}\|$, it suffices to estimate $\gamma(\mathrm{t})$ in Theorem 2.1. For this purpose, first we estimate $\alpha(\mathrm{t})=\varepsilon^{2} \mathrm{t}+2 \varepsilon \operatorname{coth} \varepsilon\left(\frac{\mathrm{c}_{0}-\mathrm{t}}{2}\right)$ in

Theorem 2.1. For $0 \leq t \leq C_{0} / 2$, we have $\frac{C}{4}=\frac{\varepsilon C_{0}}{4} \leq \frac{\varepsilon\left(c_{0}-t\right)}{2} \leq \frac{\varepsilon c_{0}}{2}=\frac{C}{2}$ and

$$
\begin{aligned}
2 \varepsilon \operatorname{coth} \varepsilon \frac{\left(c_{0}-t\right)}{2} & =\frac{2}{c_{0}-t} 2 \varepsilon \frac{c_{0}-t}{2} \operatorname{coth} \varepsilon \frac{\left(c_{0}-t\right)}{2} \\
& \leq \frac{8}{c_{0}} \varepsilon \frac{\left(c_{0}-t\right)}{2} \operatorname{coth} \varepsilon \frac{\left(c_{0}-t\right)}{2} \\
& \leq \frac{H}{c_{0}}=H C \varepsilon .
\end{aligned}
$$

for some constant $\mathrm{H}>0$, since we know that $\mathrm{f}(\mathrm{x})=\mathrm{x}$ coth x is bounded for any x with $\mathrm{C} / 4 \leq \mathrm{x} \leq \mathrm{C} / 2$. Now

$$
\begin{aligned}
\gamma(\mathrm{t}) & =2 \sqrt{(\mathrm{n}-1) \alpha(\mathrm{t})} \sqrt{\mathrm{t}} \\
& =2 \sqrt{(\mathrm{n}-1)\left\{(\varepsilon \mathrm{t})^{2}+2\left(\varepsilon \operatorname{coth} \varepsilon\left(\frac{\left(c_{0}-\mathrm{t}\right)}{2}\right)\right) \cdot t\right\}} \\
& \leq 2 \sqrt{(\mathrm{n}-1)\left((\varepsilon \mathrm{t})^{2}+\mathrm{HC} \mathrm{\varepsilon t}\right)}
\end{aligned}
$$

for $0 \leq t \leq c_{0} / 2$. So we have

$$
\gamma(\mathrm{t}) \leq 2 \sqrt{(\mathrm{n}-1)\left(\left(\left.\varepsilon\right|_{0}\right)^{2}+\mathrm{HC} \varepsilon 1_{0}\right)}=\tau\left(\mathrm{l}_{0} \mid \varepsilon\right)
$$

for $\mathrm{t} \leq \mathrm{I}_{0} \leq \mathrm{c}_{0} / 2$. Here, $\tau\left(\mathrm{I}_{0} \mid \varepsilon\right)$ is a positive number converging to zero as $\varepsilon \rightarrow 0$ if we fix I_{0}.

To prove Theorem 1.1, one needs the following result of Calabi and Hartman [CH] on the smoothness of isometries.

Theorem 2.2 Let (M, g) be a C^{α}-Riemannian manifold with respect to some coordinate. Then its geodesics areC ${ }^{1, \alpha}$ with respect to the same coordinate. M oreover the $C^{1, \alpha}$ - norm of the geodesics can be bounded by the C^{α} - norm of the metric.

An immediate corollary of this result is the following lemma.
Lemma 2.3 If $\left(M_{i}, g_{i}, p_{i}\right)$ converges to (M, g, p) in C^{α}-topology, then for any geodesics $\left\{\gamma^{i}\right\}$ in $B_{p_{i}}(r) \subset M_{i}$ for some $r>0$, a subsequence of $\left\{\gamma^{i}\right\}$ converges to a geodesic γ in M in $\mathrm{C}^{1, \alpha^{\prime}}$-topology, $\alpha^{\prime}<\alpha$.

