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LOCAL SPECTRUM AND SUBHARMONICITY
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Introducing the technique of subharmonic functions, we prove that the local spectrum SpuW(T) is almost
constant if u is an analytic family of vectors and if the spectrum of T is thin, a result which is similar to the
finite-dimensional situation. We apply this result to improve a former result of C. Foias [7] on generalized
scalar operators and results of C. Foias and F. -H. Vasilescu [8] on generalized commutators.

1991 Mathematics subject classification: 47A11, 47B40

0. Introduction

Given two commuting linear bounded operators T and S on a complex Banach space
X under which conditions on T and S, can we assert the uniqueness property for the
local resolvent of T + S? As shown at the end of this paper, this is the most basic
problem in local spectral theory of the commutator C(T,S). This problem was initiated
by C. Foias. [7] in 1960 who solved it for generalized scalar operators, see also C. Foias.
& F. -H. Vasilescu [8], F. -H. Vasilescu [14, 15], and K. B. Laursen & M. M. Neumann
[10]. Recently, S. L. Sun [13] has obtained the remarkable result that the sum of two
commuting bounded linear operators, both with Dunford property (C) (for the
definition see [5]), will have the uniqueness property for the local resolvent.

In Section 1, we recall some preliminary results on local spectral theory. For more
details on this topic we refer to the classical monographs of I. Colojoara & C. Foias.
[4], and F. -H. Vasilescu [15].

In Section 2, we study the variation of k-*SpuW(T) where u is an analytic function
defined on a domain D with values in a Banach space X. Unfortunately, this
multifunction is not upper semicontinuous, even in the finite-dimensional situation. But,
using regularization, we are able to prove that this multifunction has nice subharmonic
properties (Theorem 2.1) which imply interesting results on the constancy of Spu{X)(T) if
the spectrum of T is thin. We finish with a striking application of this subharmonic
technique (Theorem 2.5 and Corollary 2.6) improving strongly the former result of C.
Foias. on generalized scalar operators [7], and we deduce applications to generalized
commutators (Corollaries 2.7, 2.8, 2.9, 2.10).

These partial results suggest that the general theory of analytic multifunctions (see
[1]) has an important role to play in local spectrum theory.
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1. Preliminary

Let T e ^ ( I ) and xeX. We define Qx to be the set of aeC for which there exists a
neighbourhood Va of a and u analytic on Va with values in X such that (A — T)u(X) = x
on Vx. This set is open and contains the complement of the spectrum of T. The function
u is called a local resolvent of T at x on Kr By definition the local spectrum of T at x,
denoted by Spx(T), is the complement of Qx, so it is a compact subset of Sp(T).

We denote by r(T) the spectral radius of T which is equal to limfc_001| T*||1/*. By
convention, for x # 0,

|Max{ |<x|
[0,

and px(r)=rirnx.,00||T*x||1/ll<;r(T). It is well-known that in general ||T*x||1/(c has no
limit. From the formal identity (k— T)jY,k'=o(j)kx = x, we conclude that we have

In general the set SpJ^T) may be empty even for x / 0 . But for x#0, the local
spectrum of T is non-empty if T satisfies the uniqueness property for the local resolvent,
that is (A — T)v(X) = 0 implies v = 0 for any analytic function v defined on any domain D
of C with values in X. N. Dunford [5] noticed easily that T has this property if the
spectrum of T has no interior points. So this happens if T has a finite, countable or real
spectrum. For the operators satisfying the uniqueness property for the local resolvent
there is a unique local resolvent at x which is the analytic extension of (X—T)~ix.
Using this property and Liouville's Theorem it is easy to conclude that Spx(T)^ty for
x#0 . Also in this case the local spectral radius r£T) is equal to px(T)=Irmt_c01| Tkx|| Uk.
In general this last property is false.

Lemma 1.1. (Holomorphic Functional Calculus for Local Spectrum). Let Te^(X),
x^O, and f holomorphic on a neighbourhood D of Sp(T). Then j{Spx(T)) is included in
Spx(f(T)). Iff is injective on D then f{Spx(T)) = Spx(f{T)). Moreover if T has the
uniqueness property for the local resolvent then we have the same property for any f
holomorphic.

