
Canad. Math. Bull. Vol. 54 (3), 2011 pp. 464–471
doi:10.4153/CMB-2011-086-7
c©Canadian Mathematical Society 2011

A Characterization of the
Compound-Exponential Type
Distributions

Tea-Yuan Hwang and Chin-Yuan Hu

Abstract. In this paper, a fixed point equation of the compound-exponential type distributions is de-

rived, and under some regular conditions, both the existence and uniqueness of this fixed point equa-

tion are investigated. A question posed by Pitman and Yor can be partially answered by using our

approach.

Introduction

Let X ≥ 0 be a random variable (r.v.) with finite mean 0 < E(X) = µX < ∞, and the

distribution function of X will be denoted by FX . Two important random variables

are induced by X (or FX), the length-biased r.v. Z and the integrated tail r.v. X1. They

are defined by

FZ(x) =
1

µX

∫ x

0

tdFX(t), x ≥ 0,

FX1
(x) =

1

µX

∫ x

0

(1 − FX(t))dt, x ≥ 0,

respectively. Sometimes FX1
is called the stationary excess distribution or the equilib-

rium distribution of FX . The characterization problems in this vein can be found in

[5–9] and the references therein.

In this paper, we consider the following distributional equation:

Z
d
= X1 + X2 + T · Z,

where the r.v. T ≥ 0 is given and X, X1, X2 are independent and identically distributed

(i.i.d.) random variables and X1, X2, T, and Z in the right-hand side are independent.

This equation is closely related to the Pitman–Yor problem, but is different, since the

distributional equation can be reduced to a fixed point equation, which is a type

of compound-exponential distributions case, but not a type of compound-Poisson

distributions [10].
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Note that the distributional equation is equivalent to the following fixed point

equation

F̂X(s) =
1

1 +

∫ +∞

0

1 − F̂X(st)

t
dFT(t)

, s ≥ 0,

where F̂X(s) = E(e−sX), s ≥ 0 is the Laplace–Stieltjes transform of the r.v. X, the

integrand is defined for t = 0 by continuity to be equal to µX · s (see Theorem 1.1

below), and so we call this the characterization of the compound-exponential type

distributions.

In Section 2, the problems of existence and uniqueness of the distributional equa-

tion are solved under some regular conditions,. The Pitman–Yor question [8, p.320]

can be partially answered by the approach given here (see Theorem 1.3 below). Here

and in similar assertions below, unique means, of course, unique in law.

Finally, we note that the regular conditions given here are slightly different from

the above mentioned papers. The key point in this paper is the sharp bound on the

second moment of the Laplace–Stieltjes transforms (see [1, 3, 4]).

1 The Main Results and Proofs

Throughout this section, we assume that all random variables are non-negative, that

the distribution functions are right continuous, and that the interval of integration is

closed (and may be replaced by [0,∞)). We also use the same notations as given in

the introduction. For example, the Laplace–Stieltjes transforms of Z and X1 are well

known and given by

F̂Z(s) =
−1

µX

F̂ ′

X(s), F̂X1
(s) =

1 − F̂X(s)

µX · s
, s ≥ 0,

respectively, where F̂X1
(0) = 1 is defined by the limit value as s → 0+. For conve-

nience, we assume that the mean of the r.v. X is finite and is given, that is,

0 < E(X) = µX < ∞ and µX = µ is given.

Theorem 1.1 Let T ≥ 0 be a given r.v. with 0 ≤ E(T) < 1 and assume that the

r.v. X ≥ 0 with 0 < E(X) = µX < ∞ and 0 < Var(X) = σ2
X < ∞. Then the

distributional equation

(1.1) Z
d
= X1 + X2 + T · Z

has exactly one solution X with the mean E(X), where X, X1, and X2 are independent

and identically distributed, X1, X2, T, and Z are independent.

