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Abstract. ALMA, the Atacama Large Millimeter / Sub-millimeter Ar-
ray will be the first instrument allowing very high angular resolution
(down to 0.01”) with sufficient sensitivity to image thermal emission from
dust and molecules in proto-planetary disks at wavelengths where these
disks are optically thin. Its unsurpassed characteristics will make it a
premier instrument to study the formation of binary and multiple sys-
tems. I present here the projected characteristics of ALMA, in particular
the expected sensitivities and frequency coverage, and illustrates some
possible applications relevant to the study of binary star formation.

1. Introduction

The example of the GG Tau binary system (Guilloteau & Dutrey, this proceed-
ing) illustrates the power of mm interferometry for the study of young binary
and multiple systems. Although the stars themselves remain undetected at mm
wavelengths, mm observations provide the only direct measurement of the stel-
lar masses. This particular match of the mm domain to the study of young
stellar system result from three properties. First, the circumstellar material is
essentially dark and rather cold (from a few K to a few 100 K, except in the in-
nermost regions). Second, by an appropriate coincidence, most of the abundant
lighter molecules have their lower rotational lines in the mm window. Third,
the interstellar dust, though only present with tiny densities, becomes easily
optically thick even in the near-IR. Hence, young stars are often hidden in vis-
ible lights by their surrounding envelopes, but at mm wavelengths, the opacity
becomes low enough to be able to see throughout (except perhaps in the in-
nermost regions). A large mm / sub-mm interferometer like ALMA, which will
provide unsurpassed sensitivity and angular resolution is particularly suited to
the studies of these environments.
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2. The ALMA Project

The ALMA project is designed to overcome the limitations of the current mm
arrays, both in angular resolution and collecting power. Unfortunately, in an
interferometer, an improvement in angular resolution by a factor F' requires an
improvement in sensitivity by a factor F2. ALMA is intended to provide a factor
10 better angular resolution than current arrays, hence will require a 100 times
better sensitivity. At these wavelengths, receivers approach the quantum limit,
and the atmosphere dominates the noise. Thus, such a gain in sensitivity can
only come from the detection bandwidth (for continuum, but not for spectral
lines where it is limited by the Doppler width) and the collecting area. The
ALMA project is the result of studies for several original projects:

- the US-MMA with a collecting area of 2000 m? (40 8-m antennas), emphasis
on wide field imaging, and sub-mm capabilities

- the European LSA, with a collecting area of 10000 m? (60 15-m antennas),
emphasis on high angular resolution, in the mm domain only

- the Japanese LMSA, with a collecting area of 4000 m? (50 10-m antennas),
emphasis on sub-mm frequencies.

These preliminary studies have led to a US-European consortium which is
currently studying an ALMA project consisting of:

- 64 antennas of 12 meter diameter, providing 7000 m? (7 times larger than the
IRAM-PdB) :

- 20 pm surface accuracy for the antennas to provide high efficiency at the
shortest wavelengths (near 350 pm).

- 0.6” pointing accuracy, to allow high quality imaging at all frequencies

- A receiver concept allowing observations at frequencies between 30 GHz and
900 GHz. 4 receiver bands, covering the 3mm 1.3mm, 0.8 mm and 0.5 mm
atmospheric windows are foreseen in the initial complement of receivers

- A system design allowing full polarization measurements.

- Array configurations ranging from a dense, compact array of ~ 160 m diameter
to an extended configuration of more than 12 km diameter. Combined with the
observing frequencies, this provides angular resolution from 12" to 0.006".

- Wide field imaging capabilities, by the inclusion of mosaicing techniques and
total power measurements.

- High detection bandwidth (16 GHz instantaneous).

Serious discussions are proceeding with Japan, which may join as an equal
partner, leading to an enhanced project. This project, currently under definition
may comprise in addition an array of smaller antennas to improve the wide field
imaging capability, a more powerful correlator system, and more receiver bands.