3 Proof of Theorem 1.1

Consider a sequence of Riemannian manifolds $\left\{\left(\mathrm{M}_{\mathrm{i}}, \mathrm{g}_{\mathrm{i}}\right)\right\}$ satisfying

$$
\operatorname{Ric}_{\left(M_{i}, g\right)} \geq n-1, \quad \operatorname{conj}_{\left(M_{i}, g\right)} \geq c_{0}, \quad \text { and } \quad \operatorname{diam}_{\left(M_{i}, g\right)} \geq \pi-\varepsilon_{i},
$$

where $\lim _{i \rightarrow \infty} \varepsilon_{i}=0$. If \tilde{M}_{i} is a universal covering of M_{i}, then we know that

$$
\operatorname{Ric}_{\left(\tilde{M}_{i}, \tilde{\tilde{q}_{1}}\right.} \geq \mathrm{n}-1, \quad \operatorname{conj}_{\left(\tilde{M}_{i}, \tilde{g}_{i}\right)} \geq c_{0}, \quad \text { and } \quad \operatorname{diam}_{\left(\tilde{M}_{i}, \tilde{g^{\prime}}\right)} \geq \pi-\varepsilon_{\mathrm{i}},
$$

where \tilde{g}_{i} is the induced metric on \tilde{M}_{i} from M_{i}.
From now on, we will show that \tilde{M}_{i} converges to S^{n} with the standard metric in the C^{α} topology and it suffices to prove Theorem 1.1 since the only Riemannian manifold with diameter close to π which has S^{n} (with the metric close to the standard metric of S^{n} in the C^{α}-sense) as a Riemannian covering space is S^{n} itself.

Note that if inj $\tilde{M}_{M_{i}}$ is uniformly bounded below, then we have done by [Be]. So suppose that $\operatorname{inj}_{\mathrm{M}_{i}}$ converges to zero. (In this case, we will induce a contradiction.)
Theorem 3.1 ([P2]) Let M be an n -dimensional complete simply connected Riemannian manifold. Given $\mathrm{n}, \mathrm{H}, \mathrm{c}_{0}>0$, there exists an $\mathrm{i}_{0}\left(\mathrm{n}, \mathrm{H}, \mathrm{c}_{0}\right)>0$ depending on $\mathrm{n}, \mathrm{H}, \mathrm{c}_{0}$ such that if $\mathrm{Ric}_{M} \geq(\mathrm{n}-1) \mathrm{H}^{2}$, conj $M \geq \mathrm{c}_{\mathrm{O}}$, then injectivity radius of M has a lower bound $\mathrm{i}_{0}\left(\mathrm{n}, \mathrm{H}, \mathrm{c}_{0}\right)>0$.

Proof Consider a sequence of simply connected manifolds $\left\{\left(\mathrm{M}_{\mathrm{i}}, \mathrm{g}_{\mathrm{i}}\right)\right\}$ satisfying

$$
\operatorname{Ric}_{\left(M_{i}, g\right)} \geq(n-1) H^{2}, \quad \operatorname{conj}_{\left(M_{i}, g\right)} \geq c_{0} \quad \text { and } \quad \operatorname{inj}_{\left(M_{i}, g\right)} \rightarrow 0 .
$$

Let γ_{i} be the shortest closed geodesic on \tilde{M}_{i} and r_{i} be the length of γ_{i} as above. Then we know that γ_{i} are smooth and $\mathrm{r}_{\mathrm{i}} \rightarrow 0$ as $\mathrm{i} \rightarrow \infty$.

We will show that thereare no conjugate points on $\gamma_{\mathrm{i}}(\mathrm{t})$ for $\mathrm{t} \leq \pi / \mathrm{H}$. Rescaling metrics by multiplying by r_{1}^{-2}, we obtain

$$
\operatorname{Ric}_{\left(M_{i}, g_{i}^{\prime}\right)} \geq(n-1) H^{2} r_{i}^{2} \rightarrow 0, \quad \operatorname{conj}_{\left(M_{i}, g^{\prime}\right)} \geq c_{0} / r_{i} \rightarrow \infty
$$