Proof Under the given conditions, the distributional equation (1.1) is equivalent to

F̂Z(s) = F̂2
X(s) · F̂TZ(s), s ≥ 0. Since F̂Z(s) =

−1
µX

F̂ ′

X(s), the equation leads to

F̂ ′

X(s) + µX · F̂2
X(s) · F̂TZ(s) = 0, s ≥ 0.
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By using y =
1

bFX (s)
− 1 and F̂X(0) = 1, we get

F̂X(s) =
1

1 + µX

∫ s

0

F̂TZ(x) dx

, s ≥ 0,

and the identities

∫ +∞

0

1 − F̂X(st)

t
dFT(t) = µX · s · F̂TX1

(s)

= µX

∫ s

0

F̂TZ(x) dx, s ≥ 0,

imply the following fixed point equation

F̂X(s) =
1

1 +

∫ +∞

0

1 − F̂X(st)

t
dFT(t)

, s ≥ 0.

Under the given conditions, we will prove that this equation has a unique fixed point.

Note that if P(T = 0) = 1, then the equation is reduced to

F̂X(s) =
1

1 + µX · s
, s ≥ 0

and clearly, the exponential distribution is the solution, so there is nothing to prove.

Hence, we may assume that 0 < E(T) < 1.

First, we prove the existence. For n ≥ 1, define

F̂n(s) =
1

1 +

∫
∞

0

1 − F̂n−1(st)

t
dFT(t)

, s ≥ 0,

and F̂0(s) is the Laplace–Stieltjes transform of an initial random variable Y0. Note

that F̂n(s) are well defined for all n ≥ 0. In fact, for n ≥ 1, F̂n(s) is a Laplace–Stieltjes

transform of an infinitely divisible probability distribution [2, p. 441, Criterion 2,

p. 450, Theorem 1] or [10, p. 99].

Let Yn, n ≥ 0, be an r.v. with the Laplace–Stieltjes transform F̂n. Then, under the

given conditions of the theorem, we have (here we assume that E(Y 2
0 ) < ∞)

E(Yn) = E(Y0), n ≥ 1,

E(Y 2
n ) = E(Y 2

n−1) · E(T) + 2[E(Y0)]2, n ≥ 1.

Since 0 < E(X) = µX < ∞ is a given real number, let us choose

F̂Y0
(s) = 1 −

α2
1

α2

+
α2

1

α2

e−(α2/α1)s, s ≥ 0,
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where α1 = µX and α2 =
2µ2

X

1−E(T)
, F̂0 = F̂Y0

.

The condition 0 < E(T) < 1 implies that F̂Y0
is a well-defined Laplace–Stieltjes

transform and we have E(Y0) = α1 and E(Y 2
0 ) = α2 and the previous results give

(setting n = 1)

E(Y1) = α1 and E(Y 2
1 ) = α2E(T) + 2α2

1 = α2.

Now applying the inequality for Laplace–Stieltjes transforms (see [1, 3, 4]), we get

F̂1(s) ≤ 1 −
α2

1

α2

+
α2

1

α2

e−(α2/α1)s
= F̂0(s), s ≥ 0.

The definition of F̂n implies, for n ≥ 2,

bFn(s) − bFn−1(s) =

Z
∞

0

bFn−1(st) − bFn−2(st)

t
dFT (t)

ş
1+

Z
∞

0

1 − bFn−1(st)

t
dFT(t)

ť ş
1+

Z
∞

0

1 − bFn−2(st)

t
dFT (t)

ť ,

s ≥ 0.

Hence, we get F̂n(s) ≤ F̂n−1(s), s ≥ 0, n ≥ 1. Since 0 < E(Yn) = µX < ∞, the

Jensen’s inequality gives F̂n(s) ≥ e−µX ·s, s ≥ 0, n ≥ 0. Combining these inequalities,

we get e−µX ·s ≤ F̂n(s) ≤ F̂0(s), s ≥ 0, n ≥ 0. Thus, the monotone and bounded

sequence F̂n, n ≥ 0, has a unique limit, say F̂∞, since lims→0+ F̂∞(s) = 1.