Compared to current instruments, ALMA will represent a major step for-
ward. It will be 50 to 100 times more sensitive than the IRAM-PdB for con-
tinuum observations (15 to 25 times more sensitive for spectral lines). In the
sub-mm domain, ALMA will be 40 to 100 times more sensitive than the SMA.
ALMA will be the first imaging array at mm and sub-mm wavelengths: rather
than having to rely on Earth rotation for aperture synthesis, its 2048 baseline
will provide snapshot images of high quality. ALMA will provide routinely an-
gular resolutions of order 0.1”; and allow to reach 0.01”. Finally, thanks to the
combination of instantaneous imaging capability and high sensitivity, ALMA
will allow complete surveys to be carried out.
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In order for ALMA to stand for its promises, a number of challenges have
to be overcome.
International Collaboration With the VLT, the Keck observatory, Gemini,
and the LBT, the optical community has access to a large number of com-
peting facilities. On the contrary, there will be a single ALMA. The United
States (NRAO), Canada, and a consortium or organisations from many Euro-
pean countries (ESO member states, the UK, Spain) have joined the ALMA
project. Japan is participating to the studies and expected to join ALMA in
some relatively near future.
An outstanding site Since atmosphere is the main contribution to noise, it is
primordial to select the best possible site to minimize its impact. The antici-
pated site is Llano de Chajnantor in the high Atacama desert in Chile, is located
at 5000 m altitude. Construction and operation at such an elevation are clear
concerns.
Low Cost but High Quality Antennas Antennas will certainly be the largest
industrial contribution to the project. The performance specifications are quite
tight, but the cost must be kept to a minimum: the projected production cost
is less than 3 M$ per antenna. To match these contradictory requirements, the
ALMA project has ordered from industry two prototypes, from two manufactur-
ers. This minimizes the technological risk, but also allow a better price control
by maintaining some competition.
Large series of (excellent) receivers ALMA will be able to accomodate 10
different frequency bands, each in dual-polarisation. The total number of re-
ceivers far exceeds the receiver production of the whole world in the last 10
years. Yet, each ALMA receiver should be better than the best existing proto-
type today.
High frequency capabilities Although fringes have been obtained up to 450
GHz with the CSO-JCMT interferometer, no imaging has yet been performed
at such frequencies. The signal between telescopes will need to be transported
using optical fibers, with re-connection each time an antenna is moved, preserv-
ing the phase information.
“Blind” Adaptive Optics Even on the excellent site, the atmospheric seeing
at mm and sub-mm wavelengths is of order 0.2 to 0.6”. Obtaining the ultimate
angular resolution will thus require some analogous to adaptive optics. Unfortu-
nately, no bright source is ever available in the antenna field of view to perform
such a referencing. Correction of the pathlength variations due to the atmo-
sphere will be done in a completely blind mode, which is possible because the
pathlength fluctuations are dominated by fluctuations of the water vapor con-
tent. Since water also dominates the sky emissivity variations, monitoring the
sky brightness, preferably within a spectral line of water (e.g. near 183 GHz),
allows to predict pathlengths fluctuations.
Huge data rate ALMA will have a large number of baselines and spectral
channels. The minimum dump time is setup by Earth rotation, and is only of a
few seconds. Hence the typical data rate for ALMA is of order 100 GBytes/hour,
and can be even larger for specific experiments such as on-the-fly mosaicing.
An “All Purpose” instrument ALMA will cover very different areas of As-
tronomy. Hence, it must be designed to be easy to use for any astronomer.
The design goal is to provide an instrument delivering high quality images just
as easily as a simple camera. While the simple applications (mm frequencies,
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Figure 1.  Typical system temperatures for ALMA in the millimeter
range.

narrow field of view) can already be automatically treated by current softwares,
the more complex images (high frequencies, mosaics) will require advances in
image processing. The simplicity of the user interface will also be an important
issue.

3. ALMA and Multiple Stellar System Formation

The expected system temperature as function of observing frequency are given
in Figure 1 and 2, with reasonable assumptions about the receiver performances
(not too optimistic, but not too conservative either) and atmospheric condi-
tions. The expected sensitivity in flux density can be derived using the classic
interferometer noise formula

_J_ Tys (1)
n /n(n—1)Av

where Av is the observing bandwidth, ¢ the integration time, n the number of
antennas, and J is the antenna gain (Jy per Kelvin) given by

AS,

2k

J == ~33Jy/K (2)

a

7, being the aperture efficiency and A the area of one antenna. In Eq.1, 5 is
an efficiency factor including atmospheric decorrelation, quantization efficiency,
instrumental phase noise, etc...The brightness sensitivity can be derived
from the flux density and synthesized beam width @ by

2km6?
AS = 32 AS (3)
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Figure 2. System temperatures for ALMA in the sub-millimeter
range, for a precipitable water vapor content of 0.5 mm. Such con-
ditions are expected about 20 % of the time.

Plugging into Eq.1 the numbers from Fig.1 and 2 gives sensitivity of 10uJy
in 1 hour at 230 GHz, corresponding to 0.23 mK in brightness for 1” resolution,
and 0.5 K for the highest possible resolution (0.025”). At 900 GHz, the sen-
sitivity in 6 hours is ~ 40uJy, or 1.2 K at 0.007”. These numbers have to be
compared to the typical surface brightness for dust emission, 0.1 to 10-100 K, as
in Fig.3.. Figure 3. presents the sensitivity in line and continuum compared to
the expected brightness for a “representative” circumstellar disk at a distance
of 150 pc. ALMA will be able to compare molecular emission to dust emission
from 30 AU up to the outer edge of the disk (500 AU). In continuum, ALMA will
also be sensitive to the presence of dust in the inner regions, down to 0.25 AU. A
useful way of expressing the sensitivity is in terms of surface density of material.
Using the typical dust emissivity for such environment, K, = 0.1(rv/1000GHz)
cm?/g (including the mass of gas), and appropriate temperature range, e.g.
30 to 300 K, ALMA could detect surface densities of order 0.15 g/cm? at its
higher resolution, well below the values required for giant planet formation (a
few g/cm?).

With such characteristics, ALMA will undoubtedly make a major contri-
bution to the study of close binary systems and proto-binaries. A few examples
are given below.