and $\operatorname{inj}_{\left(\mathrm{m}_{i}, q^{\prime}\right)} \geq \mathrm{i}_{0}$, where $\mathrm{g}_{\mathrm{i}}^{\prime}$ are the rescaled metrics. From the compactness theorem of [AC], we know that $M_{i} \rightarrow X$ for some smooth manifold X with C^{α}-metric. We also know that $\exp _{i}: T_{p_{i}} M_{i} \rightarrow M_{i}$ is nonsingular for $B\left(0, c_{0} / r_{i}\right)$ and $\left\|d \exp _{i}\right\|$ is estimated in previous sections. Let id be an identity map from $R^{n}=T_{p} M_{i}$ to R^{n}. From Section 2 , we get that for any fixed l_{0},

$$
\frac{\left\|\mathrm{dexp}_{i}\right\|}{\left\|\mathrm{id}_{*}\right\|}=\mathrm{e}^{\mathrm{e}_{0}^{\mathrm{l}}\left\|\mathrm{~B}_{\mathrm{i}}\right\|} \rightarrow 1
$$

as $\varepsilon_{i} \rightarrow 0$. So exp ${ }_{i}$ converges to id in Hölder sense for every compact set.
We know that exp is a covering map from $T_{p} M=R^{n}$ to M if conj ${ }_{M}=\infty[B C]$. By the same reason, we know that $\exp _{p}=\lim _{i \rightarrow \infty} \exp _{i}=$ id is a covering map so R^{n} is the universal covering space of the limit space X. So X is a flat manifold.

Weknow that the homomorphism

$$
\mathrm{i}: \pi_{1}\left(\mathrm{~B}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{r}_{\mathrm{i}}\right)\right) \rightarrow \pi_{1}\left(\mathrm{~B}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{c}_{0} / 2\right)\right)
$$

are inclusions. Consider the universal covering space of $B\left(p_{i}, c_{0} / 2\right), B\left(\widetilde{p_{i}, c_{0} / 2}\right)$. We know that γ_{i} do not represent 0 in $\pi_{1}\left(B\left(p_{i}, r_{i}\right)\right)$. So wedefine T_{i} as $\left\langle\gamma_{i}\right\rangle$-orbit of $c_{0} / 2$-ball centered at a lifting of p_{i}, \tilde{p}_{i} in $B\left(\widetilde{\left.p_{i}, c_{0} / 2\right)}\right.$.

Let $\bar{\gamma}_{\mathrm{i}}=\mathrm{R}$ be the lifting of γ_{i}. We also know that the injectivity radii of $\mathrm{B}\left(\widetilde{\left.\mathrm{p}_{\mathrm{i}}, c_{0} / 2\right)}\right.$ are bounded below [BK]. Then by compactness theorem, we know that ($\left.T_{i}, \tilde{p}_{i}\right)$ converges
to (X, p) in C^{α}-topology uniformly since $\pi_{1}\left(B\left(p_{i}, c_{0} / 2\right)\right)$ act on $B\left(\widetilde{p_{i}, c_{0} / 2}\right)$ cocompactly. Rescaling the metrics by multiplying r_{i}^{-2} as above, we easily know that

$$
\frac{\int_{0}^{r_{i}}\left\|B_{i}\right\|}{r_{i}} \rightarrow 0
$$

(The above values are invariant under rescaling. For the rescaled metrics, we know that $r_{i}=1$ and (M_{i}, g_{i}^{\prime}) converges to flat manifold so $\int_{0}^{1}\left\|B_{i}^{\prime}\right\| \rightarrow 0$, where B_{i}^{\prime} is the B_{i} for g_{i}^{\prime}.) We also know that the rotational parts of holonomy along γ_{i} depends only on $\int\left\|\mathrm{B}_{\mathrm{i}}\right\|$ since \mathbf{M}_{i} are simply connected and γ_{i} are smooth at $t=0$. From Section 3, we obtain that the rotational part of parallel translation along $\bar{\gamma}:=\lim _{i \rightarrow \infty} \bar{\gamma}_{i}=\mathrm{R} \subset \mathrm{T}_{\mathrm{p}} \mathrm{X}$ from $\bar{\gamma}(0)$ to $\bar{\gamma}(\mathrm{r})$ is $\lim _{i \rightarrow \infty} I_{i} \int_{0}^{r_{i}}\left\|B_{i}\right\|$, where $I_{i} r_{i}=r$ and $T_{p} X$ has the pull-back metric by exp. Since

