NOTE ON A-GROUPS

NOBORU ITÔ

Let us consider soluble groups whose Sylow subgroups are all abelian. Such groups we call A-groups, following P. Hall. A-groups were investigated thoroughly by P. Hall and D. R. Taunt from the view point of the structure theory.¹⁾ In this note, we want to give some remarks concerning representation theoretical properties of A-groups.

§ 1. Definition. A group \mathfrak{G} is called an *M*-group if all its irreducible representations are similar to those of monomial forms.

PROPOSITION 1. Every A-group is an M-group.

Proof. Let \mathfrak{G} be an A-group and let \mathfrak{Z} be an irreducible representation of \mathfrak{G} . Obviously the A-property is hereditary to subgroups and factor groups. Therefore, applying the induction argument with respect to the order of \mathfrak{G} , we see that we have only to consider faithful, primitive irreducible representations of \mathfrak{G} . Let $\mathfrak{Z} = \mathfrak{G}$ be such a one. Let \mathfrak{N} be the radical, that is, the largest nilpotent normal subgroup of \mathfrak{G} . Since \mathfrak{G} is an A-group, the radical \mathfrak{N} is abelian. Therefore by a theorem of H. Blichfeld,²⁾ \mathfrak{N} must coincide with the centre of \mathfrak{G} . If $\mathfrak{G} = \mathfrak{N}$, the assertion is trivial. If $\mathfrak{G} \neq \mathfrak{N}$, let \mathfrak{N}_1 be a normal subgroup of \mathfrak{G} , which is minimal over \mathfrak{N} . Then obviously \mathfrak{N}_1 is nilpotent and therefore $\mathfrak{N}_1 = \mathfrak{N}$ which is a contradiction. Q.E.D.

Imposing some strong restriction on (8, M. Tazawa proved the proposition 1.³⁾

The M-property is not always hereditary to subgroups. First we remark the following well known fact:

(A) Let us consider a matrix group \mathfrak{M} whose character is denoted by χ . Then \mathfrak{M} is irreducible if and only if $\sum \chi \bar{\chi} =$ the order of \mathfrak{M} .

Example. Let \mathfrak{G} be the hyperoctahedral group of degree 4 (and of order 2^4 . 4!). Then \mathfrak{G} is irreducible, which is easily verified applying (A). Let

Received September 11, 1951.

P. Hall, The construction of soluble groups. J. Reine Angew. Math. 182, 206-214 (1940).
D. R. Taunt, On A-groups. Proc. Cambridge Philos. Soc. 45, 24-42 (1949).
The latter is not yet accessible to me.

²⁾ H. Blichfeld, Finite Collineation Groups. Chicago (1917).

³⁾ M. Tazawa, Über die monomial darstellbaren endlichen Substitutionsgruppen. Proc. Acad. Jap. 10, 397-398 (1934).

NOBORU ITÔ

 $\mathfrak{Z} = \left\{ \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \right\}$ be the centre of \mathfrak{G} . Then $\mathfrak{G}/\mathfrak{Z}$ contains the abelian normal

subgroup $\Re/3$ of order 2⁴ such that \Im/\Re is a group of Jordan-Dedekind type, as is easily verified. Therefore $\mathfrak{G}/\mathfrak{Z}$ is an *M*-group by a theorem of K. Taketa.⁴⁾ Furthermore, all the faithful irreducible representations of (8) are given by the Kronecker products of \mathfrak{G} and the irreducible representations of $\mathfrak{G}/\mathfrak{N}$, as can also be easily verified by applying (A). Thus all the irreducible representations of If are similar to those of monomial forms. Therefore I is an M-group. On

the other hand, let us consider the subgroup \mathcal{F} of \mathfrak{G} generated by $\begin{pmatrix} -1 & 0 \\ 0 & -1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ & 1 \end{pmatrix}$. Then it is easily seen that \mathfrak{F} is isomorphic to the holomorph

of the quaternion group by its automorphism of order 3. Therefore \mathfrak{P} possesses a primitive irreducible representation of degree 2, and \mathfrak{H} is not an *M*-group.

§2. Let $\mathfrak{X}(\mathfrak{G})$ denote the set of all the elements of a group \mathfrak{G} such that $\chi(G) \neq 0$ for any simple character χ of \mathfrak{G} .