Proof. This is essentially the proof given in [6, Theorem 1.6, p. 6]. The injective case
is obtained by applying the first case t o / " 1 and the operator/(T). •

2. Analytic results

Usually generalized scalar operators on a Banach space X are defined in term of the
spectral distribution (see [4]). But this notion is equivalent to the following one: we say
that Ne@(X) is a generalized scalar operator if N = H + iK where H,Ke@(X),
HK = KH and H, K are in the class if of real generalized scalar operators defined by
the growth condition
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for some integer n ^ 0. Such operators of the class £f have a real spectrum, consequently
they satisfy the uniqueness property for the local resolvent. In 1960, C. Foias. [7] proved
that these generalized scalar operators also have the uniqueness property for the local
resolvent.

First we shall prove some analytic property of the local spectrum in order to
generalize Foia§'s result.

We refer to [1] for all standard definitions and properties concerning subharmonic
functions and potential theory.

Let D be a non-empty open subset of C and g: £>->IRu{-oo} which is locally upper
bounded on D. The upper regularization g* of g is by definition

This function is upper semicontinuous on D.

Theorem 2.1. Let Te3B{X) satisfying the uniqueness property for the local resolvent
and let u be an analytic function from an open subset D of C into X. Then g:
A->logruU)(T) satisfies the mean inequality property (1); consequently g* is subharmonic on
D. Moreover the set of X such that g*(X)>g(X) is a polar subset of D.

Proof. Because T has the uniqueness property for the local resolvent we have
g{X)=limk^a)gk(X) where #*(>*)=£log|| Tku(X)\\. For k^l fixed, the function X->Tku(X) is
analytic so, by the Gauss formula on a closed disc D (Xo, r) included in D, we have

In 0

which implies

| |7MA0)| |^-L if \\Tku(X0 + reie)\\d6
In 0

This implies that X-* \\ Tku(X)\\ is subharmonic on D. Let a e C , we have |ca A|
= || Tkv(X)

have I e'x 11
where v(X) = ex*u(X) is analytic on D. So, by the first part of the proof, we

Tku(A) || subharmonic on D. By the Montel-Rado theorem ([1, p. 176]) this
implies that gk is subharmonic and continuous on D, so in particular

^ J gk(Xo + reie)d0.
In 0

Consequently
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g(/lo)=Tirn gk(l0)^Tmi I I
t-00 ^t t-oo \ 0

^ f Tim gk(lo + reie)d9=±- { g(A0 + reie)d6.
271 o *->» 2 7 t 0 (1)

Certainly g* satisfies the same mean inequality and is upper semicontinuous, so it is
subharmonic.

Let hN = supkzNgk, the sequence (hN) is decreasing and pointwise converging to g. By a
very famous theorem of H. Cartan on upper enveloppes of subharmonic functions (see
[3, p. 77-78] or [9, Theorem 7.39]) we know that h*N is subharmonic on D and that
EN = {XeD: /iN(A)</i%(A)} is a polar subset of D. Obviously the sequence (h%) is
decreasing and converges to g*. It is easy to see that {XeD: g*(A)>g(A)}<=uNg1 EN, the
last set being a countable union of polar subsets of D which is also polar, so we get the
result. •

Unfortunately, the multifunction X-*Spu{X)(T) is not upper semicontinuous, even in the
case of matrices. This is the reason why we introduce the upper semicontinuous
regularization of the spectrum by

r>0

It is easy to see that the graph of A-»Sp*(il)(T) is the closure of the graph of k^Spu{X){T);
consequently, the radius of Sp^X){T) is the regularization of rtt{X)(T). Moreover A-»
Sp%{X)(T) is upper semicontinuous.

Let K be a compact subset of the complex plane. We call peripherical part of K the
intersection of K with the smallest closed disc centred at 0 containing K. This
peripherical part contains at least a point and all its points have the same modulus.

Lemma 2.2. Let Te@(X) satisfying the uniqueness property for the local resolvent and
let u be an analytic function from a domain D of C into X. Suppose there exists XoeD
such that ruW{T)^ruiXo)(T),for all XeD. Then there exists c>0 such that r*{X)(T) = c on D
and the peripherical part of Sp*iX)(T) is constant on D.

Proof. By Theorem 2.1 we conclude that r*(X£T) is subharmonic on D; hence by the
Maximum Principle it is constant. The rest of the argument paraphrases the proof of
Theorem 3.4.11 in [1] replacing Spf(X) by Sp*u(X)(T), Sp(f(X) + az) by Sp*u(X){T + a) and

by r*uW(T + a). •

We shall say that a compact subset K of the complex plane is nice if for every a e dK
there exists a$K such that Kc{z:\z-a|^|a—a\}. This condition is automatically
verified if K is contained in a smooth curve.

https://doi.org/10.1017/S0013091500023312 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023312


LOCAL SPECTRUM AND SUBHARMONICITY 575

Theorem 23. Let T e 3S(X) and let u be an analytic function from a domain D of C
into X. Suppose moreover that Sp(T) is nice and without interior points. Then Sp*(X)(T) is
constant on D.