By the continuity theorem [2, p. 431], this F̂∞ is the Laplace–Stieltjes transform of

an r.v. X∞. In the following, we will show that this F̂∞ is a fixed point with E(X∞) =

µX and E(X2
∞

) < ∞. The following two identities [2, p. 435]

1 − F̂X(s)

s
=

∫
∞

0

e−sx(1 − FX(x)) dx, s > 0,

F̂X(s) − 1 + µX · s

s2
= µX

∫
∞

0

e−sx(1 − FX1
(x)) dx, s > 0.

imply that the two functions are decreasing in s; on the other hand, the previous

inequalities imply that

1 − e−µX s

s
≥

1 − F̂n(s)

s
≥

1 − F̂0(s)

s
, s > 0, n ≥ 0,

e−µX s − 1 + µX · s

s2
≤

F̂n(s) − 1 + µX · s

s2
≤

F̂0(s) − 1 + µX · s

s2
, s > 0, n ≥ 0.

Now by using the monotonic property, letting n → ∞, and then s → 0+, we get

E(X∞) = µX and E(X2
∞

) ≤ α2 < ∞.
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Finally, by the dominated convergence theorem, this F̂∞(s) satisfies the fixed point

equation, and the proof of existence is complete.

To prove the uniqueness, let us assume that there are two fixed points F̂X and F̂Y

with µ ≡ µX = µY and E(X2) < ∞, E(Y 2) < ∞, where µX = E(X) and µY = E(y),

and hence the random variables X1 and Y1 are well defined with

µX1
≡ E(X1) =

E(X2)

2µX

< ∞ and µY1
≡ E(Y1) =

E(Y 2)

2µY

< ∞.

The fixed point equation implies

|F̂X1
(s) − F̂Y1

(s)| =

∣∣∣
F̂X(s)

µs
−

F̂Y (s)

µs

∣∣∣ =

∣∣∣
F̂X(s) − F̂Y (s)

µs

∣∣∣

≤ |F̂TX1
(s) − F̂TY1

(s)|, s ≥ 0.

Iterating, we get

|F̂X1
(s) − F̂Y1

(s)| ≤

∫
∞

0

|F̂X1
(st1) − F̂Y1

(st1)| dFT(t1)

≤

∫
∞

0

∫
∞

0

|F̂X1
(st1t2) − F̂Y1

(st1t2)| dFT(t1)dFT(t2)

≤ Λ

≤

∫
∞

0

Λ

∫
∞

0

|F̂X1
(st1Λtn) − F̂Y1

(st1Λtn)| dFT(t1)ΛdFT(t2)

≤ s · (µX1
+ µY1

) · [E(T)]n, n ≥ 1, s > 0.

Using the condition 0 < E(T) < 1 and letting n → ∞, we get

F̂X1
(s) = F̂Y1

(s), s > 0,

that is,

1 − F̂X1
(s)

µs
=

1 − F̂Y1
(s)

µs
, s > 0.

Hence, F̂X(s) = F̂Y (s), s > 0, or equivalently X
d
= Y . Finally, combining the previous

results, the proof is complete.

Corollary 1.2 Under the conditions of Theorem 1.1 and assuming that P(T = 0) = 1,

the distributional equation (1.1) has the exponential distribution solution.

See [7] for a closely related result. Note that in this case the conditions of Theo-

rem 1.1 can be weakened. The proof of Corollary 1.2 is obvious.
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Theorem 1.3 Let T ≥ 0 be a given random variable with 0 < E(T) < 1 and assume

that the r.v. X ≥ 0 with 0 < E(X) = µX < ∞ and 0 < Var(X) = σ2
x < ∞. Then the

distributional equation

(1.2) z
d
= X + T · Z

has exactly one solution X with the mean E(X), where X, T, and Z are independent.