$$
\frac{I_{i} \int_{0}^{r_{i}}\left\|B_{i}\right\|}{I_{i} r_{i}} \rightarrow 0
$$

we know that the parallel translation along $\bar{\gamma}$ is the same as that of $T_{p} X$ with Euclidean metric. So we may consider X as $R \times F$ for some C^{α}-manifold, F in infinitesimal tubular neighborhood of R. This means that there exist geodesics in T_{i} such that the distance from p_{i} to the first conjugate point converges to infinity as $i \rightarrow \infty$. But Ric $c_{M} \geq(n-1) \mathrm{H}^{2}>0$ implies that $\mathrm{t}_{0} \leq \pi / \mathrm{H}$, which is a contradiction.

From this theorem, we know that \tilde{M}_{i} have a lower bound on injectivity radius so we completes the proof of Theorem 1.1.

Remark 3.2 We may wonder that the condition of $\operatorname{Ric}_{M} \geq(n-1) H^{2}$ can be replaced by $\operatorname{Ric}_{M} \geq-(n-1) H^{2}$. But considering Berger's spheres, we know that the positive Ricci curvature condition is essential. This theorem can be considered as a Ricci curvature version of Klingenberg's theorem for the lower bound on injectivity radius [CE].

4 Proof of Theorem 1.3

Consider a sequence of manifolds $\left\{\left(M_{i}, g_{i}\right)\right\}$ such that $\operatorname{Ric}_{\left(M_{i}, g\right)} \geq n-1, \frac{\omega_{n}}{\pi}-\varepsilon_{i} \leq \frac{\operatorname{vol}_{\left(m_{i}, g\right)}}{\operatorname{diam}\left(m_{i}, g\right)}$ and $\mathrm{e}_{\left(\mathrm{M}_{\mathrm{i}}, \mathrm{g}_{\mathrm{i}}\right)}<\varepsilon_{\mathrm{i}}$, where $\lim _{\mathrm{i} \rightarrow \infty} \varepsilon_{\mathrm{i}}=0, \varepsilon_{i}>0$.

Passing to a subsequence, if necessary, we assume that $\operatorname{diam}_{\left(\mathrm{M}_{\mathrm{i}}, \mathrm{g}\right)} \leq \pi / 2$ for all i or $\operatorname{diam}_{\left(\mathrm{m}_{1}, \underline{\mathrm{I}}\right)}>\pi / 2$ for all i.

Case 1

$\operatorname{diam}_{\left(M_{i}, g\right)}>\frac{\pi}{2}$ for all i:
Let p_{i}, q_{i} be the points satisfying $\max _{x} e_{p_{i}, q_{i}}(x)=e_{\left(m_{i}, q_{i}\right)}$ and d_{i} be the distance between p_{i} and q_{i}.

From $\operatorname{diam}_{\left(M_{i}, g\right)} \leq e_{\left(M_{i}, g\right)}+d_{i}$, it follows immediately that $d:=\lim _{i \rightarrow \infty} d_{i}=$ $\lim _{\mathrm{i} \rightarrow \infty} \operatorname{diam}_{\left(\mathrm{m}_{\mathrm{i}}, \mathrm{g}\right)} \geq \frac{\pi}{2}$. So we can choose $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}$ so that $\alpha_{\mathrm{i}}+\beta_{\mathrm{i}}=\mathrm{d}_{\mathrm{i}}$ and $\alpha_{\mathrm{i}} \uparrow \pi / 2$,
$\beta_{\mathrm{i}} \uparrow \mathrm{d}-\pi / 2$. Using the volume comparison theorem, we have