Binary Separation Range While current instruments have revealed cir-
cumbinary disks around binaries of 0.3 - 0.8 separation, ALMA will be able
to explore a much wider domain of binary separation, from 0.01 to 3-10”, at the
smaller end because of its increased angular resolution, and at the larger end
because of its high surface brightness sensitivity.
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Figure 3. Brightness distribution of dust emission at 1.3mm (dark
grey), 13CO J=2-1 (grey) and C'¥0 J=2-1 (black) lines in a circumstel-
lar disk. The sensitivity curves at 3o for the continuum (dashed line
in dark grey) and the lines (dashed line in grey) are given for ALMA
and an angular resolution of 0.2”. The angular size (") is scaled to
the Taurus distance (150 pc) with radius in AU. The interferometer
is only sensitive to disk emission above the sensitivity curves. Filled
areas correspond to the regions of the disk where the emissions are de-
tectable and resolved. See also Dutrey 2000 (in “Science with ALMA”,
A Wootten ed.)

Proto Binary Statistics Since 60 to 90 % of all stars form in binary systems,
this is a key in the star and planet formation process. Because it could reach
regions 10 times further than current instruments, with sensitivities allowing to
detect less than 0.01 M of material, ALMA will be able to provide statistics on
the (proto)-binary fraction in star formation regions with very different prop-
erties. Comparing, in a statistically meaningful sense, this binary fraction in
very different regions, either regions of isolated star formation like Taurus, or
dense clusters like Orion, will be a major clue in the understanding of the star
formation process

Binary Masses Another useful number is the sensitivity for spectral line ob-
servations. For a velocity resolution of 0.15 km.s™!, the expected brightness
sensitivity is 3 K in 6 hours of integration at 0.1” resolution near 230 GHz. Since
the kinetic temperature in proto-planetary disks is 30-100 K or more, ALMA
will be able to provide resolved images of even optically thin lines. This should
allow to measure the rotation pattern in individual circumstellar disks around
binary stars with > 0.4” separation, like e.g. UY Aur, providing direct stellar
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mass estimates. Total system masses could be derived from the kinematics of
the circumbinary disk.

Warps, Gaps and other tidal effects As illustrated by the case of GG
Tau, mm arrays can provide clear images of tidal gaps in multiple systems. Disk
warping can be detected through accurate inclination measurements, which are
possible because of the kinematic information. ALMA will even allow to detect
gaps created by proto-planets. Fig.4 gives a simple simulation of how ALMA
would see the inner part of a circumstellar disk in which a tidal gap has been
cleared by a (proto)-planet. The gap width is 1 AU, its radius 30 AU, and the
gap-disk contrast 90 %. The source is assumed to be located at 150 pc. Fig.4
show that, although the angular resolution is only 4 AU, the gap is visible at 230
GHz. No noise has been added to the simulation. The expected noise level is
0.01 mJy/beam, or 0.5 K, well below the measured gap intensity, which is a few
K. At higher frequencies, e.g. 690 GHz, the increased angular resolution allows
to see the gap more clearly, and the expected noise level, around 1.2 K, still
much smaller than expected difference between the gap and the surrounding
disk. Note that this simulation is intentionally very primitive: it includes a
single configuration of ALMA, so that the “large” scale structures (structures
larger than 0.2") are not properly recovered. Inclusion of data from the more
compact arrays (the 3 km ring) would avoid the resulting artifacts. Despite this
simplification, the gap is nevertheless well detected. '

’

Binary Mass Ratio & Separation Although direct mass measurements
may only be possible for a small fraction of the systems, the structure of the
tidal gaps indirectly reflects the binary mass ratio and separation. Since gaps
would be relatively easy to detect, ALMA could provide evidence for low mass
companions which would remain undetectable through direct IR /optical imaging
because of the insufficient image contrast.

Streamers In a system like GG Tau, ALMA could easily detect the dusty
streamers which are likely to feed the inner disks from the circumbinary disks,
not only through dust emission, but also detecting molecules in such streamers.
This would allow accurate determination of the mass flow rate.

4. ALMA Development and Calendar

ALMA is currently in a design and development phase until end of 2001. Funding
for the construction is expected to start in 2002. The prototype antennas should
be delivered to the Very Large Array site for testing at the end of 2001. A
detailed costing of the project has been made, resulting in a total cost of ~
550 M$, including contingency. For such a total cost, ALMA will be equipped
to cover 4 receiver bands, covering 85-115 GHz, 210-275 GHz, 275-370 GHz,
and 600-720 GHz, but the dewar will be build to accomodate 10 receivers. If
Japan joins as a major partner, more ambitious goals would be set to ALMA.
This “enhanced” ALMA project would certainly cover most frequency bands
from 30 to 900 GHz, but also perhaps be complemented by a “compact” array
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Figure4. Simulation of a gap in a proto-planetary disk observed with
ALMA at 230 GHz. Contour spacing is 0.2 mJy/beam or 10 K, about
20 times larger than the expected noise level.

to enhance its wide field imaging capability. First antennas are expected to be
delivered on the site in 2005. Construction will then proceed at a rate of 8 to 12
antennas per year, depending mostly on financing aspects. With this scenario,
ALMA first science operation would start near 2006, and progressively reach its
full completion near 2010.
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