Proof The proof of Theorem 1.3 is similar to the proof of Theorem 1.1. A brief proof

is given below. The distributional equation (1.2) is equivalent to

F̂ ′

X(s) + µX · F̂X(s) · F̂TZ(s) = 0, s ≥ 0,

which in turn leads to the following fixed point equation:

F̂X(s) = e−
R

+∞
0

1−bFX (st)

t
dFT (t), s ≥ 0.

Note that the integrand is defined for t = 0 by continuity to be equal to µX · s. To

prove the existence, let us define

F̂n(s) = e−
R

+∞
0

1−bFn−1(st)

t
dFT (t), s ≥ 0, n ≥ 1,

and F̂0(s) is the Laplace–Stieltjes transform of the initial r.v. Y0. Note that F̂n(s) are

all well defined for n ≥ 0. For n ≥ 1, F̂n(s) is a Laplace–Stieltjes transform of an in-

finitely divisible probability distribution [2, Theorem 1, p. 450] Under the conditions

of the theorem, we have (here we assume that E(Y 2
0 ) < ∞) E(Yn) = E(Y0), n ≥ 1,

and E(Y 2
n ) = E(Y 2

n−2) · E(T) + [E(Y0)]2, n ≥ 1, where Yn is an r.v. with the Laplace–

Stieltjes transform F̂n. Now by using the same argument as the proof of Theorem 1.1,

choose

F̂0(s) = 1 −
α2

1

α2

+
α2

1

α2

e−(α2/α1)s, s ≥ 0,

where α1 = µX and α2 =
µ2

X

1−E(T)
. The condition 0 < E(T) < 1 implies that F̂0 is well

defined. The same argument as the proof of Theorem 1.1 completes the proof of the

existence. The proof of the uniqueness is obvious.

Corollary 1.4 Let T ≥ 0 be a non-degenerate r.v. concentrated on (0, b], 0 < b ≤ 1,

and assume that the r.v. X ≥ 0 with 0 < E(X) = µX < ∞ and 0 < Var(X) = σ2
X <

∞. Then the distributional equation (1.2) has exactly one solution C with the mean

E(X) = µX .

Proof Corollary 1.4 can be found in Iksanov and Kim [6], where they prove Corol-

lary 1.4 without the condition 0 < Var(X) = σ2
X < ∞. The condition of T implies

that 0 < E(T) < 1, and Theorem 1.3 is in force.
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Theorem 1.5 Let T ≥ 0 be a given r.v. with 0 ≤ E(T) < 1 and assume that the

r.v. X ≥ 0 with 0 < E(X) = µX < ∞ and 0 < Var(X) = σ2
X < ∞. Then the

distributional equation

(1.3) X1
d
= X − 1 + T · X1

has exactly one solution X with the mean E(X), where X1
d
= X and X1, T and X1 are

independent.

Proof Let U have a uniform distribution over (0, 1). It is easy to obtain the distri-

butional identity X1
d
= U · Z, where U and Z are independent (see Sen and Khattree

[9]). Now applying this identity to the right-hand side of (1.3), it follows that the

equation (1.3) is equivalent to F̂ ′

X(s) + µX · F̂2
X(s) · F̂TZ(s) = 0, s ≥ 0. This equation

leads to the same fixed point equation as given in the proof of Theorem 1.1. Under

the given conditions, Theorem 1.1 is in force.

Remarks (i) The problem here is closely connected to some general results in

Steutel and van Harn [10, p. 443–445]. Let X be a nonnegative r.v. with finite

mean 0 < µ < ∞. Actually, under this condition, it is easily shown that the

r.v. X as in formula (1.1) is necessarily compound-exponential (see Steutel and

van Harn [10, p. 445]). Theorem 1.5 is a contribution of the referee.

(ii) All problems above can be proved by using the Banach contraction principle.

Here we give a different and simplified proof by using the sharp bounds of the

Laplace–Stieltjes transforms.
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