$$
\begin{aligned}
\frac{\operatorname{vol}_{\left(M_{i}, g\right)}}{\operatorname{diam}_{\left(M_{i}, g_{i}\right)}} & \leq \frac{1}{d_{i}}\left\{\operatorname{vol}\left(\mathrm{~B}_{p_{i}}\left(\alpha_{i}+\frac{\epsilon_{i}}{2}\right)\right)+\operatorname{vol}\left(\mathrm{B}_{q_{i}}\left(\beta_{\mathrm{i}}+\frac{\epsilon_{i}}{2}\right)\right)\right\} \\
& \leq \frac{1}{d_{i}}\left\{\omega_{n-1} \int_{0}^{\alpha_{i}+\frac{\epsilon_{2}}{2}} \sin ^{n-1} \mathrm{tdt}+\omega_{n-1} \int_{0}^{\beta_{i}+\frac{\epsilon_{i}}{2}} \sin ^{\mathrm{n}-1} \mathrm{tdt}\right\} \\
& =\frac{\omega_{n-1}}{d_{\mathrm{i}}}\left\{\int_{0}^{\alpha_{i}} \sin ^{\mathrm{n}-1} \mathrm{tdt}+\int_{0}^{\beta_{i}} \sin ^{\mathrm{n}-1} \mathrm{t} d t\right\}+\delta_{i} \\
& \leq \frac{\omega_{n-1}}{d_{\mathrm{i}}}\left\{\frac{\alpha_{i}}{\pi} \int_{0}^{\pi} \sin ^{\mathrm{n}-1} \mathrm{tdt}+\frac{\beta_{\mathrm{i}}}{\pi} \int_{0}^{\pi} \sin ^{\mathrm{n}-1} \mathrm{tdt}\right\}+\delta_{\mathrm{i}} \\
& =\frac{\omega_{n}}{\pi}+\delta_{i},
\end{aligned}
$$

where $\delta_{i} \rightarrow 0$ as $i \rightarrow \infty$. Since $\frac{\operatorname{vol}_{\left(m_{i, 9}\right)}}{\operatorname{diam}_{\left(M_{i}, 9\right)}} \geq \frac{\omega_{n}}{\pi}-\varepsilon_{i}$, we obtain by letting $i \rightarrow \infty$, that $\frac{1}{d-\pi / 2} \int_{0}^{d-\pi / 2} \sin ^{n-1} \mathrm{tdt}=\frac{1}{\pi} \int_{0}^{\pi} \sin ^{\mathrm{n}-1} \mathrm{tdt}$.

Now since $f(x)=\frac{\int_{0}^{x} \sin ^{n-1} r d r}{x}$ is strictly increasing function of $x\left(\leq \frac{\pi}{2}\right)$, we have $d-$ $\pi / 2=\pi / 2$ or $\mathrm{d}=\pi$. So $\mathrm{Vol}_{\left(\mathrm{M}_{\mathrm{i}}, \mathrm{g}\right)} \rightarrow \omega_{\mathrm{n}}$ and the result follows from the Appendix 1 of [CCO2] (cf. [CCO1]).

Case 2

$\operatorname{diam}_{\left(M_{i}, g_{)}\right)} \leq \frac{\pi}{2}$ for all $i:$
Note that there exists a space M such that $\mathrm{M}_{\mathrm{i}} \rightarrow \mathrm{M}$ in the Gromov-H ausdorff topology. Let $I=\operatorname{diam}_{M}$ then $\operatorname{diam}_{\left(M_{i}, g\right)}=: I_{i} \rightarrow I \leq \frac{\pi}{2}$ and we have

$$
\frac{\operatorname{vol}_{\left(M_{i}, g\right)}}{\omega_{n}} \leq \frac{\int_{0}^{i_{i}} \sin ^{n-1} r d r}{\int_{0}^{\pi} \sin ^{n-1} r d r} \leq \frac{l_{i}}{\pi} \rightarrow \frac{1}{\pi} .
$$

Thus by the limit argument, we obtain

$$
\frac{\int_{0}^{1} \sin ^{n-1} r d r}{1}=\frac{\int_{0}^{\pi} \sin ^{n-1} r d r}{\pi} .
$$