Proof. If u is identically zero on D the result is obvious. Because T satisfies the
uniqueness property for the local resolvent, Spu(X)(T) is non-empty on a subdomain £>'
such that D\D' is discrete. So without loss of generality we may suppose that u is never
zero on D. Let AoeD be fixed and <xeSpuiXo)(T). Because Sp{T) is nice there exists
a$Sp{T) such that SpuiXo)(T)<=Sp(T)<={z:\z-a\ ;> | a - a | } . We apply Lemma 1.1 to \,
which is holomorphic and injective on a neighbourhood of Sp(T—a), so we get

r f ) for AeD,
| a—a. I

which implies, by Lemma 2.2, that aeSp*(/l)(T) for every XeD. So Spu(io)(T)cSp*(X^T),
for every AeZ) and this implies that Spl(X)(T) is constant on D. •

If K is finite it is nice, it has no interior points, so the next result improves the
finite-dimensional situation.

Theorem 2.4. Let Te^S(X) be such that Sp(T) is nice, without interior points and let u
be an analytic function from a domain D of C into X. Then there exists a compact set K
and a polar subset E of D such that Spu(X)(T) = K for keD\E and Spu(X)(T)cK,
SPuiX)(T)*KforXeE.

Proof. By the previous theorem Sp*(i)(T) is constant on D, so denote by K this set
and denote by E the subset of D for which SpMX^T)^K. We now prove that E is polar.
Let XoeE, then there exists ueK\Spu(X)(T) and p>0 such that D(a,p) is disjoint from
Spu(Xo)(T). We know that Sp(T) has no interior points, so the disc 0(a,§) contains some
se(Q + iQ)\K such that

dist(s,SpuU)(T)>dist(s,/C), (2)

because otherwise we would have

^> \a-s\ Z

which is absurd. We now fix such an se(Q + iQ)\K satisfying (2). Because the spectrum
of T has no interior points the only holes of K are those surrounding at least one hole
of Sp(T). In every component of C\Sp(T) we select a point a(a = oo for the unbounded
component), then by Runge's Theorem (see [12 Theorem 13.6]) we can approximate
l//z-s on K by a sequence of rational functions pk((i) having only poles on the set of a.
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Let <pk(X) = logru(X)(pk(T)) = logMax\pk(SpuW(T))\ which is well-defined because (T-ot)~l

exists, for every a. Then, by Lemma 1.1 and Theorem 2.1, Ek(s) = {X: <̂>t(A) < »̂*(A)} is
polar, consequently £(s) = u t s i Ek(s) is also polar. When k goes to infinity we have

lim^ x ct>k(X0) = - log dist (s, SPuaJT)) < - log dist (s, K)

= -logdist(s,Sp*(Ao)(r)) = lim^oo <t>*k(X0).

Consequently, XoeE(s). This implies that £<=u£(s), for all se(Q + iQ)\K, so E is polaQ

Theorem 2.5. Let T,Se@(X). Suppose that TS = ST, that the spectrum of T is nice
and without interior points and that the spectrum of S has no interior points. Then T + S
has the uniqueness property for the local resolvent.

Proof. Suppose that u is analytic on a domain D of C and satisfies (X — (T + S))u{A) =
0. Suppose that u is not identically zero on D then, without loss of generality, we can
suppose it is never zero on D. For aeC we have (a — T)u{X) = (a — X + S)u{X), for XeD.
Consequently, if a is not in Sp(X — S) = 2 — Sp(S), because T and S commute, we have

(a-T)(<x-X + S)-lu(X) = u(X). (3)

For XeD fixed, it is obvious that oc->(a — X + S)~lu(k) is analytic on the complement of
Sp{S)-X. This implies that SpuU)(T)cX — Sp[S), for all XeD. Taking the regularization
we get

SplwiT)<=l-Sp(S), for all XeD. (4)

By Theorem 2.3, Sp*(X)(T) is constant and non-empty on D, so let a be a point which is
always in Sp*w(T), then we have X — aeSp(S), for all XeD. Hence Sp(S) contains the
open set D — a. and this is a contradiction. So w = 0 on D and T + S satisfies the
uniqueness property for the local resolvent. •

Corollary 2.6. Let T,Se@(X). Suppose TS = ST and Sp(T), Sp{S) real, then T + iS has
the uniqueness property for the local resolvent.