PROPOSITION 2. Let \mathfrak{B} be an A-group and let \mathfrak{N} be the radical of \mathfrak{B} . Then $\{\mathfrak{X}(\mathfrak{G})\}=\mathfrak{N}.$

Proof. First we prove $\mathfrak{X}(\mathfrak{G}) \subset \mathfrak{N}$. Let \mathfrak{M}_p be the largest normal p-subgroup of \mathfrak{G} . Then $\mathfrak{G}/\mathfrak{M}_p$ contains no normal *p*-subgroup distinct from $\{e\}$. We proved in the previous paper⁵⁾ that in such a group there exists a character of defect 0 for p. Such a character vanishes for all the p-singular elements by a theorem of R. Brauer and C. Nesbitt.⁶⁾ Let G be an element of $\mathfrak{X}(\mathfrak{G})$. Then the *p*-part of G is contained in \mathfrak{M}_p . Therefore G belongs to \mathfrak{N} and $\mathfrak{X}(\mathfrak{G}) \subset \mathfrak{N}$.

Secondly we prove $\{\mathfrak{X}(\mathfrak{G})\}\subset \mathfrak{N}$. Let P be an element of \mathfrak{M}_p and let \mathfrak{X} be a simple character of \mathfrak{G} . Every *p*-block contains a character belonging to \mathfrak{M}_{p} . Let g(P) denote the number of conjugate elements of P. Then

$$g(P)\frac{\chi(P)}{\chi(e)} \equiv g(P) \pmod{\mathfrak{p}}$$

80

⁴⁾ K. Taketa, Über die Gruppen, deren Darstellungen sich sämtlich auf monomiale Gestalt transformieren lassen. Proc. Acad. Jap. 6, 31-33 (1930).

⁵⁾ N. Itô, On the characters of soluble groups. These Journal 3, 31-48 (1951).

⁶⁾ R. Brauer and C. Nesbitt, On the modular characters of groups. Ann. Math. 42, 556-590 (1941).

⁷⁾ R. Brauer, On the arithmetic in a group ring. Proc. Nat. Acad. Sci. U.S.A. 109-114 (1944). N. Itô, Some studies on group characters. These Journal 2, 17-28 (1951).

⁽A remark to my paper: It was evident that $f/e_{\kappa}f_{\kappa} = 1$ by a theorem of I. Schur, from which the description can be rather shortened.)

where \mathfrak{p} is a prime ideal divisor of p in the character field of \mathcal{X} . Since (g(P), p) = 1, we have $\mathcal{X}(P) \neq 0$. Therefore P belongs to $\mathfrak{X}(\mathfrak{G})$ and $\{\mathfrak{X}(\mathfrak{G})\} \supset \mathfrak{N}$. Q.E.D.

Especially when the order of \mathfrak{G} is divisible by only two distinct prime numbers, we have precisely $\mathfrak{X}(\mathfrak{G}) = \mathfrak{N}$. To prove this, let P and Q be elements of \mathfrak{M}_p and \mathfrak{M}_q respectively. Considering P, Q and PQ in the group ring of \mathfrak{G} and denoting by \tilde{P} , \tilde{Q} and $\tilde{P}\tilde{Q}$ the sum of conjugate elements of P, Q and PQrespectively, we have clearly $\tilde{P}\widehat{Q} = \tilde{P}\widehat{Q}$. Then for any simple character χ of \mathfrak{G} , we have

$$g(PQ)\frac{\chi(PQ)}{\chi(e)} = g(P)\frac{\chi(P)}{\chi(e)} \cdot g(Q)\frac{\chi(Q)}{\chi(e)}$$

Since $\chi(P) \neq 0$ and $\chi(Q) \neq 0$, we have $\chi(PQ) \neq 0$. Therefore PQ belongs $\mathfrak{X}(\mathfrak{G})$ and $\mathfrak{X}(\mathfrak{G}) \supset \mathfrak{N}_{\mathfrak{X}}$ whence $\mathfrak{X}(\mathfrak{G}) = \mathfrak{N}$.

This is not always valid for general A-groups.

Example. Let \mathfrak{B} be a group generated by following two matrices of degree 7:

$$A = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \\ \rho^2 \\ -\rho \\ 1 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

where ρ is a primitive 6-th root of unity.

Put $A_2 = B^{-1}A_1B$, $A_3 = B^{-1}A_2B$, ..., $A_6 = B^{-1}A_5B$. We can easily substantiate that A_1, A_2, \ldots, A_5 are independent one another. Therefore \mathfrak{G} is an A-group of order $2^6 \cdot 2^6 \cdot 7$. Since the degree of any non-linear irreducible representation of \mathfrak{G} is 7,⁸ we have that \mathfrak{G} is irreducible. Here the character of A is clearly equal to 0.

Mathematical Institute, Nagoya University

⁸⁾ N. Itô, On the degrees of irreducible representations of a finite group. These Journal 3, 5-6 (1951).