Now as in the case 1 , we havel $=\frac{\pi}{2}$. So, we observed that diam ${ }_{\left(M_{i}, g\right)} \rightarrow \frac{\pi}{2}$. Under the same selting as in Case 1 , choose $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}$ so that $\alpha_{\mathrm{i}} \uparrow \pi / 3, \beta_{\mathrm{i}} \uparrow \pi / 6$. Then we have

$$
\begin{aligned}
\frac{\operatorname{vol}_{\left(M_{i}, g\right)}}{\operatorname{diam}_{\left(M_{i}, g_{)}\right)}} & \leq \frac{\omega_{n-1}}{d_{i}}\left\{\int_{0}^{\alpha_{i}} \sin ^{n-1} t d t+\int_{0}^{\beta_{i}} \sin ^{n-1} t d t\right\}+\delta_{i} \\
& \leq \frac{\omega_{n-1}}{d_{i}}\left\{\frac{\alpha_{i}}{\pi} \int_{0}^{\pi} \sin ^{n-1} t d t+\frac{\beta_{i}}{\pi} \int_{0}^{\pi} \sin ^{n-1} t d t\right\}+\delta_{i} \\
& =\frac{\omega_{n}}{\pi}+\delta_{i} .
\end{aligned}
$$

By letting $\mathrm{i} \rightarrow \infty$, we know that the above inequalities are equalities. Consequently, we have a contradiction to the strict increasing property of $f(x)=\frac{\int_{0}^{x} \sin ^{n-1} r d r}{x}\left(0 \leq x \leq \frac{\pi}{2}\right)$.

References

[AC]	M. T. Anderson and J. Cheeger, C^{α}-compactness for manifolds with Ricci curvature and injectivity radius bounded below. J. Differential Geom. 35(1992), 265-281.
	G. P. Bessa, Differentiable sphere theorems for Ricci curvature. M ath. Z. 214(1993), 245-259.
[BC]	R. Bishop and B. Crittenden, Geometry of manifolds. Academic Press, New York, 1964.
[BK]	P. Buser and H. Karcher, Gromov's almost flat manifolds. Astérisque 81(1981).
[Br]	R. Brocks, Convexité et courbure de Ricci. C. R. Acad. Sci. Paris Sér. I 319(1994), 73-75.
[Ca]	M. Cai, A splitting theorem for manifolds of almost nonnegative Ricci curvature. Ann. Global Anal. Geom. 11 (1993), 373-385.
[CCol]	J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and thealmost rigidity of warped products. Ann. of M ath. 144(1996), 189-237.
	On the structure of spaces with Ricci curvaturebounded below. Preprint.
[CE]	J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry. Amsterdam, 1975.
[CH]	E. Calabi and P. Hartman, On the smoothness of isometries. Duke M ath. J. 37(1970), 741-750.
[Cr]	C. Croke, An eigenvalue pinching theorem. Invent. M ath. 68(1982), 253-256.
[DSW]	X. Dai, Z. Shen and G. Wei, NegativeRicci curvatureand isometry group. DukeM ath. J. 76(1994), 59-73.
[DW]	X. Dai and G. Wei, A comparison estimate of Toponogov type for Ricci curvature. M ath. Ann. 303(1995), 297-306.
[GH	S. Gallot, D. Hulin and J. Lafontaine, Riemannian geometry. Springer-Verlag, 1987.
[O]	Y. Otsu, On manifolds of small excess. Amer. J. M ath. 115(1993), 1229-1280.
[P1]	S.-H. Paeng, Topological entropy for geodesic flows under a Ricci curvature condition. Proc. Amer. Math. Soc. 125(1997), 1873-1879.
[P2]	\qquad , A generalization of Gromov's almost flat manifolds and topological entropy for geodesic flow. Preprint.
[Wei]	G. Wei, Ricci curvature and Betti number. J. Geom. Anal., to appear.

Korea Institute for Advanced Study (KIAS)	Department of M athematics
207-43 Cheongryangri-dong	Seoul National University
Dongdaemun-gu	Seoul 151-742
Seoul 130-012	Korea
Korea	email: jgyun@math.snu.ac.kr
email: shpaeng@kias.kaist.ac.kr	

[^0]: Received by the editors September 3, 1997; revised April 1, 1998.
 Partially supported by KIAS and in part supported in BSRI and GARC-KOSEF.
 AM S subject classification: 53C20, 53C21.
 Keywords: Ricci curvature, conjugate radius.
 (C)Canadian M athematical Society 1999.