In this particular case of operators with real joint spectrum F. -H. Vasilescu [14,
Theorem 5.8] has obtained that each n-tuples of commuting operators with real joint
spectrum possesses the uniqueness property for the local resolvent.

Let T,Se@(X), the generalized derivation C(T,S) defined by T,S is by definition the
operator defined on 36{X) by C(T,S)A = TA-AS. If T = S it is an inner derivation. In
[9, Proposition 2.2], C. Foias. and F. -H. Vasilescu proved that C(T,S) has the
uniqueness property for the local resolvent if T and S are decomposable operators.
They applied this fact to obtain two very interesting inclusions for the local spectra (see
Corollaries 2.9, 2.10 below). Even at the end of their paper they noticed that the

https://doi.org/10.1017/S0013091500023312 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500023312


LOCAL SPECTRUM AND SUBHARMONICITY 577

uniqueness property for C(T,S) could be obtained supposing only S decomposable and
T with the uniqueness property and the property that {xeX: Spx(T)cF} is closed for
every closed subset F of C (Dunford's property). This last result has been extended by
K. B. Laursen and M. M. Neumann ([10, Theorem 2.4]) supposing only that S has
property (<5) and T has Dunford's property (for the definition of property (5) see this
last paper, it is well-known that S decomposable implies that S has property (<5)).

It is easy to see that, in general, generalized derivations, even inner derivations, do
not have the uniqueness property for the local resolvent. Taking the left shift operator T
on I2 then, there exists for 0 < | A | < 1 an analytic family x(A) of vectors such that

) = 0where

So denoting by A(X)e0$(X) the operator defined by A(X)y = (y\x(X))x{X) we obtain an
analytic family of operators such that on I2 © I2 we have

T 0\ /O A(X)\ (0 A(X)\ IT

o oj [p o ) \ o o y \ o o) "\o

which imply that the inner derivation defined by (J g) on I2 © I2 does not have the
uniqueness property for the local resolvent.

We now prove that C(T,S) has the uniqueness property for the local resolvent, if T
and S have spectra with good topological properties.

Corollary 2.7. Let T,S e 38{X). Suppose that the spectrum of one of these operators is
nice and without interior points and that the spectrum of the other has no interior points.
Then C(T,S) has the uniqueness property for the local resolvent, consequently SpAC{T,S)
is non-empty for non-zero A e &$(X) and there exists a unique local resolvent at A.

Proof. We have C(T,S) = LT-RS, where LT and Rs denote respectively the left
multiplication by T and the right multiplication by S. These two operators commute;
moreover Sp(LT) = Sp(T) and Sp(Rs) = Sp(S). So by Theorem 2.5 applied to LT and -Rs

we have the result. •

Corollary 2.8. Let T=T1 + iT2,S = S1 + iS2e^(X). Suppose that TVT2 = T2Tl,S1S2 =
S2Si and that TuT2,Sl,S2 have real spectra. Then C{T,S) has the uniqueness property for
the local resolvent.

Proof. We have C(T,S) = LTl — RSl + i(LTl — RSl). Because LTl, RSl commute we have
Sp(LTl-RSl)<=Sp(LTl)-Sp(RSl)c[R. The same is true for LTl-RSr By hypothesis
LTl — RSl and LTl — RSl commute. So we apply Corollary 2.6. •
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This last result can be applied in particular to generalized scalar operators.
Using the arguments of C. Foia§ and F. -H. Vasilescu ([8, Theorem 2.3 and 2.4]) we

obtain immediately.

Corollary 2.9. Let T,Se@{X) satisfying the hypotheses of Corollary 2.7 or of
Corollary 2.8, let Ae@(X) and let xeX. Then S p ^

Corollary 2.10. Let T,S,Re3B(X) satisfying the hypotheses of Corollary 2.7 or of
Corollary 2.8 and let A,Be@{X). Then SpBAC(R,T)cSpAC{R,S) + SpBC(S, T).

All these arguments suggest that parts of the following questions are certainly true:
1. Let T(A) be an analytic family of operators in 3S(X), for XeD, having the uniqueness

property for the local resolvent and let u be an analytic family of vectors of X
defined on D, is the multifunction A-»Sp*(i)(T(A)), or a related one, analytic? If this is
true Theorems 2.3, 2.4, 2.5 can be improved.

2. Is it possible to extend Theorem 2.4 only supposing Sp(T) without interior points or
even bigger?

3. Is it possible to improve Theorem 2.5 only supposing that T and S commute and
their spectra have no interior points?
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